JPH0520975B2 - - Google Patents

Info

Publication number
JPH0520975B2
JPH0520975B2 JP18004084A JP18004084A JPH0520975B2 JP H0520975 B2 JPH0520975 B2 JP H0520975B2 JP 18004084 A JP18004084 A JP 18004084A JP 18004084 A JP18004084 A JP 18004084A JP H0520975 B2 JPH0520975 B2 JP H0520975B2
Authority
JP
Japan
Prior art keywords
current
phase control
control angle
ground fault
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18004084A
Other languages
Japanese (ja)
Other versions
JPS6158424A (en
Inventor
Masayuki Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP18004084A priority Critical patent/JPS6158424A/en
Publication of JPS6158424A publication Critical patent/JPS6158424A/en
Publication of JPH0520975B2 publication Critical patent/JPH0520975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は中性点接地方式の配電線路における地
絡検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ground fault detection device in a neutral point grounding type power distribution line.

従来の技術 ヒータ用サイリスタ電源設備において負荷側中
性点が接地されている装置の一例を第3図aに示
す。この図において3相交流電源1の各相出力端
は、サイリスタを逆並列接続して成るサイリスタ
変換器2a,2b,2cを介して中性点が接地さ
れた負荷3に接続されている。このように構成さ
れた装置において、従来地絡事故を検出する方法
は、例えば交流電源1側の中性点と大地を結ぶ電
路に変流器(CT)又は接地変圧器(GPT)を設
け(図示省略)、これら変成器によつて零相電流
又は零相電圧を監視して地絡検出を行なう方法が
用いられていた。
2. Description of the Related Art An example of a thyristor power source equipment for a heater in which the neutral point on the load side is grounded is shown in FIG. 3a. In this figure, each phase output end of a three-phase AC power supply 1 is connected to a load 3 whose neutral point is grounded via thyristor converters 2a, 2b, and 2c formed by connecting thyristors in antiparallel. In a device configured in this way, a conventional method for detecting a ground fault is to install a current transformer (CT) or a grounding transformer (GPT) in the electrical path connecting the neutral point on the AC power supply 1 side and the earth, for example. (not shown), a method was used in which ground faults were detected by monitoring zero-sequence current or zero-sequence voltage using these transformers.

発明が解決しようとする問題点 第3図aの装置において、サイリスタ変換器2
a,2b,2cは図示しない制御回路によつて位
相制御されるが、この場合交流電源1側の中性点
と負荷3側の中性点に電位差が生ずる。例えば第
3図bにおいてU相およびY相のサイリスタがオ
ン状態に、W相およびZ相のサイリスタがオフ状
態にあるとき、負荷3の中性点はU相とY相との
中性点になつてしまい、3相がバランスされた中
性点ではなくなる。この為サイリスタ変換器2
a,2b,2cを制御角α=70°で制御したとき
のゲートオンサイクルは第4図aの如くなり、こ
のとき負荷3側の中性点には第4図bに示すよう
な電位が生ずる。
Problems to be Solved by the Invention In the device of FIG. 3a, the thyristor converter 2
a, 2b, and 2c are phase-controlled by a control circuit (not shown), but in this case, a potential difference occurs between the neutral point on the AC power supply 1 side and the neutral point on the load 3 side. For example, in Fig. 3b, when the U-phase and Y-phase thyristors are in the on state and the W-phase and Z-phase thyristors are in the off state, the neutral point of the load 3 is the neutral point of the U and Y phases. The three phases are no longer a balanced neutral point. For this reason, thyristor converter 2
When a, 2b, and 2c are controlled at a control angle α=70°, the gate-on cycle is as shown in Figure 4a, and at this time, the neutral point on the load 3 side has a potential as shown in Figure 4b. arise.

また、サイリスタ変換器2a,2b,2cを制
御角α=45°で制御したときのゲートオンサイク
ルは第5図aの如くなり、このとき負荷3側の中
性点には第5図bに示すような電位が生ずる。す
なわち負荷3側の中性点電位は位相制御角αに応
じて変化する。そして負荷3側の中性点と電源1
側の中性点の間の電位差によつて大地帰路電流が
常時流れてしまう。このように大地帰路電流が常
時流れると、地絡事故電流との区別がつかなくな
り地絡継電器が誤動作してしまう。
Furthermore, when the thyristor converters 2a, 2b, and 2c are controlled at a control angle α=45°, the gate-on cycle is as shown in Fig. 5a, and at this time, the neutral point on the load 3 side is as shown in Fig. 5b. A potential as shown is generated. That is, the neutral point potential on the load 3 side changes according to the phase control angle α. And the neutral point on the load 3 side and the power supply 1
Due to the potential difference between the neutral points on both sides, a ground return current always flows. If the earth return current flows all the time in this way, it will become indistinguishable from the earth fault current and the earth fault relay will malfunction.

本発明は、上記の点に鑑みなされたもので、サ
イリスタ変換器の位相制御角αの大小に拘らず地
絡事故を検出することができるとともに、常時の
大地帰路電流によつて地絡継電器が誤動作しない
地絡検出装置を提供することを目的としている。
The present invention has been made in view of the above points, and is capable of detecting a ground fault regardless of the magnitude of the phase control angle α of the thyristor converter, and is capable of detecting a ground fault relay by a constant ground return current. The purpose is to provide a ground fault detection device that does not malfunction.

問題点を解決するための手段及び作用 本発明は、中性点が接地された負荷と交流電源
とを結ぶ配電線路にサイリスタ変換器を介挿して
構成された装置において、前記交流電源および前
記サイリスタ変換器の共通接続点と大地を結ぶ電
路に抵抗および電流検出器を設けるとともに、前
記サイリスタ変換器の位相制御角αをサイリスタ
制御回路から検出し、且つその検出出力の大小に
応じて前記抵抗の値を変化させ、これによつて常
時流れる大地帰路電流を地絡継電器が誤動作しな
い範囲内に抑制し、地絡事故発生時の地絡電流を
前記電流検出器によつて確実に検出するようにし
たことを特徴としている。
Means and Effects for Solving the Problems The present invention provides a device configured by inserting a thyristor converter in a distribution line connecting an AC power source and a load whose neutral point is grounded. A resistor and a current detector are provided in the electrical path connecting the common connection point of the converter and the ground, and the phase control angle α of the thyristor converter is detected from the thyristor control circuit, and the resistance of the resistor is adjusted according to the magnitude of the detected output. By changing the value, the ground return current that constantly flows is suppressed within a range that does not cause the ground fault relay to malfunction, and the ground fault current in the event of a ground fault accident is reliably detected by the current detector. It is characterized by what it did.

実施例 以下、図面を参照しながら本発明の一実施例を
説明する。第1図において第3図aと同一部分は
同一符号を持つて示し、その説明は省略する。前
記交流電源1とサイリスタ変換器2aの共通接続
点11aは抵抗12dを介して抵抗12aの一端
に接続されている。交流電源1とサイリスタ変換
器2bの共通接続点11bは抵抗12eを介して
抵抗12bの一端に接続されている。交流電源1
とサイリスタ変換器2cの共通接続点11cは抵
抗12fを介して抵抗12cの一端に接続されて
いる。これら抵抗12a〜12fで電流抑制手段
を構成している。前記抵抗12a,12b,12
cの他端は一括して接地抵抗13を介して接地さ
れている。抵抗12a,12b,12cの他端と
接地抵抗13を結ぶ電路には電流検出手段、例え
ば零相変流器14が介挿されている。この変流器
14の出力側は地絡継電器15に接続されてい
る。前記抵抗12a,12b,12cの両端には
後述する電磁接触器の接点16a,16b,16
cが各々並列接続されている。17は各相間電圧
を検出する変圧器である。この変圧器17の出力
電圧は整流器等から成る変換器18によつて直流
電圧に変換された後第1つき合わせ回路19に入
力される。20a,20bはともに各相を流れる
電流を検出する変流器である。この変流器20
a,20bの出力電流は整流器等から成る変換器
21によつて直流電流に変換された後第2つき合
わせ回路22に入力される。23は基準電圧を設
定する設定器である。この設定器23の出力電圧
は第1つき合わせ回路19において前記変換器1
8の出力電圧とつき合わせられ、その偏差出力は
電圧増幅器24で増幅される。電圧増幅器24の
出力は第2つき合わせ回路22において前記変換
器21の出力電流とつき合わせられ、その偏差出
力は電流増幅器25で増幅される。電流増幅器2
5の出力はα検出用コンパレータ26に入力され
るとともに、積分器27を介して位相制御回路2
8に入力される。位相制御回路28は積分器27
の出力に基づいて前記サイリスタ変換器2a,2
b,2cの各サイリスタを位相制御する。α検出
用コンパレータ26は、予め設定された位相制御
角(α0)と、第2つき合わせ回路22の偏差出力
を増幅して求められた位相制御角αとを比較し、
その比較出力によつて電磁接触器(図示省略)を
励磁させる。この場合例えば、位相制御角αが設
定された位相制御角α0より小さいとき電磁接触器
を励磁させ、その接点16a,16b,16cを
閉成するように構成しておく。このようにすれば
抵抗12a,12b,12cの両端は各々短絡さ
れて電流抑制手段の抵抗値が切換わる。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same parts as those in FIG. 3a are designated by the same reference numerals, and their explanation will be omitted. A common connection point 11a between the AC power source 1 and the thyristor converter 2a is connected to one end of a resistor 12a via a resistor 12d. A common connection point 11b between the AC power supply 1 and the thyristor converter 2b is connected to one end of a resistor 12b via a resistor 12e. AC power supply 1
A common connection point 11c of the thyristor converter 2c and the thyristor converter 2c is connected to one end of the resistor 12c via a resistor 12f. These resistors 12a to 12f constitute current suppressing means. The resistors 12a, 12b, 12
The other end of c is collectively grounded via a grounding resistor 13. Current detecting means, for example, a zero-phase current transformer 14 is inserted in the electrical path connecting the other ends of the resistors 12a, 12b, 12c and the grounding resistor 13. The output side of this current transformer 14 is connected to a ground fault relay 15. At both ends of the resistors 12a, 12b, 12c are contacts 16a, 16b, 16 of a magnetic contactor, which will be described later.
c are connected in parallel. 17 is a transformer that detects the voltage between each phase. The output voltage of the transformer 17 is converted into a DC voltage by a converter 18 comprising a rectifier or the like, and then input to a first matching circuit 19. Both 20a and 20b are current transformers that detect the current flowing through each phase. This current transformer 20
The output currents of a and 20b are input into a second matching circuit 22 after being converted into direct current by a converter 21 comprising a rectifier or the like. 23 is a setting device for setting the reference voltage. The output voltage of this setting device 23 is applied to the converter 1 in the first matching circuit 19.
8 and its deviation output is amplified by a voltage amplifier 24. The output of the voltage amplifier 24 is matched with the output current of the converter 21 in a second matching circuit 22, and the deviation output thereof is amplified in a current amplifier 25. current amplifier 2
The output of 5 is input to the α detection comparator 26, and is also sent to the phase control circuit 2 via the integrator 27.
8 is input. The phase control circuit 28 is an integrator 27
Based on the output of the thyristor converters 2a, 2
The phase of each thyristor b and 2c is controlled. The α detection comparator 26 compares a preset phase control angle (α 0 ) with a phase control angle α obtained by amplifying the deviation output of the second matching circuit 22,
An electromagnetic contactor (not shown) is excited by the comparison output. In this case, for example, the electromagnetic contactor is energized and the contacts 16a, 16b, 16c are closed when the phase control angle α is smaller than the set phase control angle α 0 . In this way, both ends of the resistors 12a, 12b, and 12c are short-circuited, and the resistance value of the current suppressing means is switched.

上記のように構成された装置において、負荷3
の中性点と電源1の中性点の間の電位差によつて
流れる大地帰路電流は電流抑制手段、すなわち抵
抗12a〜12fによつて制限される。例えばサ
イリスタ変換器2a,2b,2cの位相制御角α
が設定された位相制御角α0より小さく、この為大
地帰路電流が比較的小さいとする。この場合α検
出用コンパレータ26の出力によつて電磁接触器
が励磁され、その接点16a,16b,16cは
閉成される。これによつて抵抗12a,12b,
12cの両端は各々短絡されるので、電流抑制手
段の抵抗値は小となる。また、前記位相制御角α
が設定された位相制御角α0より大きくなり、この
為大地帰路電流が大きくなつたとする。この場合
α検出用コンパレータ26の出力によつて電磁接
触器は非励磁状態となり、その接点16a,16
b,16cは開放される。これによつて電流抑制
手段の抵抗値は大となる。このように位相制御角
αの大小に応じて電流抑制手段の抵抗値を変化さ
せているので、正常時の大地帰路電流は地絡継電
器15が誤動作しない範囲内に抑制される。次に
地絡事故が発生した場合、零相変流器14を通る
電流は著しく増大する。この為地絡継電器15は
確実に動作する。
In the device configured as described above, load 3
The earth return current flowing due to the potential difference between the neutral point and the neutral point of the power source 1 is limited by current suppressing means, that is, resistors 12a to 12f. For example, the phase control angle α of the thyristor converters 2a, 2b, 2c
It is assumed that the set phase control angle α is smaller than 0 , and therefore the ground return current is relatively small. In this case, the electromagnetic contactor is excited by the output of the α detection comparator 26, and its contacts 16a, 16b, and 16c are closed. As a result, the resistors 12a, 12b,
Since both ends of 12c are short-circuited, the resistance value of the current suppressing means becomes small. Further, the phase control angle α
Suppose that the phase control angle α becomes larger than the set phase control angle α 0 , and therefore the earth return current becomes large. In this case, the output of the α detection comparator 26 brings the electromagnetic contactor into a de-energized state, and the contacts 16a, 16
b, 16c are open. This increases the resistance value of the current suppressing means. Since the resistance value of the current suppressing means is changed in accordance with the magnitude of the phase control angle α in this manner, the earth return current during normal operation is suppressed within a range in which the earth fault relay 15 does not malfunction. If a ground fault occurs next, the current passing through the zero-phase current transformer 14 will increase significantly. Therefore, the ground fault relay 15 operates reliably.

ここで第2図a,b,cに位相制御角αが90°、
60°、30°のときの零相変流器14に流れる電流波
形を各々示す。これらの波形図で明らかなように
正常時の電流と地絡事故時の電流は電流増加分に
よつて容易に区別がつき、これによつて地絡継電
器15は誤動作しない。
Here, in Fig. 2 a, b, and c, the phase control angle α is 90°,
The waveforms of the current flowing through the zero-phase current transformer 14 at 60° and 30° are shown, respectively. As is clear from these waveform diagrams, the current during normal operation and the current during a ground fault fault can be easily distinguished based on the amount of current increase, thereby preventing the ground fault relay 15 from malfunctioning.

尚、電流抑制手段は実施例のように抵抗の直列
体に限らず他のもので構成しても良い。また、実
施例ではα検出用コンパレータ26の出力によつ
て電磁接触器を励磁させるようにしていたが、こ
れに限らず位相制御角αの大きさに応じて電流抑
制手段の抑制量を制御するものであれば他のもの
で構成しても良い。
Note that the current suppressing means is not limited to the series resistor as in the embodiment, but may be constructed of other means. Further, in the embodiment, the electromagnetic contactor is excited by the output of the α detection comparator 26, but the present invention is not limited to this, and the suppression amount of the current suppression means may be controlled according to the size of the phase control angle α. It may be composed of other materials as long as they are suitable.

発明の効果 以上のように本発明によれば、正常時の大地帰
路電流を位相制御角αに応じて抑制しているの
で、位相制御角αがいかなる値であつても正常時
に地絡継電器が誤動作することは無い。また、地
絡事故発生時には確実に地絡を検出することがで
き、地絡検出の信頼性が向上する等の効果が得ら
れる。
Effects of the Invention As described above, according to the present invention, the earth return current during normal operation is suppressed according to the phase control angle α, so that no matter what value the phase control angle α is, the earth fault relay will not operate during normal operation. There is no malfunction. Further, when a ground fault occurs, the ground fault can be reliably detected, and the reliability of ground fault detection can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図a,b,cは各々第1図の回路の動作を説明す
るための電流波形図、第3図a,bはともに従来
の地絡検出方法を説明するための回路図、第4図
aはサイリスタの位相制御角αが70°のときのゲ
ートオンサイクルを示す波形図、第4図bは位相
制御角αが70°のときの負荷側中性点の電圧波形
図、第5図aは位相制御角αが45°のときのゲー
トオンサイクルを示す波形図、第5図bは位相制
御角αが45°のときの負荷側中性点の電圧波形図
である。 1……3相交流電源、2a,2b,2c……サ
イリスタ変換器、3……負荷、12a〜12f…
…抵抗、14……零相変流器、15……地絡継電
器、16a,16b,16c……電磁接触器の接
点、19,22……つき合わせ回路、23……設
定器、24,25……増幅器、26……α検出用
コンパレータ、28……位相制御回路。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
Figures a, b, and c are current waveform diagrams for explaining the operation of the circuit in Figure 1, Figures 3 a and b are circuit diagrams for explaining the conventional ground fault detection method, and Figure 4 a. is a waveform diagram showing the gate-on cycle when the phase control angle α of the thyristor is 70°, Fig. 4b is a voltage waveform diagram at the load side neutral point when the phase control angle α is 70°, and Fig. 5a is a waveform diagram showing a gate-on cycle when the phase control angle α is 45°, and FIG. 5b is a voltage waveform diagram at the load side neutral point when the phase control angle α is 45°. 1... Three-phase AC power supply, 2a, 2b, 2c... Thyristor converter, 3... Load, 12a to 12f...
...Resistance, 14...Zero-phase current transformer, 15...Ground fault relay, 16a, 16b, 16c...Contact of electromagnetic contactor, 19, 22...Matching circuit, 23...Setter, 24, 25 ...Amplifier, 26...Comparator for α detection, 28...Phase control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 中性点が接地された負荷と交流電源とを結ぶ
配電線路にサイリスタ変換器を介挿して構成され
た装置において、前記交流電源および前記サイリ
スタ変換器の共通接続点と大地を結ぶ電路に介挿
され、該電路に流れる電流を抑制する電流抑制手
段と、前記電路に流れる電流を検出する電流検出
手段と、前記サイリスタ変換器の位相制御角αを
検出するα検出手段とを備え、前記α検出手段の
出力信号に応じて前記電流抑制手段の抑制量を制
御するとともに、前記電流検出手段の出力によつ
て地絡継電器を動作させることを特徴とする地絡
検出装置。
1. In a device configured by inserting a thyristor converter in a distribution line connecting an AC power supply with a load whose neutral point is grounded, a a current suppressing means for suppressing the current flowing in the electric circuit, a current detecting means for detecting the current flowing in the electric circuit, and an α detecting means for detecting the phase control angle α of the thyristor converter; A ground fault detection device, characterized in that a suppression amount of the current suppression means is controlled according to an output signal of the detection means, and a ground fault relay is operated by the output of the current detection means.
JP18004084A 1984-08-29 1984-08-29 Ground-fault detector Granted JPS6158424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18004084A JPS6158424A (en) 1984-08-29 1984-08-29 Ground-fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18004084A JPS6158424A (en) 1984-08-29 1984-08-29 Ground-fault detector

Publications (2)

Publication Number Publication Date
JPS6158424A JPS6158424A (en) 1986-03-25
JPH0520975B2 true JPH0520975B2 (en) 1993-03-23

Family

ID=16076428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18004084A Granted JPS6158424A (en) 1984-08-29 1984-08-29 Ground-fault detector

Country Status (1)

Country Link
JP (1) JPS6158424A (en)

Also Published As

Publication number Publication date
JPS6158424A (en) 1986-03-25

Similar Documents

Publication Publication Date Title
AU2005290575B2 (en) Power supply circuit protecting method and apparatus for the same
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
JPS62503071A (en) ground fault circuit breaker
US20100208393A1 (en) Identification and protection of an aerospace ac-dc power system in the presence of dc content due to faulty loads
JPS6212749B2 (en)
US11372047B2 (en) Method for detecting an insulation fault in a motor arrangement, method for detecting a motor phase interruption in a motor arrangement, and drive circuit for driving an electronically commutated motor
CA2038213C (en) Transformer differential relay
JPS61196718A (en) Ground-fault protector
US11509254B2 (en) Method for detecting a motor phase fault of a motor arrangement and drive circuit for driving an electronically commutated motor
JPH027248B2 (en)
JP2000261958A (en) Protective device for grounding current suppressing device and grounding suppressing method
JPS6112450B2 (en)
JP4244025B2 (en) Distributed power supply device and method for detecting DC ground fault thereof
JPH0520975B2 (en)
JPH07312823A (en) Dc leak detection and protective device
JP2002159102A (en) Controller for electric rolling stock
GB2170367A (en) Residual current device
US4198628A (en) Circuit arrangement for detecting grounds in a static converter
Chen et al. An inrush current mitigation approach of the output transformer for inverter
JPS623653B2 (en)
US6567253B1 (en) Apparatus to sense a silicon controlled rectifier short circuit
KR102551607B1 (en) Leakage Current Detector
US3099775A (en) Impedance protective systems
US3973185A (en) Circuit for monitoring the inductance of an inductive load to indicate occurrence of a fault
JPS61189119A (en) Disconnection detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees