JPH05209254A - Fe-ni alloy thin sheet for shadow mask excellent in press formability and its manufacture - Google Patents

Fe-ni alloy thin sheet for shadow mask excellent in press formability and its manufacture

Info

Publication number
JPH05209254A
JPH05209254A JP4032941A JP3294192A JPH05209254A JP H05209254 A JPH05209254 A JP H05209254A JP 4032941 A JP4032941 A JP 4032941A JP 3294192 A JP3294192 A JP 3294192A JP H05209254 A JPH05209254 A JP H05209254A
Authority
JP
Japan
Prior art keywords
annealing
alloy
less
hot
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4032941A
Other languages
Japanese (ja)
Other versions
JP3353321B2 (en
Inventor
Tadashi Inoue
正 井上
Kiyoshi Tsuru
清 鶴
Tomoyoshi Okita
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP03294192A priority Critical patent/JP3353321B2/en
Priority to US08/007,755 priority patent/US5456771A/en
Priority to EP93101093A priority patent/EP0561120B1/en
Priority to DE69303072T priority patent/DE69303072T2/en
Publication of JPH05209254A publication Critical patent/JPH05209254A/en
Priority to US08/160,399 priority patent/US5620535A/en
Priority to US08/178,088 priority patent/US5562783A/en
Priority to US08/184,830 priority patent/US5605581A/en
Priority to US08/184,840 priority patent/US5628841A/en
Priority to US08/342,238 priority patent/US5501749A/en
Priority to US08/342,109 priority patent/US5520755A/en
Priority to US08/342,221 priority patent/US5503693A/en
Priority to US08/429,252 priority patent/US5637161A/en
Application granted granted Critical
Publication of JP3353321B2 publication Critical patent/JP3353321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an Fe-Ni invar alloy thin sheet for a shadow mask excellent in press formability and having excellent shape freezability at the time of forming, good fitness with a die and the capacity of suppressing the generation of cracks even in the case of annealing treatment at a low temp. for short time. CONSTITUTION:The objective Fe-Ni invar alloy thin sheet for a shadow mask is constituted of 34 to 38% Ni, <=0.05% Si, <=0.0005% B, <=0.0020% O and <=0.0015% N, and the balance Fe with inevitable impurities, and in which 0.2% proof stress after annealing before press forming is regulated to <=28.5kgf/mm<2> and the degree of accumulation on the {211} crystalline plane to the alloy surface is regulated to <=16%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プレス成形性に優れ
たFe−Ni合金薄板に係り、カラーブラウン管に使用され
る好ましいシャドウマスク用Fe−Ni系合金系薄板および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Ni alloy thin plate excellent in press formability, and relates to a preferable Fe-Ni alloy thin plate for a shadow mask used for a color cathode ray tube and a method for producing the same. ..

【0002】[0002]

【従来の技術】近年、カラーテレビの高品位化に伴い、
色ずれの問題に対処できるシャドウマスク用合金とし
て、34〜38wt%のNiを含有するFe−Ni系合金(以下
「従来のFe−Ni系合金」という)が使用されている。こ
の従来のFe−Ni系合金は、シャドウマスク用材料として
従来から使用されてきた低炭素鋼に比べ、熱膨張率が著
しく小さい。従って、従来のFe−Ni系合金によってシャ
ドウマスクを作れば、シャドウマスクが電子ビームによ
り加熱されても、シャドウマスクの熱膨張による色ずれ
の問題は生じ難い。
2. Description of the Related Art In recent years, with the increasing quality of color televisions,
As a shadow mask alloy that can deal with the problem of color misregistration, a Fe-Ni alloy containing 34 to 38 wt% Ni (hereinafter referred to as "conventional Fe-Ni alloy") is used. This conventional Fe-Ni alloy has a remarkably small coefficient of thermal expansion as compared with the low carbon steel conventionally used as a shadow mask material. Therefore, if the shadow mask is made of the conventional Fe-Ni alloy, even if the shadow mask is heated by the electron beam, the problem of color shift due to thermal expansion of the shadow mask is unlikely to occur.

【0003】シャドウマスク用合金薄板は、通常、下記
工程によって、製造される。即ち連続鋳造法または造塊
法によって、合金塊を調製し、次いで、このように調製
された合金塊に、分塊圧延、熱間圧延および冷間圧延・
焼鈍を施して、合金薄板を製造するものである。
An alloy thin plate for a shadow mask is usually manufactured by the following steps. That is, an alloy ingot is prepared by a continuous casting method or an ingot making method, and then the alloy ingot thus prepared is subjected to slab rolling, hot rolling and cold rolling.
Annealing is performed to manufacture an alloy thin plate.

【0004】上述したように製造されたシャドウマスク
用合金薄板は、通常、下記工程によって、シャドウマス
クに加工される。即ちシャドウマスク用合金薄板に、フ
ォトエッチングによって、電子ビームの通過孔(以下、
単に「孔」という)を形成し(以下、エッチングによっ
て穿孔されたままのシャドウマスク用合金薄板を「フラ
ットマスク」という)、次いで、フラットマスクに焼鈍
を施し、次いで、焼鈍を施したフラットマスクを、ブラ
ウン管の形状に合うように曲面形状にプレス成形し、そ
の後に、これをシャドウマスクに組立て、そして、その
表面上に黒化処理を施す。
The alloy thin plate for a shadow mask manufactured as described above is usually processed into a shadow mask by the following steps. That is, through a photoetching on the alloy thin plate for the shadow mask, the electron beam passage hole (hereinafter,
Simply called "holes") (hereinafter, the thin alloy plate for shadow masks that has been punched by etching is called "flat mask"), then annealed the flat mask, and then annealed the flat mask. , Press-molded into a curved shape so as to match the shape of the cathode ray tube, then, this is assembled into a shadow mask, and the surface thereof is subjected to blackening treatment.

【0005】しかしながら、このような従来のFe−Ni系
合金を使用する場合には、従来の低炭素鋼のシャドウマ
スク材に比べて強度が高く、この合金を冷間圧延、再結
晶焼鈍または再結晶焼鈍後軽微な仕上圧延をして製造さ
れたシャドウマスク用素材は、エッチング穿孔後のプレ
ス成形性の問題からプレス成形前に800℃以上の温度
で軟化焼鈍を行ない結晶粒を粗大化させることで軟質化
を図っている。この軟化焼鈍後に温間プレスする方法で
球面成形を行なっていた。
However, when such a conventional Fe-Ni alloy is used, the strength is higher than that of the shadow mask material of the conventional low carbon steel, and this alloy is cold-rolled, recrystallized, annealed or recrystallized. The material for shadow masks manufactured by slight finishing rolling after crystal annealing should be softened and annealed at a temperature of 800 ° C or higher before press molding to coarsen the crystal grains due to the problem of press formability after etching perforation. We are trying to soften. After the softening and annealing, spherical molding was performed by a warm pressing method.

【0006】しかし、800℃といえども高温であり、
作業効率及び経済性の面から、現行よりも低温度の軟化
焼鈍で800℃以上の温度で軟化焼鈍した材料と同等の
低強度が得られる製造方法の開発が望まれ、このような
要望に対して、次の先行技術が知られている。即ち特開
平3−267320号公報には、冷間圧延とこれに引き
続く再結晶焼鈍ののち圧下率が5〜20%の範囲で仕上
冷間圧延をすることにより、800℃未満の温度、具体
的には、730℃で60min の焼鈍により200℃での
0.2%耐力を9.5kgf /mm2 (10kgf /mm2 以下)と
して、プレス成形性の良好なレベルまで低強度化を図っ
ている。
However, even at 800 ° C., the temperature is high,
From the viewpoint of work efficiency and economical efficiency, it is desired to develop a manufacturing method capable of obtaining the same low strength as that of the material softened and annealed at a temperature of 800 ° C. or more by softening annealed at a lower temperature than the current one. Therefore, the following prior art is known. That is, in JP-A-3-267320, cold rolling followed by recrystallization annealing is followed by finish cold rolling in a rolling reduction range of 5 to 20% to obtain a temperature of less than 800 ° C. At 730 ° C. for 60 min at 200 ° C.
The 0.2% proof stress is set to 9.5 kgf / mm 2 (10 kgf / mm 2 or less) to reduce the strength to a level with good press formability.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記し
た先行技術では、730℃で60min といった焼鈍条件
にて、プレス成形性に良好なレベルまで低強度化を図っ
ているが、この技術のみでは、良好な温間プレス成形品
質をすべて満足するまでには至っていなかったのであ
る。すなわち、上記した技術によるシャドウマスク用素
材は、成形時に金型にかじり付きが発生し、シャドウマ
スク端部で割れが発生し易かった。
However, in the above-described prior art, under the annealing condition of 730 ° C. for 60 minutes, the strength of the press formability is lowered to a satisfactory level. It has not been possible to satisfy all of the above-mentioned warm press molding qualities. That is, in the shadow mask material according to the above-mentioned technique, galling occurs in the mold during molding, and cracks are likely to occur at the end portions of the shadow mask.

【0008】このような問題にもかかわらず、ブラウン
管メーカーでは作業効率及び経済性を更に追求すべく、
プレス前の焼鈍を上記した温度でより短い時間とするこ
とも試みられている。ちなみにこの焼鈍時間とは、具体
的には40min 以下であり、場合によっては2min とい
った短時間処理の場合もありうる。このような焼鈍条件
を前記した先行技術に適用した場合、プレス成形時の金
型へのかじり付きの発生がより著しくなり、シャドウマ
スクの割れが多発し、品質上著しい問題となっている。
[0008] Despite these problems, CRT manufacturers have been pursuing work efficiency and economic efficiency.
Attempts have also been made to anneal before pressing at the above-mentioned temperatures for shorter times. Incidentally, the annealing time is specifically 40 min or less, and in some cases, it may be a short-time treatment such as 2 min. When such an annealing condition is applied to the above-mentioned prior art, the occurrence of galling on the mold during press molding becomes more significant, the shadow mask frequently cracks, and this is a serious problem in terms of quality.

【0009】本発明は、上記した実情に鑑み、検討を重
ねて創案されたものであって、プレス成形性が優れ、プ
レス前の焼鈍が720℃〜790℃といった低温度でか
つ40min 以下と短い焼鈍時間での処理でも、所要のプ
レス成形品質を付与しうるシャドウマスク用Fe−Ni系イ
ンバー合金薄板およびその製造法を提供することに成功
したものであって以下の如くであり、なお、所要のプレ
ス成形品質とは、成形時の形状凍結性が優れ、金型との
なじみが良く(型とのかじりがなく)、材料の割れが発
生しないことを意味する。
The present invention was devised after repeated studies in view of the above-mentioned circumstances, and has excellent press formability, and the annealing before pressing is as low as 720 ° C to 790 ° C and as short as 40 minutes or less. The Fe-Ni-based Invar alloy thin plate for shadow masks and the manufacturing method thereof that can impart the required press-forming quality even in the treatment at the annealing time are as follows, and are as follows. The press-molding quality of means that the shape-freezing property at the time of molding is excellent, the mold fits well (there is no galling with the mold), and the material does not crack.

【0010】(1) wt%で、Ni:34〜38%、Si:
0.05%以下、B:0.0005%以下、O:0.0020
%以下、N:0.0015%以下を含有し、残部不可避不
純物およびFeの成分組成からなり、しかもプレス成形前
で焼鈍後の合金板における0.2%耐力が28.5kgf /mm
2 以下で、かつ合金板表面への{211}結晶面の集積
度(以下単に{211}結晶面の集積度という)が16
%以下であることを特徴とするプレス成形性に優れたシ
ャドウマスク用Fe−Ni合金薄板。
(1) wt%, Ni: 34 to 38%, Si:
0.05% or less, B: 0.0005% or less, O: 0.0020
% Or less, N: 0.0015% or less, the balance is unavoidable impurities and the composition of Fe, and 0.2% proof stress is 28.5 kgf / mm in the alloy sheet before annealing before press forming.
2 or less, and the degree of integration of {211} crystal planes on the surface of the alloy plate (hereinafter simply referred to as {211} crystal plane integration degree) is 16
% Fe or less Fe-Ni alloy thin plate for a shadow mask having excellent press formability, which is characterized in that

【0011】(2) 前記(1)項に記載の成分を有す
る低熱膨脹合金の熱延鋼帯を熱延板焼鈍して以降冷間圧
延とこれに引続く再結晶焼鈍を行った後、仕上冷間圧延
を施す工程で製造するに際し、前記熱延板焼鈍を910
〜990℃で施し、仕上冷間圧延での圧下率(R)%は
前記した再結晶焼鈍後のオーステナイト粒径D(μm)
に応じて図3に示す領域Iの範囲内で施し、引続くプレ
ス成形前の焼鈍は温度(T℃)は720〜790℃、時
間(tmin)は2〜40min かつT≧−53.8log t+8
06を満たす条件で施すことによりアニール後の合金板
における0.2%耐力が28.5kgf /mm2 以下で、かつ
{211}結晶面の集積度を16%以下に調整すること
を特徴とするプレス成形性に優れたシャドウマスク用Fe
−Ni合金薄板の製造方法。
(2) A hot-rolled steel strip of a low thermal expansion alloy having the component described in the above item (1) is hot-rolled sheet annealed, then cold-rolled and subsequently recrystallized annealed, and then finished. At the time of manufacturing in the process of performing cold rolling, the hot rolled sheet annealing is performed at 910
The reduction ratio (R)% in the finish cold rolling is the austenite grain size D (μm) after the recrystallization annealing described above.
The annealing before the press forming is performed within the range of the region I shown in FIG. 3 according to the temperature (T ° C.) of 720 to 790 ° C., the time (tmin) of 2 to 40 min and T ≧ −53.8 log t + 8.
The alloy sheet after annealing has a 0.2% proof stress of 28.5 kgf / mm 2 or less and an integration degree of {211} crystal faces of 16% or less. Fe for shadow mask with excellent press formability
-The manufacturing method of a Ni alloy thin plate.

【0012】(3) 前記(1)項に記載の成分を有す
る低熱膨張合金の熱延鋼帯を熱延板焼鈍して以降冷間圧
延とこれに引き続く再結晶焼鈍を行なったのち、仕上冷
間圧延を施す工程で製造するに際して、前記熱延板焼鈍
を910℃〜990℃で施し、仕上冷間圧延での圧下率
(R%)は、前記した再結晶焼鈍後のオーステナイト粒
径D(μm )に応じて図3に示す領域IIの範囲内で施
し、引き続く、プレス成形前の焼鈍は温度(T℃)は7
20〜790℃、時間(tmin)は2〜40min かつT≧
−53.8log t+806を満たす条件にて施すことによ
り、アニール後の合金板の0.2%耐力が28.0kgf /mm
2 以下で、かつ{211}結晶面の集積度を16%以下
と調整することを特徴とするプレス成形性に優れたシャ
ドウマスク用Fe−Ni合金薄板の製造方法。
(3) A hot-rolled steel strip of a low thermal expansion alloy having the composition described in the above item (1) is annealed by hot-rolled sheet, followed by cold rolling and subsequent recrystallization annealing, and then finish cooling. When manufacturing in the step of performing hot rolling, the hot rolled sheet annealing is performed at 910 ° C. to 990 ° C., and the reduction ratio (R%) in finish cold rolling is the austenite grain size D ( μm) within the range II shown in FIG. 3, and the subsequent annealing before press forming is performed at a temperature (T ° C.) of 7
20 to 790 ° C., time (tmin) is 2 to 40 min, and T ≧
By applying under the condition that −53.8 log t + 806 is satisfied, the 0.2% proof stress of the annealed alloy plate is 28.0 kgf / mm.
A method for producing an Fe-Ni alloy thin plate for a shadow mask excellent in press formability, which comprises adjusting the degree of integration of {211} crystal planes to 2 or less and 16% or less.

【0013】(4) 前記(1)項に記載の成分を有す
る低熱膨張合金の熱延鋼帯を熱延板焼鈍して以降冷間圧
延とこれに引き続く再結晶焼鈍を行なったのち、仕上冷
間圧延を施す工程で製造するに際して、前記熱延板焼鈍
を910℃〜990℃で施し、仕上冷間圧延での圧下率
(R%)は、前記した再結晶焼鈍後のオーステナイト粒
径D(μm )に応じて図3に示す領域III に示す範囲内
で施し、引き続く、プレス成形前の焼鈍は温度(T℃)
は720〜790℃、時間(tmin)は2〜40min かつ
T≧−53.8log t+806を満たす条件にて施すこと
により、アニール後の合金板の0.2%耐力が27.5kgf
/mm2 以下で、かつ{211}結晶面の集積度を16%
以下と調整することを特徴とするプレス成形性に優れた
シャドウマスク用Fe−Ni合金薄板の製造方法。
(4) A hot-rolled steel strip of a low-thermal expansion alloy having the composition described in the above item (1) is annealed by hot-rolling, followed by cold rolling and subsequent recrystallization annealing, and then finish cooling. When manufacturing in the step of performing hot rolling, the hot rolled sheet annealing is performed at 910 ° C. to 990 ° C., and the reduction ratio (R%) in finish cold rolling is the austenite grain size D ( μm) within the range shown in region III in FIG. 3, and the subsequent annealing before press forming is performed at temperature (T ° C)
Is 720 to 790 ° C., time (tmin) is 2 to 40 min, and T ≧ −53.8 log t + 806 is satisfied, so that 0.2% proof stress of the annealed alloy sheet is 27.5 kgf.
/ Mm 2 or less, and the degree of integration of {211} crystal faces is 16%
A method for producing an Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, which is adjusted as follows.

【0014】[0014]

【作用】上記したような本発明について更に説明する
と、本発明者等は、上述した観点から、プレス成形品質
に優れたシャドウマスク用Fe−Ni系合金薄板を開発すべ
く、鋭意研究を重ねた結果、次の知見を得た。即ち、本
発明はシャドウマスク用Fe−Ni系合金薄板の化学成分組
成、更には0.2%耐力および結晶の配向性を所定の範囲
内に調整することにより、所要のプレス成形品質を得る
ものである。
Describing the present invention as described above, the inventors of the present invention have conducted earnest studies to develop an Fe-Ni alloy thin plate for a shadow mask excellent in press molding quality from the above viewpoint. As a result, the following findings were obtained. That is, the present invention obtains a required press-forming quality by adjusting the chemical composition of the Fe-Ni alloy thin plate for a shadow mask, the 0.2% proof stress and the crystal orientation within a predetermined range. Is.

【0015】詳述すると、所定の範囲内B、Oの含有に
より、本発明で特徴とする条件でのプレス前の焼鈍での
結晶粒の成長性を高め、粗粒化により、低い降伏強度を
得て、所定の範囲内のSi、Nの含有により、プレス成形
時の金型とのなじみを良くし(金型へのかじり発生を抑
制し)、更にはプレス前焼鈍後の合金薄板における{2
11}結晶面の集積度を所定の範囲内とすることによ
り、プレス成形時の材料の割れ発生を抑制できる。
More specifically, the inclusion of B and O within a predetermined range enhances the crystal grain growth during annealing before pressing under the conditions characterized by the present invention, and lowers the yield strength by coarsening. Then, the inclusion of Si and N within the predetermined range improves the compatibility with the mold during press molding (suppresses the occurrence of galling on the mold), and further in the alloy thin plate after annealing before pressing { Two
11} By setting the degree of integration of crystal faces within a predetermined range, it is possible to suppress the occurrence of material cracking during press molding.

【0016】また、本発明者らは次の知見を得た。即
ち、本合金の製造工程において、熱延鋼帯を冷間圧延す
る前に所定温度で熱延板焼鈍を施し、更には、仕上冷間
圧延での圧下率を、この仕上冷間圧延前のオーステナイ
トの結晶粒径に応じて適切に変えることにより、プレス
前焼鈍後の合金薄板の0.2%耐力および{211}結晶
面の集積度を所定の範囲内に調整することができる。
Further, the present inventors have obtained the following findings. That is, in the manufacturing process of the present alloy, hot-rolled steel strip is annealed at a predetermined temperature before cold-rolling the hot-rolled steel strip, and further, the reduction ratio in the finish cold-rolling is the same as that before the finish cold-rolling. By appropriately changing the grain size of austenite, the 0.2% proof stress and the degree of integration of {211} crystal faces of the alloy sheet after annealing before pressing can be adjusted within a predetermined range.

【0017】この発明は、上述したような知見に基づい
てなされたものであって、以下に、本発明のシャドウマ
スク用Fe−Ni系合金薄板に関する化学成分、プレス前焼
鈍後での0.2%耐力および結晶面の集積度の限定理由は
以下の如くである。
The present invention has been made on the basis of the above-mentioned findings. The chemical composition of the Fe-Ni alloy thin plate for shadow mask of the present invention, 0.2 after pre-press annealing is described below. The reasons for limiting the% yield strength and the degree of integration of crystal planes are as follows.

【0018】(1)ニッケル:色ずれの発生を防止する
ために、シャドウマスク用Fe−Ni系合金薄板に要求され
る、30〜100℃の温度域における平均熱膨張係数の
上限値は、約2.0×10-6/℃である。前記熱膨張係数
は、前記合金薄板のニッケル含有量に依存する。そし
て、上述した平均熱膨張係数の条件を満たすニッケル含
有量の範囲は、34〜38wt%の範囲である。従って、
ニッケル含有量は、34〜38wt%の範囲内に限定すべ
きである。
(1) Nickel: The upper limit of the average thermal expansion coefficient in the temperature range of 30 to 100 ° C. required for the Fe-Ni alloy thin plate for a shadow mask in order to prevent the occurrence of color shift is about It is 2.0 × 10 −6 / ° C. The coefficient of thermal expansion depends on the nickel content of the alloy sheet. Then, the range of nickel content satisfying the above-described condition of the average thermal expansion coefficient is in the range of 34 to 38 wt%. Therefore,
The nickel content should be limited to the range 34-38 wt%.

【0019】さて、本発明においては、プレス成形時の
形状凍結性の向上、および合金板の割れ発生抑制のため
に要求される降伏強度は温間プレスを前提とする場合、
室温での0.2%耐力で28.5kgf /mm2 を上限と定め
た。なお0.2%耐力が28.5kgf /mm2 以下であって
も、0.2%耐力を低減することにより、上記した形状凍
結性をより優れたものとすることができる。
In the present invention, the yield strength required for improving the shape fixability at the time of press forming and suppressing the occurrence of cracks in the alloy sheet is premised on warm pressing.
The upper limit was set at 28.5 kgf / mm 2 at 0.2% proof stress at room temperature. Even if the 0.2% proof stress is 28.5 kgf / mm 2 or less, by reducing the 0.2% proof stress, the above-mentioned shape fixability can be further improved.

【0020】なお、本発明で意図する他のプレス成形品
質、つまり材料の割れの発生を抑制するためには、上記
した降伏強度を有しつつ、後述のように、合金板表面へ
の{211}結晶面の集積度を特定値に制御することが
必須である。
In order to prevent other press forming qualities intended in the present invention, that is, to suppress the occurrence of material cracking, while maintaining the above-mentioned yield strength, {211 } It is essential to control the degree of integration of crystal planes to a specific value.

【0021】まず、本発明で意図するプレス前の焼鈍条
件で結晶粒の成長性を高めるためには、OおよびBを特
定値以下に制御することおよびプレス成形時の金型のな
じみを良くするためにはSi、Niを特定値以下の制御する
ことがそれぞれが必要であって、以下の如くである。 (2)酸素:酸素は、本合金中に不可避的に混入する不
純物の1つである。この酸素含有量が多くなると、合金
中の酸化物系非金属介在物が多くなり、この介在物が、
特に720〜790℃で40min 以下の時間によるプレ
ス成形前の焼鈍での結晶粒の成長性を阻害させる。即ち
このO量が0.0020%を越えると上記した粒成長の阻
害作用が著しくなり、プレス成形前の焼鈍後で28.5kg
f /mm2 以下の0.2%耐力が得られないので、0.002
0%を上限とした。なお、下限は特に定めないが、溶製
上の経済性から0.0001%である。
First, in order to improve the growth of crystal grains under the annealing conditions before pressing intended in the present invention, O and B are controlled to be below a specific value and the mold fit during press molding is improved. In order to achieve this, it is necessary to control Si and Ni to below a specific value, respectively, as follows. (2) Oxygen: Oxygen is one of the impurities inevitably mixed in the present alloy. When this oxygen content increases, the amount of oxide-based nonmetallic inclusions in the alloy increases, and these inclusions
In particular, it inhibits the crystal grain growth during annealing before press molding at a temperature of 720 to 790 ° C. for 40 minutes or less. That is, when the amount of O exceeds 0.0020%, the above grain growth inhibiting effect becomes remarkable, and 28.5 kg is obtained after annealing before press forming.
Since the 0.2% proof stress of f / mm 2 or less cannot be obtained, 0.002
The upper limit was 0%. The lower limit is not specified, but is 0.0001% from the economical aspect of melting.

【0022】(3)ボロン:ボロンは、本合金中には、
熱間加工性を向上させるが含有量が多くなるとプレス前
の焼鈍時に形成される再結晶粒の粒界に偏析し、粒界を
移動し難くさせ、結果的に結晶粒の成長性が阻害され、
プレス成形前の焼鈍後で所要の0.2%耐力が得られなく
なる。特に、本発明で規定されたプレス前の焼鈍条件下
ではこのような粒成長の阻害作用が強く、かつこの作用
もすべての結晶粒に対して一様に働かないため結果的に
は著しい混粒組織を示し、プレス成形時の材料の伸びム
ラも発生させてしまう。
(3) Boron: Boron is contained in this alloy.
Improves hot workability, but when the content is high, it segregates at the grain boundaries of the recrystallized grains formed during annealing before pressing, making it difficult for the grain boundaries to move, and as a result the grain growth is hindered. ,
The required 0.2% proof stress cannot be obtained after annealing before press forming. In particular, under the annealing conditions before pressing specified in the present invention, such a grain growth inhibitory action is strong, and this action does not work uniformly for all the crystal grains, resulting in significant mixed grains. It shows a structure and causes uneven elongation of the material during press molding.

【0023】またこのBは、材料スカート部の割れ原因
となる{211}結晶面の集積度も焼鈍後に高めてしま
う。このB量が0.0005%を超えると上記した粒成長
の阻害作用が著しくなり、28.5kgf /mm2 以下の0.2
%耐力が得られなくなり、かつプレス時の伸びムラ等の
問題も発生し、更に、{211}結晶面の集積度も本発
明規定の上限を越えてしまう。以上より、B量の上限は
0.0005%と定めた。
Further, this B also increases the degree of integration of the {211} crystal planes, which causes cracks in the material skirt, after annealing. If the amount of B exceeds 0.0005%, the above-mentioned grain growth inhibitory effect becomes remarkable, and the grain size of 28.5 kgf / mm 2 or less becomes 0.2.
% Yield strength cannot be obtained, and problems such as elongation unevenness at the time of pressing also occur, and the degree of integration of {211} crystal faces also exceeds the upper limit specified in the present invention. From the above, the upper limit of B content is
It was set to 0.0005%.

【0024】(4)シリコン:シリコンは本合金の溶製
時に脱酸元素として用いるものであるが、0.05%を超
えると、プレス前の焼鈍時に合金表面にSiの酸化膜が形
成され、この酸化膜によりプレス成形時の金型とのなじ
みが悪くなり、合金が金型をかじるようになる。従って
Si量の上限は0.05%と定めた。Siが0.05%以下であ
っても、Si量を更に低減することにより合金板と金型と
のなじみを更に良くすることができる。なお、下限は特
に定めないが溶製上の経済性から0.001%以上であ
る。
(4) Silicon: Silicon is used as a deoxidizing element when the alloy is melted. If it exceeds 0.05%, a Si oxide film is formed on the alloy surface during annealing before pressing. Due to this oxide film, the compatibility with the mold at the time of press molding becomes poor, and the alloy comes to bite the mold. Therefore
The upper limit of the amount of Si was set to 0.05%. Even if Si is 0.05% or less, the fit between the alloy plate and the mold can be further improved by further reducing the Si content. The lower limit is not particularly specified, but is 0.001% or more from the economical aspect of melting.

【0025】(5)窒素:窒素は、本合金の溶製時に不
可避的に混入する元素であり、0.0015%を超える
と、プレス前の焼鈍時に合金表面にNが濃化し、この合
金表面の窒化物により、プレス成形時の金型とのなじみ
が悪くなり、合金板が金型をかじるようになる。従って
N量の上限は0.0015%と定めた。なお、下限は特に
定めないが、溶製上の経済性から0.0001%以上であ
る。
(5) Nitrogen: Nitrogen is an element that is inevitably mixed when the alloy is melted. If it exceeds 0.0015%, N is concentrated on the alloy surface during annealing before pressing, and this alloy surface The nitride makes the alloy less compatible with the mold at the time of press molding, and causes the alloy plate to bite the mold. Therefore, the upper limit of the amount of N is set to 0.0015%. The lower limit is not specified, but it is 0.0001% or more from the economical aspect of melting.

【0026】なお、本発明によるシャドウマスク用イン
バー合金は、上記したようにFe−Niの基本組成に、特定
量のB、O、Si、Nとし、かつ、プレス前焼鈍後の0.2
%耐力を28.5kgf /mm2 以下で{211}結晶面の集
積度を16%以下とすることを特徴としているが、前記
組成の他に、C:0.0001〜0.0050%、Mn:0.0
01〜0.35%、Cr:0.001〜0.05%の範囲内であ
ることが好ましい。
The invar alloy for a shadow mask according to the present invention has a basic composition of Fe--Ni as described above with a specific amount of B, O, Si, N, and 0.2 after annealing before pressing.
% Proof stress is 28.5 kgf / mm 2 or less and the degree of accumulation of {211} crystal faces is 16% or less. In addition to the above composition, C: 0.0001 to 0.0050%, Mn : 0.0
It is preferably within the range of 01 to 0.35% and Cr: 0.001 to 0.05%.

【0027】上記したような、成分の制御および本発明
規定内のプレス前焼鈍後の0.2%耐力とすることによ
り、本合金のプレス成形時の金型へのかじりを抑制し、
かつ形状凍結性を優れたレベルとすることが可能である
が、プレス成形品質としては、依然として、材料の割れ
が問題となる。そこで、本発明者らは、このような問題
を解決すべく、本発明規定内の成分および0.2%耐力を
有する本合金板の結晶の方位を様々に変えてプレス成形
時の材料の割れとの関係を調べた。その結果、本合金材
料の割れを抑制するには、プレス前焼鈍後の合金板の0.
2%耐力の規定に加え{211}結晶面の集積度を特定
値以下に制御することが有効であることを見い出した。
By controlling the components as described above and setting the 0.2% proof stress after the pre-press annealing within the stipulations of the present invention, it is possible to suppress the galling of the alloy during the press molding,
In addition, although the shape fixability can be set to an excellent level, the press molding quality still has a problem of material cracking. Therefore, in order to solve such a problem, the present inventors have variously changed the crystal orientation of the present alloy sheet having the components and 0.2% proof stress within the rules of the present invention to crack the material during press forming. I investigated the relationship with. As a result, in order to suppress cracking of this alloy material,
In addition to the regulation of 2% proof stress, it was found that it is effective to control the degree of integration of {211} crystal planes to a specific value or less.

【0028】図1は、図中に示すような成分の合金板に
ついてプレス成形時の合金板割れと{211}結晶面の
集積度および0.2%耐力の関係を示したものであるが、
{211}結晶面の集積度の測定はプレス前焼鈍後の合
金板の(422)回折面の相対X線回折強度比を(11
1)、(200)、(220)、(311)、(33
1)および(420)の各回折面の相対X線強度比の和
で割ることにより求めた。ここで、相対X線回折強度比
とは、各回折面で測定されたX線回折強度をその回折面
の理論X線回折強度で割ったものである。例えば(11
1)回折面の相対X線回折強度比は(111)回折面の
X線回折強度を(111)回折面のX線回折理論強度で
割ったものである。なお{112}結晶面の集積度測定
は{211}面と方位でみて等価な(422)回折面の
X線回折強度の測定により行った。このような図1より
0.2%耐力が28.5kgf /mm2 以下で、かつ{211}
結晶面の集積度が16%以下で、プレス成形時合金板の
割れは発生しておらず、本発明で意図する優れた効果が
発揮されている。以上のような検討結果より合金板の割
れ抑制の条件として{211}結晶面の集積度を16%
以下と定めた。
FIG. 1 shows the relationship between alloy plate cracking during press forming, the degree of accumulation of {211} crystal faces, and 0.2% proof stress for alloy plates having the components shown in FIG.
The degree of integration of the {211} crystal plane was measured by measuring the relative X-ray diffraction intensity ratio of the (422) diffraction plane of the alloy sheet after annealing before pressing to (11
1), (200), (220), (311), (33
It was determined by dividing by the sum of the relative X-ray intensity ratios of the diffraction surfaces of 1) and (420). Here, the relative X-ray diffraction intensity ratio is the X-ray diffraction intensity measured on each diffraction surface divided by the theoretical X-ray diffraction intensity of that diffraction surface. For example (11
1) The relative X-ray diffraction intensity ratio of the diffraction plane is the X-ray diffraction intensity of the (111) diffraction plane divided by the theoretical X-ray diffraction intensity of the (111) diffraction plane. The integration degree of the {112} crystal plane was measured by measuring the X-ray diffraction intensity of the (422) diffraction plane which is equivalent to the {211} plane in terms of orientation. From Figure 1 like this
0.2% proof stress is 28.5 kgf / mm 2 or less and {211}
When the degree of integration of crystal planes is 16% or less, cracking of the alloy plate does not occur during press forming, and the excellent effect intended by the present invention is exhibited. From the above examination results, the degree of integration of {211} crystal planes was set to 16% as a condition for suppressing cracking of alloy sheets.
The following was set.

【0029】以上説明したように本発明合金のO、B、
Si、Nの規定およびプレス前の焼鈍後の0.2%耐力と、
{211}結晶面の集積度と規定により本発明で意図す
るプレス成形品質を優れたものとすることができる。
As described above, the O, B, and
Specified Si and N and 0.2% proof stress after annealing before pressing,
The press molding quality intended in the present invention can be made excellent by the degree of integration and regulation of the {211} crystal plane.

【0030】{211}結晶面の集積度を16%以下と
するための方法を図2を参照にしながら説明する。図2
は、本発明合金の熱延鋼帯を焼鈍をしたものおよびしな
いものを、以降、冷間圧延−焼鈍(890℃×1min )
−仕上冷間圧延(21%)−プレス前焼鈍(750℃×
15min )の工程を経た合金板の{211}結晶面の集
積度および引張試験における伸び値を示している。熱延
板焼鈍が910〜990℃の時に{211}結晶面の集
積度は16%以下となっている。よって、本発明におい
ては{211}結晶面の集積度を16%以下とするため
の条件として熱延板焼鈍での温度範囲を910〜990
℃と定めた。
A method for making the degree of integration of {211} crystal planes 16% or less will be described with reference to FIG. Figure 2
Are those obtained by annealing the hot-rolled steel strip of the alloy of the present invention and those not annealed by cold rolling-annealing (890 ° C. × 1 min).
-Finish cold rolling (21%)-Pre-press annealing (750 ° C x
It shows the degree of integration of {211} crystal faces and the elongation value in the tensile test of the alloy plate after the process of 15 min). When the hot-rolled sheet is annealed at 910 to 990 ° C, the degree of integration of {211} crystal faces is 16% or less. Therefore, in the present invention, the temperature range in the hot-rolled sheet annealing is set to 910 to 990 as a condition for making the degree of integration of {211} crystal planes 16% or less.
℃ was set.

【0031】なお本発明でのこのような熱延板焼鈍は本
合金の熱延鋼帯が熱延板焼鈍前で充分に再結晶している
ときに発揮されるものである。また本発明で意図する
{211}結晶面の集積度を得るには本合金を製造する
に当って分塊圧延後のスラブ均一化熱処理は好ましくな
い。たとえば上記の均一化熱処理が1200℃以上、1
0時間以上の条件で行われる場合、{211}結晶面の
集積度が本発明の規定値を超えてしまうので、このよう
な処理は避けねばならない。
Such hot-rolled sheet annealing in the present invention is exhibited when the hot-rolled steel strip of the present alloy is sufficiently recrystallized before the hot-rolled sheet annealing. Further, in order to obtain the degree of integration of {211} crystal planes intended in the present invention, the slab homogenization heat treatment after slabbing is not preferable in producing the present alloy. For example, the above homogenizing heat treatment is 1200 ° C. or higher, 1
When the treatment is performed for 0 hours or longer, the degree of integration of the {211} crystal plane exceeds the specified value of the present invention, and therefore such treatment must be avoided.

【0032】{211}結晶面の集積度が16%を越え
てプレス成形時の材料の割れが発生する機構については
必ずしも明らかとはなっていないが、図2の中で示した
C方向(材料の圧延方向と直角なす方向)の伸びの値で
みると、{211}結晶面の集積度が高い場合、この伸
びの値が低い値を示していることから、{211}結晶
面の集積が高くなると、この伸びの値が低下し、破断限
界が低くなることにより、割れが発生するのではないか
と推察される。
Although the mechanism by which the degree of integration of {211} crystal planes exceeds 16% and the material cracks during press molding has not been clarified, the C direction (material) shown in FIG. In the value of the elongation in the direction perpendicular to the rolling direction), when the degree of integration of the {211} crystal plane is high, the value of this elongation shows a low value. It is presumed that cracking may occur due to the lowering of the elongation value and the lowering of the breaking limit when the value rises.

【0033】{211}結晶面の集積度を16%以下と
しつつ、プレス前の焼鈍後の0.2%耐力を28.5kgf /
mm2 以下とするためには、上記した規定に加え仕上冷間
延率と、その前のオーステナイト結晶粒径の制御および
プレス前の焼鈍条件の制御が重要である。
While the degree of integration of {211} crystal planes is 16% or less, the 0.2% proof stress after annealing before pressing is 28.5 kgf /
In order to reduce the size to mm 2 or less, it is important to control the finish cold rolling rate, the austenite grain size before that, and the annealing condition before pressing in addition to the above-mentioned regulations.

【0034】図3は、本発明合金の熱延鋼帯を図中の製
造工程にて作製した合金板につき、引張試験を行ない、
0.2%耐力を測定したものである。冷間圧延後の焼鈍は
温度を変化させて、所定のオーステナイト結晶粒径を得
ている。
FIG. 3 shows a tensile test of an alloy plate produced by the manufacturing process of the hot-rolled steel strip of the alloy of the present invention.
This is a measurement of 0.2% proof stress. Annealing after cold rolling changes the temperature to obtain a predetermined austenite grain size.

【0035】前記図3より仕上冷間圧延率(R%)が1
6〜75%、かつ仕上冷間圧延前のオーステナイト結晶
粒径(Dμm )に応じて6.38D−133.9≦R≦6.3
8D−51.0とすることにより0.2%耐力を28.5kgf
/mm2 以下とすることができる。
From FIG. 3, the finish cold rolling rate (R%) is 1
6-75%, and 6.38D-133.9 ≦ R ≦ 6.3 depending on the austenite crystal grain size (Dμm) before finish cold rolling.
By setting 8D-51.0, 0.2% proof stress is 28.5kgf
/ Mm 2 or less.

【0036】なおRが16%未満、または6.38D−1
33.9>Rの場合においては本発明で規定したプレス前
の焼鈍条件では、再結晶が不十分であり、かつ再結晶粒
の粒成長も不十分なため、0.2%耐力は、28.5kgf /
mm2 超となり不適である。一方、Rが75%超、または
R>6.38D−51.0では本発明で規定したプレス前の
焼鈍条件では、100%再結晶するが、再結晶時の核生
成頻度が高くなりすぎ再結晶粒が細かくなるため、0.2
%耐力は28.5kgf /mm2 超となり不適である。
R is less than 16%, or 6.38D-1
In the case of 33.9> R, the recrystallization is insufficient and the grain growth of the recrystallized grains is insufficient under the annealing condition before pressing specified in the present invention, so that the 0.2% proof stress is 28 .5 kgf /
Not suitable because it exceeds mm 2 . On the other hand, if R exceeds 75%, or if R> 6.38D-51.0, 100% recrystallization occurs under the annealing conditions before pressing specified in the present invention, but the frequency of nucleation during recrystallization becomes too high. 0.2 because the crystal grains become finer
% Proof strength is over 28.5 kgf / mm 2 , which is unsuitable.

【0037】上述したような関係より、本発明で特徴と
するプレス前焼鈍条件で0.2%耐力が28.5kgf /mm2
以下が得られる条件として、R:16〜75%、6.38
D−133.9≦R≦6.38D−51.0を定めた。なおこ
のような、適正な仕上冷間圧延率(R%)および仕上冷
間圧延前のオーステナイト粒径(Dμm )の範囲内であ
れば、プレス前焼鈍後の合金板表面への{211}結晶
面の集積度を16%以下とすることができる。
From the above-mentioned relationship, 0.2% proof stress is 28.5 kgf / mm 2 under the pre-press annealing condition which is a feature of the present invention.
As conditions for obtaining the following, R: 16 to 75%, 6.38
D-133.9 ≦ R ≦ 6.38 D-51.0 was defined. If the finish cold rolling ratio (R%) and the austenite grain size (D μm) before the finish cold rolling are within such ranges, {211} crystals on the surface of the alloy sheet after annealing before pressing are obtained. The degree of surface integration can be 16% or less.

【0038】上記したような本発明合金の組織制御は、
熱延板焼鈍での集合組織制御に加え、仕上冷間圧延前の
結晶粒径とそれに応じた適正な仕上冷延率の組み合わせ
により再結晶時の核生成頻度を適正にコントロールする
ことにより達成されたものである。上記したDとRの組
み合わせを最適化することにより、プレス前焼鈍後の0.
2%耐力をより低くすることが可能である。すなわち、
R:21〜70%、6.38D−122.6≦R≦6.38D
−65.2の条件を満たすRとDを選択することにより、
0.2%耐力を28.0kgf /mm2 以下とすることができ
る。
The structure control of the alloy of the present invention as described above is performed by
Achieved by controlling the nucleation frequency during recrystallization by the combination of the grain size before finish cold rolling and the appropriate finish cold rolling ratio in addition to the texture control in hot-rolled sheet annealing. It is a thing. By optimizing the combination of D and R described above,
It is possible to lower the 2% proof stress. That is,
R: 21 to 70%, 6.38D-122.6 ≦ R ≦ 6.38D
By selecting R and D that satisfy the condition of −65.2,
The 0.2% proof stress can be set to 28.0 kgf / mm 2 or less.

【0039】更に、R:26〜63%、6.38D−10
8.0≦R≦6.38D−79.3の条件を満たすRとDを選
択することにより、0.2%耐力を27.5kgf /mm2 以下
とすることができる。なお本発明で意図する仕上冷間圧
延前のオーステナイト結晶粒径は、熱延鋼帯を熱延板焼
鈍し、引続く冷間圧延の後の焼鈍を860〜950℃
で、0.5〜2min として適切に施すことにより的確に得
ることができる。
Further, R: 26-63%, 6.38D-10
By selecting R and D satisfying the condition of 8.0 ≦ R ≦ 6.38D−79.3, the 0.2% proof stress can be set to 27.5 kgf / mm 2 or less. The austenite grain size before the finish cold rolling intended in the present invention is determined by annealing the hot-rolled steel strip in a hot-rolled sheet and annealing it after the subsequent cold-rolling at 860 to 950 ° C.
Then, it can be accurately obtained by appropriately applying 0.5 to 2 min.

【0040】さて、本発明においては、合金板表面への
{211}結晶面の集積度を16%以下としつつ、プレ
ス前焼鈍後の0.2%耐力を28.5kgf /mm2 以下とする
ためには、上記した規定に加え、プレス前の焼鈍条件の
制御も重要である。このことは、図4を参照にしながら
説明すると、図4は、成分、熱延板焼鈍条件、仕上冷間
圧延前のオーステナイト結晶粒径および仕上冷間圧延率
が本発明範囲内の合金板のプレス前焼鈍後の0.2%耐力
および{211}結晶面の集積度とプレス前焼鈍の温度
(T)、時間(t)の関係を示すものである。
In the present invention, the degree of accumulation of {211} crystal planes on the surface of the alloy sheet is 16% or less, and the 0.2% proof stress after annealing before pressing is 28.5 kgf / mm 2 or less. In order to do so, in addition to the above regulations, it is important to control the annealing conditions before pressing. This will be described with reference to FIG. 4. FIG. 4 shows the composition, the annealing conditions of hot-rolled sheet, the austenite grain size before finish cold rolling, and the finish cold rolling ratio of alloy sheets within the scope of the present invention. It shows the relationship between the 0.2% proof stress after pre-press annealing and the degree of integration of {211} crystal faces, and the temperature (T) and time (t) of pre-press annealing.

【0041】前記したような図4から明らかなように、
熱延板焼鈍条件、仕上冷間圧延前のオーステナイト結晶
粒径および仕上冷間圧延率が本発明範囲内であっても、
T<−53.8log t+806の場合は十分に再結晶せ
ず、0.2%耐力は28.5kgf /mm2 超であり、かつ{2
11}結晶面の集積度も16%超であって、不適であ
る。また、Tが790℃超またはtが40min 超の場合
は、{211}結晶面が発達してくることにより、この
結晶面の集積度がI6%を超えるため不適である。これ
らの関係より、本発明で意図する0.2%耐力および{2
11}結晶面の集積度を得る条件として、T:720〜
790℃、t:2〜40min 、T≧−53.8log t+8
06を定めた。
As is apparent from FIG. 4 as described above,
Even if the hot rolled sheet annealing conditions, the finish cold rolling austenite grain size and the finish cold rolling rate are within the scope of the present invention,
In case of T <−53.8log t + 806, recrystallization is not sufficient, 0.2% proof stress is over 28.5 kgf / mm 2 , and {2
The degree of integration of the 11} crystal plane is also over 16%, which is unsuitable. Further, when T exceeds 790 ° C. or t exceeds 40 min, the {211} crystal plane is developed and the degree of integration of this crystal plane exceeds I6%, which is not suitable. From these relationships, the 0.2% proof stress and {2
11] As a condition for obtaining the degree of integration of crystal planes, T: 720 to 720
790 ° C., t: 2 to 40 min, T ≧ −53.8 log t + 8
06 has been set.

【0042】なお、図5に、本発明合金(合金No.1)お
よび比較合金(合金No.7およびNo.8) を用いて、図中の
製造工程により作製した合金板を焼鈍した際の0.2%耐
力および{211}結晶面の集積度の焼鈍時間にともな
う変化を示す。熱延板焼鈍条件、仕上冷間圧延前のオー
ステナイト結晶粒径および仕上冷間圧延率は本発明範囲
内である。
It is to be noted that FIG. 5 shows an alloy plate produced by the manufacturing process shown in FIG. 5 using the alloy of the present invention (alloy No. 1) and the comparative alloy (alloy No. 7 and No. 8). Changes in 0.2% proof stress and degree of integration of {211} crystal planes with annealing time are shown. The conditions for hot-rolled sheet annealing, the austenite grain size before finish cold rolling and the finish cold rolling rate are within the scope of the present invention.

【0043】上記したような図5によれば、本発明合金
を用いた場合、図4で示された本発明範囲内のプレス前
焼鈍条件以内で、0.2%耐力および{211}結晶面の
集積度が本発明規定範囲内となっている。これに対し
て、比較合金の場合は、750℃の焼鈍時でも、0.2%
耐力は28.5kgf /mm2 超であり、{211}結晶面の
集積度も本発明規定値超であり、プレス成形性に問題が
あることが明らかである。このように、本発明において
は、製造方法の規定に加えて、合金の成分組成が極めて
重要であることが理解される。
According to FIG. 5 as described above, when the alloy of the present invention was used, within the pre-press annealing conditions within the scope of the present invention shown in FIG. 4, 0.2% proof stress and {211} crystal plane were obtained. Is within the range specified by the present invention. On the other hand, in the case of the comparative alloy, 0.2% even when annealed at 750 ° C.
The yield strength is more than 28.5 kgf / mm 2 , and the degree of integration of {211} crystal planes is also more than the specified value of the present invention, and it is clear that there is a problem in press formability. As described above, in the present invention, it is understood that the composition of the alloy is extremely important in addition to the definition of the manufacturing method.

【0044】更に、本発明におけるプレス成形前の焼鈍
は、フォトエッチングの前に実施されてもよい。この場
合、プレス成形前の焼鈍条件が本発明規定内であれば、
所要のフォトエッチングの品質は確保しうる。
Further, the annealing before press forming in the present invention may be carried out before photoetching. In this case, if the annealing conditions before press forming are within the scope of the present invention,
The required photoetching quality can be ensured.

【0045】なお、プレス前焼鈍後の本合金薄板で{2
11}結晶面の集積度を本発明規定内とする方法は、上
記した方法の他に、急冷凝固の採用、熱間加工での再結
晶のコントロールによる集合組織制御等がある。
The alloy thin plate after annealing before press was {2
11) In addition to the above-described method, the method of controlling the degree of integration of crystal planes within the scope of the present invention includes the use of rapid solidification, texture control by controlling recrystallization in hot working, and the like.

【0046】[0046]

【実施例】上述したような本発明を具体的実施例によっ
て、更に詳しく説明すると、以下の如くである。 (実施例1)取鍋精錬によって、次の表1および表2に
示す化学成分を有する合金No.1〜No.18 からなる鋼塊を
それぞれ調整した。
EXAMPLES The present invention as described above will be described in more detail with reference to specific examples as follows. (Example 1) Steel ladles composed of alloys No. 1 to No. 18 having the chemical components shown in the following Table 1 and Table 2 were prepared by ladle refining.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】前記したような表1,2の各インゴット
は、各々を手入れ後、分塊圧延、表面疵取り、熱間圧延
(加熱は1100℃×3hr)して得られた熱延鋼帯を用
いて、以降熱延板焼鈍(930℃)−冷間圧延−焼鈍
(表3に示す条件)−仕上冷間圧延(圧下率21%)を
行ない、板厚0.25mmの合金板を得た。なおこれらの熱
延鋼帯は熱延後で十分に再結晶していた。これらの合金
板をエッチングによりフラットマスクにした後、該フラ
ットマスクを750℃×15min の条件にてプレス前焼
鈍を施し、次にプレス成形を行ない、形状凍結性、金型
とのなじみ、および材料の割れ発生を表1,2に示す評
価基準にて調べた(合金No.1〜No.18 はそれぞれ、材料
No.1〜No.18 と呼ぶ)。引張性質(0.2%耐力および圧
延直角方向の伸び)および{211}結晶面の集積度は
プレス前焼鈍後で調べた。引張性質は常温にて測定した
ものである。{211}結晶面の集積度の測定は、前記
したX線回折により調べた。
Each of the ingots shown in Tables 1 and 2 described above is a hot rolled steel strip obtained by slabbing, surface flaw removal, and hot rolling (heating at 1100 ° C. × 3 hr) after caring for each. Thereafter, hot-rolled sheet annealing (930 ° C.)-Cold rolling-annealing (conditions shown in Table 3) -finish cold rolling (reduction of 21%) was performed to obtain an alloy sheet having a sheet thickness of 0.25 mm. .. These hot-rolled steel strips were sufficiently recrystallized after hot-rolling. After these alloy sheets are made into flat masks by etching, the flat masks are annealed before press under the condition of 750 ° C. × 15 min, and then press-formed to obtain shape fixability, conformability with a die, and material. The occurrence of cracks was examined according to the evaluation criteria shown in Tables 1 and 2 (Alloy No. 1 to No. 18 are
No.1 to No.18). The tensile properties (0.2% proof stress and elongation in the direction perpendicular to the rolling direction) and the degree of integration of {211} crystal faces were examined after the pre-press annealing. Tensile properties are measured at room temperature. The integration degree of the {211} crystal plane was measured by the above-mentioned X-ray diffraction.

【0050】[0050]

【表3】 [Table 3]

【0051】前述表1,2に示した結果から明らかなよ
うに、本発明の範囲内の成分組成を有し、且つ本発明の
範囲内の{211}結晶面の集積度および0.2%耐力を
有する材料No.1〜No.13 の各材はいずれのプレス成形品
質も優れたレベルを示している。
As is clear from the results shown in Tables 1 and 2, the composition of the components within the scope of the present invention and the degree of integration of {211} crystal faces within the scope of the present invention and 0.2% were obtained. Each of the materials No. 1 to No. 13 that have proof stress shows an excellent level of press molding quality.

【0052】これに対して、材料No.14 およびNo.16 の
各材はそれぞれ、Si量、N量が本発明の規定を越える場
合であり、金型とのなじみの点で問題がある。材料No.1
5 はO量が本発明規定を越える場合であり、0.2%耐力
は28.5kgf /mm2 越えで形状凍結性が劣っており、合
金板の割れも発生しているからプレス成形品質に問題が
あることが明らかである。また、No.17 およびNo.18 の
各材はそれぞれ、B量のみ、B量とO量が本発明の規定
を越える場合であり、0.2%耐力は28.5kgf/mm2
であり、形状凍結性が劣っている。更に、これらの比較
合金の{211}結晶面の集積度は本発明で規定した値
を超えており、合金板の割れも発生しており、プレス成
形品質に問題がある。
On the other hand, each of the materials No. 14 and No. 16 has a Si content and an N content exceeding the stipulations of the present invention, and there is a problem in compatibility with the mold. Material No.1
No. 5 is the case where the amount of O exceeds the regulation of the present invention, the 0.2% proof stress is over 28.5 kgf / mm 2 , the shape fixability is inferior, and the cracking of the alloy plate occurs, so the press forming quality is high. Clearly there is a problem. In addition, No. 17 and No. 18 are the cases where only the B content and the B content and the O content exceed the regulations of the present invention, and the 0.2% proof stress is over 28.5 kgf / mm 2 . The shape fixability is inferior. Furthermore, the degree of integration of the {211} crystal planes of these comparative alloys exceeds the value specified in the present invention, cracking of the alloy plate has occurred, and there is a problem in press molding quality.

【0053】上記したところから明らかなように、本発
明の範囲内の成分組成および本発明の範囲内の{21
1}結晶面の集積度および0.2%耐力とすることによ
り、本発明で意図するプレス成形品質が優れたレベルを
有するシャドウマスク用Fe−Ni系合金薄板が得られるこ
とが明かである。
As is apparent from the above description, the composition of components within the scope of the present invention and {21 within the scope of the present invention.
It is clear that the Fe-Ni alloy thin plate for a shadow mask having an excellent level of press-forming quality intended by the present invention can be obtained by adjusting the degree of integration of 1} crystal planes and the 0.2% proof stress.

【0054】(実施例2)前記した実施例1で用いた合
金No.1、No.3、No.5、No.9、No.12 の熱延鋼帯を用い
て、以降熱延板焼鈍を次の表4に示す条件で実施したも
の、および実施しないものについて、以降、冷間圧延−
焼鈍(890℃×1min )−仕上冷間圧延(圧下率21
%)を行ない板厚0.25mmの合金板を得た。
(Example 2) Using the hot-rolled steel strips of alloys No. 1, No. 3, No. 5, No. 9, and No. 12 used in the above-mentioned Example 1, the hot-rolled sheet was annealed thereafter. Was performed under the conditions shown in Table 4 below, and those not carried out in the following.
Annealing (890 ° C x 1 min) -finish cold rolling (reduction ratio 21
%) To obtain an alloy plate having a plate thickness of 0.25 mm.

【0055】[0055]

【表4】 [Table 4]

【0056】上記したような各合金板をエッチングによ
りフラットマスクにした後、フラットマスクを750℃
×15min の条件にて、プレス前焼鈍して材料No.19 〜
No.23 を得た。次にプレス成形を行ない、表3に示すプ
レス成形品質を調べた。表3中の各特性値の測定方法は
実施例1と同じである。
After each alloy plate as described above is formed into a flat mask by etching, the flat mask is exposed to 750 ° C.
Material No. 19 ~ by annealing before press under the condition of × 15min
I got No.23. Next, press molding was performed and the press molding quality shown in Table 3 was examined. The method of measuring each characteristic value in Table 3 is the same as in Example 1.

【0057】前記した表4に示した結果から明らかなよ
うに、本発明の範囲内の成分組成、{211}結晶面の
集積度および0.2%耐力でかつ本発明範囲内の仕上冷間
圧延前のオーステナイト粒径、仕上冷間圧延率およびプ
レス前焼鈍条件を有し、かつ、熱延板焼鈍条件も本発明
規定内の材料No.19 およびNo.20 の各材はいずれのプレ
ス成形品質が優れたレベルを示している。
As is clear from the results shown in Table 4 above, the component composition within the range of the present invention, the degree of accumulation of {211} crystal faces and 0.2% proof stress and the finish cold within the range of the present invention. It has the austenite grain size before rolling, finish cold rolling rate and pre-press annealing conditions, and the hot-rolled sheet annealing conditions are all press-formed for materials No. 19 and No. 20 within the scope of the present invention. The quality shows an excellent level.

【0058】これに対して、材料No.21 〜No.23 の各材
はそれぞれ熱延板焼鈍温度が本発明規定の下限未満のも
の、上限を超えるもの、および熱延板焼鈍を施さないも
のであるが、いずれの材料も{211}結晶面の集積度
は、本発明規定の上限を超えており、プレス成形時の合
金板の割れが発生している。さらには、材料No.23 で
は、0.2%耐力も28.5kgf /mm2 超であり、プレス成
形時の形状凍結性にも問題が生じている。
On the other hand, each of the materials No. 21 to No. 23 has a hot-rolled sheet annealing temperature lower than the lower limit, higher than the upper limit of the present invention, and not hot-rolled sheet annealed. However, in all materials, the degree of integration of {211} crystal planes exceeds the upper limit specified in the present invention, and the alloy plate is cracked during press forming. Furthermore, in material No. 23, the 0.2% proof stress is also over 28.5 kgf / mm 2 , and there is a problem with the shape fixability during press molding.

【0059】以上のように、{211}結晶面の集積度
を本発明範囲とするためには、熱延板焼鈍を本発明範囲
内とすることが重要であることが理解される。
As described above, in order to set the degree of integration of {211} crystal planes within the range of the present invention, it is important to set the hot-rolled sheet annealing within the range of the present invention.

【0060】(実施例3)実施例1で用いた合金No.1、
No.2、No.4、No.6、No.7、No.9、No.11 、No.12、No.13
およびNo.18 の熱延鋼帯を用いて、以降熱延板焼鈍
(930℃)−冷間圧延−焼鈍(表4に示す温度にて1
min 保持することにより実施)仕上冷間圧延(表3に示
す圧下率にて実施)を行ない、板厚0.25mmの合金板を
得た。これらの合金板をエッチングによりフラットマス
クにした後、フラットマスクを750℃×15min の条
件にて、プレス前焼鈍して、材料No.24 〜No.61 を得
た。次にプレス成形を行ない、次の表5,6に示すプレ
ス成形品質を調べた。表4の中の各特性値の測定方法は
実施例1と同じである。
(Example 3) Alloy No. 1 used in Example 1
No.2, No.4, No.6, No.7, No.9, No.11, No.12, No.13
And using No. 18 hot-rolled steel strip, hot-rolled sheet annealing (930 ° C) -cold rolling-annealing (1 at the temperature shown in Table 4
Finish cold rolling (implemented at a reduction ratio shown in Table 3) was performed to obtain an alloy plate having a plate thickness of 0.25 mm. After these alloy plates were made into flat masks by etching, the flat masks were annealed before press under the condition of 750 ° C. × 15 min to obtain materials No. 24 to No. 61. Next, press molding was performed and the press molding qualities shown in the following Tables 5 and 6 were examined. The measuring method of each characteristic value in Table 4 is the same as that of the first embodiment.

【0061】[0061]

【表5】 [Table 5]

【0062】[0062]

【表6】 [Table 6]

【0063】前記した表5,6に示した結果から明らか
なように、本発明の範囲内の成分組成、熱延板焼鈍条件
およびプレス前焼鈍条件の場合でも、仕上冷間圧延前の
オーステナイト粒径および仕上冷間圧延率が、本発明規
定の領域内にある材料No.25〜No.30 、No.33 、No.36
〜No.38 、No.42 〜No.61 の各材はいずれも{211}
結晶面の集積度は16%以下であり、特に材料No.25 、
No.30 、No.33 、およびNo.36 、No.42 、No.44 、No.4
5 、No.49 、No.55 、No.58 、No.61 の各材は本発明規
定の領域1の範囲内にあり、0.2%耐力は28.5kgf /
mm2 以下、材料No.26 、No.28 、No.29 、No.43 、No.4
7 、No.50 、No.54 、No.60 およびNo.38 の各材は本発
明規定の領域2の範囲内にあり、0.2%耐力は28.0kg
f /mm2以下、材料No.27 、No.46 、No.48 、No.51 、N
o.52 、No.53 、No.56 、No.57、No.59 およびNo.37 の
各材は本発明規定の領域3の範囲内にあり、0.2%耐力
は27.5kgf /mm2 以下と、本発明で意図する0.2%耐
力が得られており、これらいずれの材料もプレス成形性
品質が優れたレベルを示している。また上記のように、
0.2%耐力の低下により、形状凍結性をより優れたレベ
ルとすることが可能であることがわかる。
As is clear from the results shown in Tables 5 and 6, the austenite grains before the finish cold rolling were performed even in the case of the component composition within the scope of the present invention, the hot rolled sheet annealing conditions and the pre-press annealing conditions. Material No.25 to No.30, No.33, No.36 whose diameter and finish cold rolling rate are within the range specified by the present invention
~ No.38, No.42 ~ No.61 are all {211}
The degree of integration of crystal planes is less than 16%, especially material No. 25,
No.30, No.33, No.36, No.42, No.44, No.4
Each of No. 5, No. 49, No. 55, No. 58, and No. 61 is within the range of Region 1 of the present invention, and the 0.2% proof stress is 28.5 kgf /
mm 2 or less, material No. 26, No. 28, No. 29, No. 43, No. 4
Each of No. 7, No. 50, No. 54, No. 60 and No. 38 is within the range of Region 2 of the present invention, and the 0.2% proof stress is 28.0 kg.
f / mm 2 or less, material No. 27, No. 46, No. 48, No. 51, N
The materials of o.52, No.53, No.56, No.57, No.59 and No.37 are within the range of Region 3 of the present invention, and the 0.2% proof stress is 27.5kgf / mm. The yield strength of 0.2% or less, which is the target of the present invention, is obtained, and all of these materials show an excellent level of press moldability. Also, as mentioned above,
It can be seen that the shape fixability can be made to a more excellent level by the reduction of the 0.2% proof stress.

【0064】これに対して、材料No.24 、No.31 、No.3
2 、No.34 、No.35 、No.39 、およびNo.40 の各材は仕
上冷間圧延前のオーステナイト粒径、仕上冷間圧延率の
うち1つまたは、両方が本発明規定の領域を外れるもの
であり、0.2%耐力かつまたは{211}結晶面の集積
度が本発明規定を超えており、プレス成形時において、
形状凍結性、合金板の割れ発生のうち1つまたは両方に
問題が生じている。
On the other hand, materials No. 24, No. 31, No. 3
Each of No. 2, No. 34, No. 35, No. 39, and No. 40 has one or both of the austenite grain size before the finish cold rolling and the finish cold rolling rate defined by the present invention. , The 0.2% proof stress and / or the degree of integration of {211} crystal planes exceeds the regulation of the present invention, and at the time of press molding,
There is a problem in one or both of shape fixability and cracking of the alloy plate.

【0065】なお、材料No.41 は、仕上冷間圧延前の焼
鈍条件が850℃で1min の場合であり、このような焼
鈍ではオーステナイト結晶粒径は10.0μm であり、以
降の仕上冷間圧延率が15%の場合であっても、0.2%
耐力は28.5kgf /mm2 超であり、本発明で意図するプ
レス成形時の形状凍結性は得られていない。
Material No. 41 is the case where the annealing condition before finish cold rolling is 850 ° C. for 1 min, the austenite grain size is 10.0 μm in such annealing, and the subsequent finish cold rolling is performed. 0.2% even if the rolling rate is 15%
The yield strength is more than 28.5 kgf / mm 2 , and the shape fixability during press molding intended by the present invention is not obtained.

【0066】以上のように、本発明の範囲内の成分組
成、熱延板焼鈍条件およびプレス前焼鈍条件の場合で
も、仕上冷間圧延前のオーステナイト粒径および仕上冷
間圧延率を本発明範囲内とすることが本発明で意図する
プレス成形品質を得るために必要であることが理解され
る。
As described above, even in the case of the component composition within the scope of the present invention, the hot rolled sheet annealing conditions and the pre-press annealing conditions, the austenite grain size before the finish cold rolling and the finish cold rolling rate are within the scope of the present invention. It is understood that the internal content is necessary to obtain the press molding quality intended in the present invention.

【0067】(実施例4)実施例1で用いた合金No.1、
No.4、No.17 、No.18 、No.9、No.10 およびNo.12 の熱
延鋼帯を用いて、以降熱延板焼鈍(930℃)−冷間圧
延−焼鈍(890℃×1min )−仕上冷間圧延(圧下率
21%)を行ない、板厚0.25mmの合金板を得た。これ
らの合金板をエッチングによりフラットマスクにした
後、フラットマスクを次の表7に示す条件で、プレス前
焼鈍し、No.62 〜79の材料を得た。また次いでプレス成
形を行い、表7に示すプレス成形品質を調べた。表7の
中の各特性値の測定方法は実施例1と同じである。
Example 4 Alloy No. 1 used in Example 1
Using No.4, No.17, No.18, No.9, No.10 and No.12 hot rolled steel strips, hot rolled sheet annealing (930 ° C) -cold rolling-annealing (890 ° C) X1 min) -finish cold rolling (reduction ratio 21%) was performed to obtain an alloy plate having a plate thickness of 0.25 mm. After these alloy plates were made into flat masks by etching, the flat masks were annealed before press under the conditions shown in Table 7 below to obtain materials No. 62 to 79. Then, press molding was performed and the press molding quality shown in Table 7 was examined. The measuring method of each characteristic value in Table 7 is the same as that of the first embodiment.

【0068】[0068]

【表7】 [Table 7]

【0069】前記表7に示した結果から明らかなよう
に、本発明の範囲内の成分組成、熱延条件、仕上冷間圧
延前のオーステナイト粒径および仕上冷間圧延率の場合
でも、プレス前焼鈍条件(温度、時間)が本発明規定内
にある材料No.62 、No.64 、No.71 〜No.79 およびNo.6
5 の各材はいずれも{211}結晶面の集積度は16%
以下であり、0.2%耐力も本発明規定内にあり、いずれ
の材料も優れたプレス成形品質を示している。
As is clear from the results shown in Table 7, even in the case of the component composition, hot rolling conditions, austenite grain size before finish cold rolling and finish cold rolling ratio within the scope of the present invention, before pressing Material No.62, No.64, No.71 to No.79 and No.6 whose annealing conditions (temperature, time) are within the scope of the present invention
The degree of integration of {211} crystal planes for each of the 5 materials is 16%
Below, 0.2% proof stress is also within the regulation of the present invention, and all materials show excellent press molding quality.

【0070】これに対して、材料No.66 、No.67 、およ
びNo.68 の各材はそれぞれプレス前焼鈍における温度が
下限未満のもの、上限を超えるもの、時間が上限を超え
るものであり、いずれの材料でも{211}結晶面の集
積度は16%を超えており、合金の割れが発生してい
る。また、材料No.66 では温度が下限未満であり、0.2
%耐力も28.5kgf /mm2 とプレス成形時の形状凍結性
にも問題が生じている。
On the other hand, the materials No. 66, No. 67, and No. 68 each have a temperature in the pre-press annealing that is less than the lower limit, exceeds the upper limit, and exceeds the upper limit in time. In all the materials, the degree of integration of the {211} crystal plane exceeded 16%, and the alloy cracked. In material No. 66, the temperature is below the lower limit, so 0.2
The% yield strength is 28.5 kgf / mm 2, and there is a problem with the shape fixability during press molding.

【0071】また、材料No.63 はプレス前焼鈍における
温度(T)、時間(t)からなる条件式(T≧−53.8
log t+806)を満たさないものであり、0.2%耐力
が28.5kgf /mm2 超でプレス成形時の形状凍結性に問
題があり、{211}結晶面の集積度も16%超であっ
て、プレス成形時の合金板の割れも発生している。
Material No. 63 is a conditional expression (T ≧ −53.8) consisting of temperature (T) and time (t) in pre-press annealing.
log t + 806), 0.2% proof stress is over 28.5 kgf / mm 2 and there is a problem in shape fixability during press forming, and the degree of accumulation of {211} crystal faces is over 16%. As a result, the alloy plate is cracked during press forming.

【0072】なお、材料No.69 およびNo.70 の各材は比
較合金を用いた場合のものであるが、750℃にて60
min のプレス前焼鈍を行なった場合でも、0.2%耐力
は、28.5kgf /mm2 超であり、プレス成形時の形状凍
結性に問題がある。またこれらの材料では{211}結
晶面の集積度も16%超であり、プレス成形時の合金板
の割れも発生している。
Each of the materials No. 69 and No. 70 is the case where the comparative alloy is used.
Even when the pre-press annealing of min is performed, the 0.2% proof stress is more than 28.5 kgf / mm 2 , and there is a problem in shape fixability during press forming. Further, in these materials, the degree of integration of {211} crystal planes is more than 16%, and the alloy plate is cracked during press forming.

【0073】以上のように、本発明の範囲内の成分組
成、熱延板焼鈍条件、仕上冷間圧延前のオーステナイト
粒径および仕上冷間圧延率の場合でも、プレス前の焼鈍
条件を本発明範囲内とすることが本発明で意図するプレ
ス成形品質を得るために必要であることが理解される。
As described above, even in the case of the component composition, the hot rolled sheet annealing conditions, the austenite grain size before the finish cold rolling and the finish cold rolling ratio within the scope of the present invention, the annealing conditions before the press are set according to the present invention. It is understood that the content within the range is necessary for obtaining the press molding quality intended in the present invention.

【0074】(実施例5)実施例で用いた合金No.1、N
o.4の熱延鋼帯を用いて、以降熱延板焼鈍(930℃)
─冷間圧延─焼鈍(890℃×1min )─仕上冷間圧延
(圧下率21%)を行い、板厚0.25mmの合金板を得
た。これらの合金板を次の表8に示す条件で、プレス前
焼鈍しNo.80 〜No.82 の材料を得た。引き続くエッチン
グによりフラットマスクにした後、プレス成形を行い、
表6に示すプレス成形品質を調べた。表8中の各特性値
の測定方法は実施例1と同じである。また、エッチング
性はエッチング後のフラットマスクはムラ発生状況を目
視で観察することにより調べた。
(Example 5) Alloy Nos. 1 and N used in the examples
Annealing of hot-rolled sheet (930 ℃) using hot-rolled steel strip of o.4
—Cold Rolling—Annealing (890 ° C. × 1 min) —Finishing Cold rolling (reduction of 21%) was performed to obtain an alloy plate having a plate thickness of 0.25 mm. These alloy sheets were annealed before press under the conditions shown in Table 8 below to obtain No. 80 to No. 82 materials. After forming a flat mask by subsequent etching, press molding,
The press molding quality shown in Table 6 was examined. The method of measuring each characteristic value in Table 8 is the same as in Example 1. Further, the etching property was examined by visually observing the occurrence of unevenness in the flat mask after etching.

【0075】[0075]

【表8】 [Table 8]

【0076】前記表8に示した結果から明らかなよう
に、本発明の範囲内の成分組成、熱延条件、仕上冷間圧
延前のオーステナイト粒径、仕上冷間圧延率およびプレ
ス前焼鈍条件が本発明規定内にある材料No.80 〜No.82
の各材はいずれもエッチング性はムラがなく、良好であ
り、{211}結晶面の集積度あ16%以下であり、0.
2%耐力も本発明規定内にあり、いずれの材料も優れた
プレス成形品質を示している。
As is clear from the results shown in Table 8 above, the composition within the scope of the present invention, the hot rolling conditions, the austenite grain size before finish cold rolling, the finish cold rolling rate and the pre-press annealing conditions were determined. Materials No.80 to No.82 within the scope of the present invention
Each of the above materials has good etching property without unevenness, and the degree of integration of {211} crystal faces is 16% or less.
The 2% proof stress is also within the regulation of the present invention, and all materials show excellent press molding quality.

【0077】以上のように、本発明の範囲内の成分組
成、熱延条板焼鈍条件、仕上冷間圧延面のオーステナイ
ト粒径、仕上冷間圧延率およびプレス前の焼鈍条件を本
発明範囲内とすることが本発明で意図するプレス成形品
質を得るために必要であり、かつプレス前の焼鈍の後
で、エッチングが施された場合でも、得られたフラット
マスクはムラはなく、所要のエッチング性が得られるこ
とが理解される。
As described above, the composition of components within the scope of the present invention, the conditions of hot-rolled strip annealing, the austenite grain size of the finish cold-rolled surface, the finish cold-rolling ratio and the annealing conditions before pressing are within the scope of the present invention. It is necessary in order to obtain the press molding quality intended in the present invention, and after the annealing before pressing, even if etching is performed, the obtained flat mask has no unevenness and the required etching. It is understood that sex is obtained.

【0078】なお、上記した実施例1〜実施例5で明ら
かなように、{211}結晶面の集積度が16%超の場
合には、プレス前焼鈍後の圧延直角方向の伸びが本発明
例に比べて低く、{211}結晶面の集積度が高いと、
この伸び値が低下し、プレス成形時に割れが発生すると
推定される。
As is clear from Examples 1 to 5, when the degree of integration of {211} crystal faces exceeds 16%, the elongation in the direction perpendicular to the rolling direction after the pre-press annealing is the present invention. It is lower than the example, and the degree of integration of {211} crystal planes is high,
It is presumed that this elongation value decreases and cracking occurs during press molding.

【0079】[0079]

【発明の効果】以上詳述したような、本発明によれば、
プレス成形性が優れ、又プレス前の焼鈍が720℃〜7
90℃といった低温度でかつ40min 以下と短い焼鈍時
間の処理でも所要のプレス成形品質、すなわち、優れた
成形時の形状凍結性と、良好な金型とのなじみおよび材
料の割れ発生の抑制といった品質を付与しうるシャドウ
マスク用Fe−Ni系インバー合金薄板およびその製造法を
提供することができるものであるから、工業的に有利な
効果がもたらされ、その効果の大きい発明である。
According to the present invention as described in detail above,
Excellent press formability, and annealing before pressing is 720 ℃ to 7 ℃.
The required press-molding quality even at a low temperature of 90 ° C and a short annealing time of 40 min or less, that is, excellent shape fixability at the time of molding, good mold compatibility, and suppression of material cracking. Since it is possible to provide an Fe-Ni-based Invar alloy thin plate for a shadow mask and a method for producing the same, it is possible to provide industrially advantageous effects, and it is a large invention.

【0080】さらには、本発明によれば、プレス成形前
の焼鈍をエッチング前に施した場合でも、所要のエッチ
ング品質およびプレス成形品質が得られるので、ブラウ
ン管メーカーにおいて、プレス前の焼鈍を省略すること
が可能なシャドウマスク用Fe−Ni系インバー合金薄板を
提供することができるものであるから、工業的に有利な
効果がもたらされ、その効果の大きな発明である。
Furthermore, according to the present invention, the required etching quality and press molding quality can be obtained even if annealing before press molding is performed before etching, so that the CRT maker omits annealing before pressing. Since it is possible to provide an Fe-Ni-based Invar alloy thin plate for a shadow mask, it is possible to provide an industrially advantageous effect, which is a large invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】プレス成形時の割れ発生と{211}結晶面の
集積度、プレス前焼鈍後の0.2%耐力の関係を示した図
表である。
FIG. 1 is a table showing the relationship between cracking during press forming, the degree of accumulation of {211} crystal faces, and 0.2% proof stress after annealing before pressing.

【図2】{211}結晶面の集積度、圧延直角方向の伸
びと熱延板焼鈍温度との関係を示した図表である。
FIG. 2 is a chart showing the relationship between the degree of integration of {211} crystal faces, the elongation in the direction perpendicular to the rolling, and the annealing temperature of the hot-rolled sheet.

【図3】プレス前焼鈍後の0.2%耐力と仕上冷間圧延前
のオーステナイト結晶粒径、仕上冷間圧延率の関係を示
した図表である。
FIG. 3 is a table showing the relationship between 0.2% proof stress after pre-press annealing, austenite grain size before finish cold rolling, and finish cold rolling rate.

【図4】プレス前焼鈍後の0.2%耐力、{211}結晶
面の集積度とプレス前焼鈍条件との関係を示した図表で
ある。
FIG. 4 is a table showing the relationship between 0.2% proof stress after pre-press annealing, the degree of integration of {211} crystal faces, and pre-press annealing conditions.

【図5】プレス前焼鈍後の0.2%耐力、{211}結晶
面の集積度とプレス前焼鈍条件の関係を示した図表であ
る。
FIG. 5 is a table showing the relationship between 0.2% proof stress after pre-press annealing, the degree of integration of {211} crystal faces, and pre-press annealing conditions.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月10日[Submission date] February 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】図1は、図中に示すような成分の合金板に
ついてプレス成形時の合金板割れと{211}結晶面の
集積度および0.2%耐力の関係を示したものであるが、
{211}結晶面の集積度の測定はプレス前焼鈍後の合
金板の(422)回折面の相対X線回折強度比を(11
1)、(200)、(220)、(311)、(33
1)、(420)および(422)の各回折面の相対X
線強度比の和で割ることにより求めた。ここで、相対X
線回折強度比とは、各回折面で測定されたX線回折強度
をその回折面の理論X線回折強度で割ったものである。
例えば(111)回折面の相対X線回折強度比は(11
1)回折面のX線回折強度を(111)回折面のX線回
折理論強度で割ったものである。なお{112}結晶面
の集積度測定は{211}面と方位でみて等価な(42
2)回折面のX線回折強度の測定により行った。このよ
うな図1より0.2%耐力が28.5kgf /mm2 以下で、か
つ{211}結晶面の集積度が16%以下で、プレス成
形時合金板の割れは発生しておらず、本発明で意図する
優れた効果が発揮されている。以上のような検討結果よ
り合金板の割れ抑制の条件として{211}結晶面の集
積度を16%以下と定めた。
FIG. 1 shows the relationship between alloy plate cracking during press forming, the degree of accumulation of {211} crystal faces, and 0.2% proof stress for alloy plates having the components shown in the figure.
The degree of integration of the {211} crystal plane was measured by measuring the relative X-ray diffraction intensity ratio of the (422) diffraction plane of the alloy plate after annealing before pressing (11
1), (200), (220), (311), (33
Relative X of each diffraction surface of 1), (420) and (422)
It was obtained by dividing by the sum of the line intensity ratios. Where relative X
The line diffraction intensity ratio is the X-ray diffraction intensity measured on each diffraction surface divided by the theoretical X-ray diffraction intensity of that diffraction surface.
For example, the relative X-ray diffraction intensity ratio of the (111) diffraction plane is (11
1) X-ray diffraction intensity of the diffractive surface divided by theoretical X-ray diffraction intensity of the (111) diffractive surface. The measurement of the integration degree of the {112} crystal plane is equivalent to the {211} plane in terms of orientation (42
2) The measurement was performed by measuring the X-ray diffraction intensity of the diffraction surface. As shown in FIG. 1, the 0.2% proof stress is 28.5 kgf / mm 2 or less, the degree of integration of {211} crystal faces is 16% or less, and the alloy sheet is not cracked during press forming. The excellent effect intended by the present invention is exhibited. From the above examination results, the degree of integration of {211} crystal faces was determined to be 16% or less as a condition for suppressing cracking of the alloy plate.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 ─────────────────────────────────────────────────────
[Figure 4] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月16日[Submission date] April 16, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0054[Correction target item name] 0054

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0054】(実施例2)前記した実施例1で用いた
金No.1の熱延鋼帯を用いて、以降熱延板焼鈍を次の表4
に示す条件で実施したもの、および実施しないものにつ
いて、以降、冷間圧延−焼鈍(890℃×1min )−仕
上冷間圧延(圧下率21%)を行ない板厚0.25mmの合
金板を得た。
[0054] If used in (Example 2) Example 1 described above
The hot-rolled steel strip of gold No. 1 was used to anneal the hot-rolled sheet thereafter.
In the following, cold rolling-annealing (890 ° C x 1 min) -finish cold rolling (21% rolling reduction) were carried out for those that were carried out under the conditions shown in (1) and alloy sheets with a thickness of 0.25 mm were obtained. It was

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0060[Correction target item name] 0060

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0060】(実施例3)実施例1で用いた合金No.1、
No.2、No.4、No.6、No.7、No.9、No.11 、No.12、No.13
およびNo. の熱延鋼帯を用いて、以降熱延板焼鈍
(930℃)−冷間圧延−焼鈍(表4に示す温度にて1
min 保持することにより実施)仕上冷間圧延(表3に示
す圧下率にて実施)を行ない、板厚0.25mmの合金板を
得た。これらの合金板をエッチングによりフラットマス
クにした後、フラットマスクを750℃×15min の条
件にて、プレス前焼鈍して、材料No.24 〜No.61 を得
た。次にプレス成形を行ない、次の表5,6に示すプレ
ス成形品質を調べた。表4の中の各特性値の測定方法は
実施例1と同じである。
(Example 3) Alloy No. 1 used in Example 1
No.2, No.4, No.6, No.7, No.9, No.11, No.12, No.13
And using No. 8 hot rolled steel strip, hot rolled sheet annealing (930 ° C.)-Cold rolling-annealing (1 at the temperature shown in Table 4)
Finish cold rolling (implemented at the rolling reduction shown in Table 3) was performed to obtain an alloy plate having a plate thickness of 0.25 mm. After these alloy plates were made into flat masks by etching, the flat masks were annealed before press under the condition of 750 ° C. × 15 min to obtain materials No. 24 to No. 61. Next, press molding was performed and the press molding qualities shown in the following Tables 5 and 6 were examined. The measuring method of each characteristic value in Table 4 is the same as that of the first embodiment.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 wt%で、Ni:34〜38%、Si:0.05
%以下、B:0.0005%以下、O:0.0020%以
下、N:0.0015%以下を含有し、残部不可避不純物
およびFeの成分組成からなり、しかもプレス成形前で焼
鈍後の合金板における0.2%耐力が28.5kgf /mm2
下で、かつ合金板表面への{211}結晶面の集積度が
16%以下であることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni合金薄板。
1. Wt%, Ni: 34-38%, Si: 0.05
% Or less, B: 0.0005% or less, O: 0.0020% or less, N: 0.0005% or less, the balance consists of unavoidable impurities and Fe component composition, and is an alloy after annealing before press forming. A shadow mask excellent in press formability, which has a 0.2% proof stress of 28.5 kgf / mm 2 or less in a plate and an accumulation degree of {211} crystal planes on the surface of an alloy plate of 16% or less. Fe-Ni alloy thin plate for use.
【請求項2】 請求項1に記載の成分を有する低熱膨脹
合金の熱延鋼帯を熱延板焼鈍して以降冷間圧延とこれに
引続く再結晶焼鈍を行った後、仕上冷間圧延を施す工程
で製造するに際し、前記熱延板焼鈍を910〜990℃
で施し、仕上冷間圧延での圧下率(R)%は前記した再
結晶焼鈍後のオーステナイト粒径D(μm )に応じて図
3に示す領域Iの範囲内で施し、引続くプレス成形前の
焼鈍は温度(T℃)は720〜790℃、時間(tmin)
は2〜40min かつT≧−53.8logt+806を満たす
条件で施すことによりアニール後の合金板における0.2
%耐力が28.5kgf /mm2 以下で、かつ{211}結晶
面の集積度を16%以下に調整することを特徴とするプ
レス成形性に優れたシャドウマスク用Fe−Ni合金薄板の
製造方法。
2. A hot-rolled steel strip of a low-thermal expansion alloy having the components according to claim 1 is annealed by hot-rolling, followed by cold rolling and subsequent recrystallization annealing, and then finish cold rolling. At the time of manufacturing in the process of applying, the hot rolled sheet annealing is performed at 910 to 990 ° C.
The reduction ratio (R)% in the finish cold rolling is applied within the range of the region I shown in FIG. 3 according to the austenite grain size D (μm) after the recrystallization annealing described above, and before the subsequent press forming. Annealing is performed at temperature (T ° C) of 720 to 790 ° C for time (tmin)
Is 2 to 40 min and T ≧ −53.8 logt + 806 so that the alloy plate after annealing is 0.2
% Yield strength of 28.5 kgf / mm 2 or less and adjusting the degree of integration of {211} crystal faces to 16% or less, a method for producing an Fe-Ni alloy thin plate for a shadow mask excellent in press formability .
【請求項3】 請求項1に記載の成分を有する低熱膨張
合金の熱延鋼帯を熱延板焼鈍して以降冷間圧延とこれに
引き続く再結晶焼鈍を行なったのち、仕上冷間圧延を施
す工程で製造するに際して、前記熱延板焼鈍を910℃
〜990℃で施し、仕上冷間圧延での圧下率(R%)
は、前記した再結晶焼鈍後のオーステナイト粒径D(μ
m )に応じて図3に示す領域IIの範囲内で施し、引き続
く、プレス成形前の焼鈍は温度(T℃)は720〜79
0℃、時間(tmin)は2〜40min かつT≧−53.8lo
g t+806を満たす条件にて施すことにより、アニー
ル後の合金板の0.2%耐力が28.0kgf /mm2 以下で、
かつ{211}結晶面の集積度を16%以下と調整する
ことを特徴とするプレス成形性に優れたシャドウマスク
用Fe−Ni合金薄板の製造方法。
3. A hot-rolled steel strip of a low thermal expansion alloy having the components according to claim 1 is subjected to hot-rolled sheet annealing, followed by cold rolling and subsequent recrystallization annealing, and then finish cold rolling. When manufacturing in the process of applying, the hot-rolled sheet is annealed at 910 ° C.
Rolling ratio (R%) in finish cold rolling performed at ~ 990 ° C
Is the austenite grain size D (μ
m) in the region II shown in FIG. 3, and the subsequent annealing before press forming has a temperature (T ° C.) of 720 to 79.
0 ° C., time (tmin) is 2 to 40 min, and T ≧ −53.8 lo
By applying under the condition of satisfying g t +806, the 0.2% proof stress of the annealed alloy plate is 28.0 kgf / mm 2 or less,
A method of manufacturing an Fe-Ni alloy thin plate for a shadow mask excellent in press formability, which comprises adjusting the degree of integration of {211} crystal faces to 16% or less.
【請求項4】 請求項1に記載の成分を有する低熱膨張
合金の熱延鋼帯を熱延板焼鈍して以降冷間圧延とこれに
引き続く再結晶焼鈍を行なったのち、仕上冷間圧延を施
す工程で製造するに際して、前記熱延板焼鈍を910℃
〜990℃で施し、仕上冷間圧延での圧下率(R%)
は、前記した再結晶焼鈍後のオーステナイト粒径D(μ
m )に応じて図3に示す領域III に示す範囲内で施し、
引き続く、プレス成形前の焼鈍は温度(T℃)は720
〜790℃、時間(tmin)は2〜40min かつT≧−5
3.8log t+806を満たす条件にて施すことにより、
アニール後の合金板の0.2%耐力が27.5kgf /mm2
下で、かつ{211}結晶面の集積度を16%以下と調
整することを特徴とするプレス成形性に優れたシャドウ
マスク用Fe−Ni合金薄板の製造方法。
4. A hot-rolled steel strip of a low-thermal expansion alloy having the components according to claim 1 is annealed by hot-rolling, followed by cold rolling and subsequent recrystallization annealing, and then finish cold rolling. When manufacturing in the process of applying, the hot-rolled sheet is annealed at 910 ° C.
Rolling ratio (R%) in finish cold rolling performed at ~ 990 ° C
Is the austenite grain size D (μ
m) according to the area III shown in FIG.
The temperature (T ° C) for the subsequent annealing before press forming is 720
~ 790 ° C, time (tmin) is 2-40 min and T≥-5
By applying under the condition satisfying 3.8 log t + 806,
A shadow mask with excellent press formability, characterized in that the alloy sheet after annealing has a 0.2% proof stress of 27.5 kgf / mm 2 or less and the degree of integration of {211} crystal faces is adjusted to 16% or less. For manufacturing Fe-Ni alloy sheet for automobile.
JP03294192A 1992-01-24 1992-01-24 Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability Expired - Fee Related JP3353321B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP03294192A JP3353321B2 (en) 1992-01-24 1992-01-24 Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
US08/007,755 US5456771A (en) 1992-01-24 1993-01-22 Thin Fe-Ni alloy sheet for shadow mask
EP93101093A EP0561120B1 (en) 1992-01-24 1993-01-25 Thin Fe-Ni alloy sheet for shadow mask and method for manufacturing thereof
DE69303072T DE69303072T2 (en) 1992-01-24 1993-01-25 Thin sheet of Fe-Ni alloy for shadow mask and process for its production
US08/160,399 US5620535A (en) 1992-01-24 1993-12-01 Alloy sheet for shadow mask
US08/178,088 US5562783A (en) 1992-01-24 1994-01-06 Alloy sheet for shadow mask
US08/184,830 US5605581A (en) 1992-01-24 1994-01-21 Thin Fe-Ni alloy sheet for shadow mask and method for manufacturing thereof
US08/184,840 US5628841A (en) 1992-01-24 1994-01-21 Thin Fe-Ni alloy sheet for shadow mask
US08/342,238 US5501749A (en) 1992-01-24 1994-11-18 Method for producing a thin Fe-Ni alloy for shadow mask thereof
US08/342,109 US5520755A (en) 1992-01-24 1994-11-18 Method for manufacturing thin Fe--Ni alloy sheet for shadow mask
US08/342,221 US5503693A (en) 1992-01-24 1994-11-18 Method for producing a thin Fe-Ni alloy for shadow mask
US08/429,252 US5637161A (en) 1992-01-24 1995-04-25 Method of producing an alloy sheet for a shadow mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03294192A JP3353321B2 (en) 1992-01-24 1992-01-24 Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability

Publications (2)

Publication Number Publication Date
JPH05209254A true JPH05209254A (en) 1993-08-20
JP3353321B2 JP3353321B2 (en) 2002-12-03

Family

ID=12372978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03294192A Expired - Fee Related JP3353321B2 (en) 1992-01-24 1992-01-24 Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability

Country Status (1)

Country Link
JP (1) JP3353321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333638A (en) * 1994-12-27 1996-12-17 Imphy Sa Production shadow mask of iron/nickel alloy
US5997807A (en) * 1996-08-27 1999-12-07 Hitachi Metals, Ltd. Thin plate made of an Fe-Ni alloy for electronic parts, shadow mask and cathode-ray tube with the shadow mask
CN115305331A (en) * 2022-08-18 2022-11-08 山西太钢不锈钢精密带钢有限公司 Low-expansion alloy 4J36 stress-relief annealing process for half-etching

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333638A (en) * 1994-12-27 1996-12-17 Imphy Sa Production shadow mask of iron/nickel alloy
US5997807A (en) * 1996-08-27 1999-12-07 Hitachi Metals, Ltd. Thin plate made of an Fe-Ni alloy for electronic parts, shadow mask and cathode-ray tube with the shadow mask
CN115305331A (en) * 2022-08-18 2022-11-08 山西太钢不锈钢精密带钢有限公司 Low-expansion alloy 4J36 stress-relief annealing process for half-etching
CN115305331B (en) * 2022-08-18 2024-04-19 山西太钢不锈钢精密带钢有限公司 Stress relief annealing process method for low-expansion alloy 4J36 for half etching

Also Published As

Publication number Publication date
JP3353321B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US5503693A (en) Method for producing a thin Fe-Ni alloy for shadow mask
JP2596210B2 (en) Method of preventing adhesion seizure during annealing, Fe-Ni alloy for shadow mask excellent in gas emission, and method for producing the same
JPH05214492A (en) Fe-ni alloy excellent in sticking and seizure preventing property at the time of annealing and gas diffusing property and its production
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
US5637161A (en) Method of producing an alloy sheet for a shadow mask
JP2870399B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet for color picture tube with excellent processability
JPH05209254A (en) Fe-ni alloy thin sheet for shadow mask excellent in press formability and its manufacture
JPH0826437B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
US5562783A (en) Alloy sheet for shadow mask
EP0515954B1 (en) High-fineness shadow mask material and process for producing the same
JP3538850B2 (en) Fe-Ni alloy thin plate and Fe-Ni-Co alloy thin plate for shadow mask excellent in press formability and method for producing the same
KR970003641B1 (en) Alloy sheet for shadow mask
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
JP3367153B2 (en) Fe-Ni-Cr-based alloy thin plate and Fe-Ni-Co-Cr-based alloy thin plate for shadow mask excellent in press formability, and method for producing the same
JP2003268507A (en) Inner frame for cathode-ray tube, ferritic stainless steel sheet therefor and production method thereof
US20040238076A1 (en) Fe-ni based alloy for shadow mask raw material excellent in corrosion resistance and shadow mask material
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same
JPH06158229A (en) Fe-ni alloy thin sheet and fe-ni-co alloy thin sheet for shadow mask excellent in press formability
US5456771A (en) Thin Fe-Ni alloy sheet for shadow mask
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JP2970316B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet having excellent blackening properties for shadow mask
JP3410873B2 (en) Manufacturing method of shadow mask master by continuous annealing
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees