JPH05209185A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH05209185A
JPH05209185A JP29226492A JP29226492A JPH05209185A JP H05209185 A JPH05209185 A JP H05209185A JP 29226492 A JP29226492 A JP 29226492A JP 29226492 A JP29226492 A JP 29226492A JP H05209185 A JPH05209185 A JP H05209185A
Authority
JP
Japan
Prior art keywords
particles
fluid
ionic
polymer
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29226492A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tanaka
洋充 田中
Toru Shiga
亨 志賀
Miharu Hirose
美治 広瀬
Akane Okada
茜 岡田
Norio Kurauchi
紀雄 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP29226492A priority Critical patent/JPH05209185A/en
Publication of JPH05209185A publication Critical patent/JPH05209185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To obtain an electroviscous fluid having stabilized characteristics hardly causing desorption of dopants by dispersing solid particles having a polymer part, an ionic part, etc., in an electrical insulating oil. CONSTITUTION:The objective electroviscous fluid is obtained by dispersing solid particles composed of a polymer part such as preferably polythienylene having unsaturated bonds, an ionic part composed of a transition metal such as copper, iron or nickel for activating the unsaturated bonds and a counter ionic part composed of a carboxylic acid, a sulfonic acid, etc., for preventing the ionic part from being desorbed and scattered from particle bodies and holding the ionic part in an electrical insulating oil (e.g. a silicone oil).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気粘性流体に関し、さ
らに詳しくは、分極荷電し得る分散粒子を電気絶縁性の
分散媒体中に分散させ、いわゆるウィンズロー効果を利
用して流体の粘度を自由に変化させ得るようにした電気
粘性流体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrorheological fluid, and more specifically, it disperses polarized particles that can be polarized and charged in an electrically insulating dispersion medium, and utilizes the so-called Winslow effect to freely adjust the viscosity of the fluid. The present invention relates to an electrorheological fluid that can be changed to.

【0002】[0002]

【従来の技術】電気粘性流体(ER流体)とは、絶縁油
の中に固体粒子を分散させた懸濁液であり、外部電場の
作用により粘度を速やかに変化できるいわゆる電気粘性
効果(ER効果)を有するものである。理想的なER流
体はほとんど電力を消費することなく、電場の大きさに
応じて粘度を可逆的に変えることができるので、例え
ば、クラッチ、ダンパ、ショックアブソーバ、エンジン
マウントなどエネルギの伝達や吸収を行う自動車部品へ
の使用も可能である。
2. Description of the Related Art An electrorheological fluid (ER fluid) is a suspension in which solid particles are dispersed in insulating oil, which is a so-called electrorheological effect (ER effect) capable of rapidly changing viscosity by the action of an external electric field. ). An ideal ER fluid consumes almost no electric power and can reversibly change its viscosity depending on the magnitude of the electric field, so that it can transfer and absorb energy such as clutches, dampers, shock absorbers, and engine mounts. It can also be used for automobile parts.

【0003】ER流体に使用される固体粒子としては、
従来、架橋ポリメタクリル酸リチウムなどの高分子電解
質やポリパラフェニレン等の共役高分子粒子が知られて
いる。前者の固体粒子を用いた高分子電解質型ER流体
では、固体粒子に水分を結晶水や付着水の形で吸着させ
ることによりER効果を発現させている。このため、こ
のER流体では100℃付近の高温域での電流の大幅な
増大や、0℃付近の低温域におけるER効果の減少とい
った水に起因する欠点があった。即ち、温度に対する安
定性に問題があった。
Solid particles used in ER fluids include:
Conventionally, polymer electrolytes such as crosslinked polylithium methacrylate and conjugated polymer particles such as polyparaphenylene are known. In the former polymer electrolyte type ER fluid using solid particles, the ER effect is exhibited by adsorbing water in the form of crystal water or adhered water to the solid particles. Therefore, this ER fluid has drawbacks due to water, such as a large increase in current in a high temperature range near 100 ° C. and a decrease in ER effect in a low temperature range near 0 ° C. That is, there was a problem in stability with respect to temperature.

【0004】また、後者の共役高分子型ER流体では粒
子に塩化第二銅等の電解質を吸着させることによりER
効果を発現させる。この系では水の吸着を必要としない
ために、温度に対する安定性が電解質系と比較して改善
される。しかし、この系では、任意の一定したER効果
を発現させることが困難であった。なぜなら、共役系高
分子にドーピングする場合、ドーパントである金属塩を
溶媒に溶解し、これに高分子を浸漬することによって行
われる。そのため、ドープ量は導電性高分子の粒径,表
面構造,浸漬時間等によって変化するからである。この
ような操作によってドープ量を厳密にコントロールする
ことは困難である。
In the latter conjugated polymer type ER fluid, the ER is obtained by adsorbing an electrolyte such as cupric chloride on the particles.
Bring out the effect. Since this system does not require the adsorption of water, its stability over temperature is improved compared to electrolyte systems. However, it was difficult to develop any constant ER effect in this system. This is because when a conjugated polymer is doped, the metal salt that is a dopant is dissolved in a solvent and the polymer is immersed in the solvent. Therefore, the doping amount changes depending on the particle size of the conductive polymer, the surface structure, the immersion time, and the like. It is difficult to strictly control the amount of dope by such an operation.

【0005】更に、従来の塩化第二銅等の電解質を吸着
させた共役高分子型ER流体粒子は通常シリコーン油中
に分散して使用するが、粒子と分散媒との比重差により
粒子の沈降が起こるため、ER流体として使用する際に
は粒子の再分散を必要とする。このことは、ER流体を
自動車部品へ適用する際に部品の安定性を損なうため好
ましくない。従来、沈降を防止するために分散粒子と分
散媒との比重合わせを行う目的で、分散粒子と比重が等
しくなるよう調整されたシリコーン油とフッ素系絶縁油
との混合物が用いられてきた。しかし、このように比重
が調整されたER流体は電流密度が一桁程度増大するた
めに、消費電力が増大し、高温における流体の使用が不
可能になるという新たな問題を生じていた。
Further, conventional conjugated polymer type ER fluid particles adsorbing an electrolyte such as cupric chloride are usually used by dispersing them in silicone oil, but the particles settle due to the difference in specific gravity between the particles and the dispersion medium. Therefore, redispersion of particles is required when used as an ER fluid. This is not preferable because it impairs the stability of parts when applying ER fluid to automotive parts. Conventionally, a mixture of silicone oil and fluorine-based insulating oil adjusted to have the same specific gravity as the dispersed particles has been used for the purpose of matching the specific gravities of the dispersed particles and the dispersion medium in order to prevent sedimentation. However, the ER fluid whose specific gravity is adjusted in this way has a new problem that the current density increases by about one digit, the power consumption increases, and the fluid cannot be used at high temperature.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の課題
は上記従来技術の欠点に鑑み、ドーパントの脱着が起き
にくく安定しており、ドープ量のコントロールが可能な
不飽和高分子系の粒子を用いた電気粘性流体を提供する
ことにある。
Therefore, in view of the above-mentioned drawbacks of the prior art, the object of the present invention is to provide an unsaturated polymer type particle in which the desorption of the dopant hardly occurs and is stable, and the doping amount can be controlled. It is to provide the electrorheological fluid used.

【0007】[0007]

【課題を解決するための手段】本発明にかかる固体粒子
を電気絶縁油に分散させてなる電気粘性流体は、該固体
粒子が不飽和結合を有する高分子部分と、該不飽和結合
を活性化する力を有するイオン部分と、該イオン部分を
保持するための対イオン部分とを有することを特徴とす
る。
An electrorheological fluid in which solid particles according to the present invention are dispersed in an electrically insulating oil is a polymer part in which the solid particles have an unsaturated bond, and the unsaturated bond is activated. It is characterized by having an ion portion having a force to generate and a counter ion portion for holding the ion portion.

【0008】本発明にかかる電気絶縁油としては、ER
流体に通常用いられるシリコンオイル、塩化パラフィ
ン、フタル酸ジオクチル等の電流をほとんど通さず、し
かも、粒子の分散に適したものが用いられるが、同様の
性質を有する流動体であれば比重を考慮した上でいかな
る種類のものも使用できる。また、本発明においては、
これらとフッ素系絶縁油との混合物を用いても良い。
The electrically insulating oil according to the present invention is ER
Silicon oil, paraffin chloride, dioctyl phthalate, etc., which are usually used for fluids, which hardly pass an electric current and are suitable for dispersion of particles are used. Any of the above can be used. Further, in the present invention,
You may use the mixture of these and a fluorine-type insulating oil.

【0009】本発明にかかる不飽和結合を有する高分子
とは炭素あるいはその他の原子がσ結合等により連がっ
た高分子鎖の途中にπ結合等の二重結合、三重結合を有
するもののことである。このような高分子としては不飽
和結合と飽和結合とが交互に現れる共役不飽和結合を有
する高分子でもよい。このような高分子の一例としてポ
リアセチレン、ポリパラフェニレン、ポリアニリンなど
の導電性高分子がある。これらの中でも特に、アニオン
基を有する側鎖の結合が容易なポリチエニレン、ポリピ
ロールが適当である。
The polymer having an unsaturated bond according to the present invention is a polymer having a double bond or a triple bond such as a π bond in the middle of a polymer chain in which carbon or other atoms are connected by a σ bond or the like. Is. As such a polymer, a polymer having a conjugated unsaturated bond in which an unsaturated bond and a saturated bond alternately appear may be used. Examples of such polymers include conductive polymers such as polyacetylene, polyparaphenylene, and polyaniline. Among these, polythienylene and polypyrrole, in which the side chain having an anion group is easily bonded, are particularly suitable.

【0010】不飽和結合を活性化する力を有するイオン
部分としては該不飽和結合よりも電子親和力の大きな物
質を用いる。ここでいう活性化した状態とは適度な導電
性、分極性を有する半導体に近い状態などである。イオ
ン部分の例としては銅,鉄,ニッケル,コバルトなどの
遷移金属イオンがあげられ、塩化物、フッ化物、ヨウ化
物など塩の形で用いてもよい。さらには、電導度や誘電
率を調整するため、イオン部分としてアルカリ金属イオ
ンやアルカリ土類金属イオンを導入した導電性や誘電率
の小さな不飽和結合体を本発明の粒子に混合して用いて
もよい。
As the ionic moiety having a force of activating the unsaturated bond, a substance having an electron affinity higher than that of the unsaturated bond is used. The activated state here is a state close to a semiconductor having appropriate conductivity and polarizability. Examples of the ionic portion include transition metal ions such as copper, iron, nickel and cobalt, which may be used in the form of salts such as chloride, fluoride and iodide. Furthermore, in order to adjust the conductivity or the dielectric constant, an unsaturated bond having a small conductivity or a dielectric constant introduced with an alkali metal ion or an alkaline earth metal ion as an ionic portion is mixed with the particles of the present invention and used. Good.

【0011】本発明にかかる粒子は活性化力を有するイ
オン部分が粒子本体から脱着・散逸するのを防止する構
造を有している。この構造においてイオン部分を保持す
るための対イオン部分としてカルボン酸基、スルホン酸
基、リン酸基、硝酸基などがあげられる。これらの基の
不飽和結合体への導入方法の一例としては、アルキル基
を介して行う方法がある。さらには、酸素原子、窒素原
子などを含む炭素鎖による共有結合を用いる方法、ある
いはイオン結合、配位結合、電荷移動結合を用いる方法
でもよい。たとえば、ポリ3−アルキルチエニレンやポ
リN−アルキルピロールがその代表例である。
The particles according to the present invention have a structure that prevents the ionic portion having an activating force from being desorbed / dissipated from the particle body. In this structure, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a nitric acid group and the like can be mentioned as the counterion part for holding the ionic part. An example of a method for introducing these groups into the unsaturated bond is a method through an alkyl group. Further, a method using a covalent bond with a carbon chain containing an oxygen atom, a nitrogen atom, or the like, or a method using an ionic bond, a coordinate bond, or a charge transfer bond may be used. For example, poly 3-alkyl thienylene and poly N-alkyl pyrrole are typical examples.

【0012】本発明のER流体中の粒子の添加量はER
効果の度合いを規定する要因の一つであるが、用途や使
用状況によって要求される粘度範囲が異なるので、一概
に決めることはできない。通例、重量割合で50%前後
であるが、その使用状況に応じてもっと大きくすること
も、小さくすることも可能である。
The amount of particles added to the ER fluid of the present invention is ER
Although it is one of the factors that determine the degree of effect, it cannot be unconditionally determined because the required viscosity range differs depending on the application and the use conditions. Usually, the weight ratio is around 50%, but it is possible to make it larger or smaller depending on the usage condition.

【0013】[0013]

【作用及び効果】本発明のER流体中に含まれる不飽和
結合を有した粒子は電圧印加によってπ電子等の密度に
偏りを生じ、分極荷電を起こす。分極荷電した粒子同士
は互いに連結もしくは、連結に近い状態を作りだすため
流体全体の粘度を増加させる。これにより、本発明の流
体は電場の作用により可逆的に粘度を変化させることが
できるようになる。
FUNCTION AND EFFECT The particles having an unsaturated bond contained in the ER fluid of the present invention cause a bias in the density of π electrons and the like due to the application of a voltage and cause polarization charge. Polarized charged particles are connected to each other or create a state close to connection, so that the viscosity of the entire fluid is increased. This allows the fluid of the present invention to reversibly change its viscosity by the action of an electric field.

【0014】本発明にかかる粒子では不飽和結合部分を
活性化する力のあるイオン部分が粒子中の不飽和結合か
ら電子を奪うなどして、粒子の電子構造を変化させ粒子
を活性化する。また、前記イオン部分を保持している対
イオン部分が活性化した部分と錯体を形成するため、活
性化状態は安定に保たれる(ドープ状態)。
In the particles according to the present invention, the ionic portion having the power to activate the unsaturated bond portion deprives the unsaturated bond in the particle of an electron, etc. to change the electronic structure of the particle and activate the particle. Further, since the counter ion portion holding the ion portion forms a complex with the activated portion, the activated state is kept stable (doped state).

【0015】本発明にかかる粒子は脱ドープ状態におい
て、イオン部分が粒子中にある対イオンに固定されてお
り、ドープ状態においてはこれら複数のイオンが錯体を
形成するので、従来のようにドーパントが脱着して系外
に離れていくことがなく、安定した分極状態を作りだす
ことが可能である。
In the particles according to the present invention, the ion portion is fixed to the counter ion in the particles in the dedoped state, and in the doped state, a plurality of these ions form a complex. It is possible to create a stable polarization state without desorbing and leaving the system.

【0016】さらに、本発明にかかる粒子により、従
来、共役高分子粒子において必要であった浸せき法等の
再現性の悪いドーピング操作は必要がなくなるととも
に、活性化剤であるイオン部の種類を変化させることに
よってドーピング量を一意的に制御することができるよ
うになる。このように、本発明によればドープ量のコン
トロールが可能となり、ER効果の安定した優れた電気
粘性流体を得ることができる。そして、分散媒と分散粒
子との比重合わせを行う目的で、分散媒を例えばシリコ
ーン油とフッ素系絶縁油との混合物とした場合でも、本
発明に係る分散粒子の安定した分極状態から、電流密度
の増大を有効に防止してER効果を発現させることがで
きる。
Furthermore, the particles according to the present invention eliminate the need for a poorly reproducible doping operation such as the dipping method which has been conventionally required for conjugated polymer particles, and change the type of the ionic portion which is an activator. By doing so, the doping amount can be uniquely controlled. As described above, according to the present invention, the amount of dope can be controlled, and an excellent electrorheological fluid with a stable ER effect can be obtained. Then, for the purpose of matching the specific gravity of the dispersion medium and the dispersed particles, even when the dispersion medium is a mixture of, for example, silicone oil and fluorine-based insulating oil, from the stable polarization state of the dispersed particles according to the present invention, the current density Can be effectively prevented and the ER effect can be expressed.

【0017】[0017]

【実施例】本実施例ではER流体を降伏応力によって評
価した。即ち、二重円筒レオメータ(岩本製作所製)の
直径16mmの内筒(表面積17cm2 )と内径18m
mの外筒の間にER流体を入れた後、外筒を0.01〜
100rpmの速度で回転させた。この状態において内
筒と外筒の間に直流電圧0〜4kVを印加して内筒にか
かるトルクを測定した。測定されたせん断応力をせん断
速度0に外挿し、降伏応力を求めた。
EXAMPLES In this example, ER fluids were evaluated by yield stress. That is, a double cylinder rheometer (made by Iwamoto Seisakusho) with an inner cylinder of 16 mm in diameter (surface area of 17 cm 2 ) and an inner diameter of 18 m.
After inserting the ER fluid between the outer cylinders of m
It was rotated at a speed of 100 rpm. In this state, a DC voltage of 0 to 4 kV was applied between the inner cylinder and the outer cylinder, and the torque applied to the inner cylinder was measured. The measured shear stress was extrapolated to a shear rate of 0 to obtain the yield stress.

【0018】(実施例1)2−(3−チエニル)エタン
スルホン酸ナトリウム10.0gを52mlのイオン交
換水に溶解した水溶液と、無水塩化鉄(II)30.5
8gを28mlのイオン交換水に溶解した水溶液に、窒
素を吹き込んで水溶液中の溶存酸素を追い出す窒素置換
を行った後、窒素気流下にこれらを混合し、室温で2時
間攪拌した。窒素雰囲気下、20〜40mmHgの減圧
下に、40〜50℃で約3時間かけて水を徐々に留去し
た。さらに窒素置換したイオン交換水を100ml加え
て再び同様の条件で水を留去し、減圧乾燥した後にアセ
トン200mlで2回洗浄し、減圧乾燥した。さらに、
200mlのイオン交換水に溶解し、1規定の水酸化ナ
トリウム330mlを加え、よく混合した後濾過した。
Example 1 An aqueous solution prepared by dissolving 10.0 g of sodium 2- (3-thienyl) ethanesulfonate in 52 ml of ion-exchanged water and anhydrous iron (II) chloride 30.5
Nitrogen was blown into an aqueous solution prepared by dissolving 8 g in 28 ml of ion-exchanged water to expel dissolved oxygen in the aqueous solution. After nitrogen substitution, these were mixed under a nitrogen stream and stirred at room temperature for 2 hours. Under a nitrogen atmosphere, under reduced pressure of 20 to 40 mmHg, water was gradually distilled off at 40 to 50 ° C over about 3 hours. Further, 100 ml of ion-exchanged water substituted with nitrogen was added, water was distilled off under the same conditions again, dried under reduced pressure, washed twice with 200 ml of acetone, and dried under reduced pressure. further,
It was dissolved in 200 ml of ion-exchanged water, 330 ml of 1N sodium hydroxide was added, mixed well, and then filtered.

【0019】濾液をイオン交換樹脂(オルガノIR−1
20B)のプロトン型、ナトリウム型それぞれ400g
に通し、減圧留去した後、残さをエタノール−水(3:
1)の混合溶媒400mlで3回洗浄し、減圧乾燥して
8.57gのポリ(2−(3−チエニル)エタンスルホ
ン酸)ナトリウムを得た。
The filtrate was used as an ion exchange resin (Organo IR-1
20B) Proton type and sodium type 400g each
After passing through a column and distilling off under reduced pressure, the residue is ethanol-water (3:
It was washed 3 times with 400 ml of the mixed solvent of 1) and dried under reduced pressure to obtain 8.57 g of sodium poly (2- (3-thienyl) ethanesulfonic acid).

【0020】比較例として、特開平2−189333と
同様の方法によってポリ(2−(3−チエニル)エタン
スルホン酸)ナトリウムの合成を行なった。2−(3−
チエニル)エタンスルホン酸ナトリウム5gを25ml
の水に溶解し、無水塩化鉄(II)15gを水13.5
mlに溶解した水溶液をこれに加え、室温、アルゴン気
流下で攪拌した。16時間後、アセトン2000mlで
洗浄し、室温で減圧乾燥した。
As a comparative example, sodium poly (2- (3-thienyl) ethanesulfonic acid) was synthesized in the same manner as in JP-A-2-189333. 2- (3-
25 ml of thienyl) ethanesulfonic acid sodium salt 5 g
15 g of anhydrous iron (II) chloride was added to water 13.5
An aqueous solution dissolved in ml was added thereto, and the mixture was stirred at room temperature under an argon stream. After 16 hours, it was washed with 2000 ml of acetone and dried under reduced pressure at room temperature.

【0021】これを水50mlに懸濁し、0.1Mの水
酸化ナトリウム水溶液300mlを加えた後、8000
rpmで遠心分離し、250gのH+ 型イオン交換樹脂
に通し、さらにNa型イオン交換樹脂250gを通した
後、約50mlにまで濃縮し、35mMの水酸化ナトリ
ウムのメタノール溶液1000mlと混ぜ、沈殿を濾過
メタノールで洗浄後、40℃で10時間真空乾燥した。
この結果、500mgのポリ(2−(3−チエニル)エ
タンスルホン酸)ナトリウム(化1)を得た。
This was suspended in 50 ml of water, 300 ml of a 0.1 M sodium hydroxide aqueous solution was added, and then 8000
Centrifuged at rpm, passed through 250 g of H + type ion exchange resin, and further passed through 250 g of Na type ion exchange resin, concentrated to about 50 ml, mixed with 1000 ml of 35 mM sodium hydroxide in methanol, and precipitated. After washing with filtered methanol, vacuum drying was performed at 40 ° C. for 10 hours.
As a result, 500 mg of sodium poly (2- (3-thienyl) ethanesulfonic acid) (Formula 1) was obtained.

【0022】[0022]

【化1】 [Chemical 1]

【0023】本実施例では重合反応終了後すぐに加熱し
ながら水を徐々に留去することにより比較例で10%で
あった収率を85%以上に増加させることができた
In this example, water was gradually distilled off while heating immediately after the completion of the polymerization reaction, so that the yield which was 10% in the comparative example could be increased to 85% or more.

【0024】(実施例2)ポリ(2−(3−チエニル)
エタンスルホン酸)ナトリウム塩0.96gを3mlの
イオン交換水に溶解し、無水塩化銅3.17gをイオン
交換水5mlに溶解した水溶液と混合した。水を減圧留
去してメタノール200mlで2回洗浄した。これを再
び3mlのイオン交換水に溶解し、無水塩化銅3.17
gをイオン交換水5mlに溶解した水溶液と混合した。
水を減圧留去してメタノール−水(9:1)の混合溶媒
200mlで2回洗浄後減圧乾燥してポリ(2−(3−
チエニル)エタンスルホン酸)銅(化2)を得た。
Example 2 Poly (2- (3-thienyl))
0.96 g of ethanesulfonic acid) sodium salt was dissolved in 3 ml of ion-exchanged water, and 3.17 g of anhydrous copper chloride was mixed with an aqueous solution of 5 ml of ion-exchanged water. The water was distilled off under reduced pressure and the residue was washed twice with 200 ml of methanol. This was again dissolved in 3 ml of deionized water, and anhydrous copper chloride 3.17 was added.
g was mixed with an aqueous solution dissolved in 5 ml of ion-exchanged water.
Water was distilled off under reduced pressure, washed twice with 200 ml of a mixed solvent of methanol-water (9: 1), and dried under reduced pressure to give poly (2- (3-
Copper (thienyl) ethanesulfonic acid) was obtained.

【0025】[0025]

【化2】 [Chemical 2]

【0026】この銅塩粒子4gを70℃、10時間真空
乾燥後、動粘度20csのシリコーンオイル5mlに分
散し、本実施例の電気粘性流体を調製した(サンプルN
o.2)。これに室温下、2kV/mmの電場を印加し
たところ、表1のように降伏応力1.0kPaを示し
た。また、この特性は長時間持続した。
4 g of the copper salt particles were vacuum dried at 70 ° C. for 10 hours and then dispersed in 5 ml of silicone oil having a kinematic viscosity of 20 cs to prepare an electrorheological fluid of this example (Sample N).
o. 2). When an electric field of 2 kV / mm was applied to this at room temperature, the yield stress was 1.0 kPa as shown in Table 1. Also, this property lasted for a long time.

【0027】比較例として、ポリメタクリル酸ナトリウ
ム粒子に10%の水分を吸着した後、シリコーンオイル
に15g/20mlの割合で懸濁させた比較例の電気粘
性流体を調製した(サンプルNo.R1)。これに室温
下、2kV/mmの電場を印加したところ、表1のよう
に0.71kPaの降伏応力を示した。
As a comparative example, an electrorheological fluid of a comparative example was prepared by adsorbing 10% of water to sodium polymethacrylate particles and then suspending it in silicone oil at a rate of 15 g / 20 ml (Sample No. R1). .. When an electric field of 2 kV / mm was applied to this at room temperature, a yield stress of 0.71 kPa was shown as shown in Table 1.

【0028】さらに、比較例としてポリパラフェニレン
1モルに塩化第2銅を2ミリモルの割合で吸着した粒子
1.5gをシリコーンオイル10mlに混合した比較例
の電気粘性流体を調製した(サンプルNo.R2)。こ
れに室温下、2kV/mmの電場を印加したところ、表
1のように0.32kPaの降伏応力を示した。表1か
らわかるように本実施例は比較例の2倍程度の降伏応力
を有する優れた電気粘性流体である。
Further, as a comparative example, an electrorheological fluid of a comparative example was prepared by mixing 1.5 g of particles in which 1 mol of polyparaphenylene adsorbed cupric chloride at a ratio of 2 mmol was mixed with 10 ml of silicone oil (Sample No. 3). R2). When an electric field of 2 kV / mm was applied to this at room temperature, a yield stress of 0.32 kPa was shown as shown in Table 1. As can be seen from Table 1, this example is an excellent electrorheological fluid having a yield stress about twice that of the comparative example.

【0029】(実施例3)無水塩化マグネシウムを用い
て、実施例2と同様にポリ(2−(3−チエニル)エタ
ンスルホン酸)のマグネシウムを得た。これと、実施例
2の銅塩を用いて、ポリ(2−(3−チエニル)エタン
スルホン酸)の銅塩粒子とマグネシウム塩粒子の1:1
混合粒子を調製した。この混合粒子4gを70℃10時
間真空乾燥後、シリコーンオイル5mlに混合し、本実
施例の電気粘性流体を調製した(サンプルNo.3)。
これに室温下、5kV/mmの電界を印加したところ、
表1のように6kPaの降伏応力を示した。また、この
特性は長時間持続した。
(Example 3) Magnesium poly (2- (3-thienyl) ethanesulfonic acid) was obtained in the same manner as in Example 2 using anhydrous magnesium chloride. Using this and the copper salt of Example 2, 1: 1 of poly (2- (3-thienyl) ethanesulfonic acid) copper salt particles and magnesium salt particles.
Mixed particles were prepared. 4 g of the mixed particles were vacuum dried at 70 ° C. for 10 hours and then mixed with 5 ml of silicone oil to prepare an electrorheological fluid of this example (Sample No. 3).
When an electric field of 5 kV / mm was applied to this at room temperature,
As shown in Table 1, the yield stress of 6 kPa was shown. Also, this property lasted for a long time.

【0030】比較例として、ポリ(2−(3−チエニ
ル)エタンスルホン酸)のマグネシウム塩の粒子4gを
70℃10時間真空乾燥後、シリコーンオイル5mlに
混合し、本比較例の電気粘性流体を調製した(サンプル
No.R3)。これに室温下、5kV/mmの電場を印
加したところ、表1のように0.02kPaの降伏応力
を示した。
As a comparative example, 4 g of particles of a magnesium salt of poly (2- (3-thienyl) ethanesulfonic acid) was vacuum dried at 70 ° C. for 10 hours and then mixed with 5 ml of silicone oil to prepare an electrorheological fluid of this comparative example. Prepared (Sample No. R3). When an electric field of 5 kV / mm was applied to this at room temperature, a yield stress of 0.02 kPa was shown as shown in Table 1.

【0031】さらに、比較例としてNo.R1およびN
o.R2に室温下、5kV/mmの電場を印加したとこ
ろ、表1のようにそれぞれ2.5kPa、1.0kPa
の降伏応力を示した。表1からわかるように本実施例は
比較例の2倍〜6倍程度の降伏応力を有する優れた電気
粘性流体である。
Further, as a comparative example, No. R1 and N
o. When an electric field of 5 kV / mm was applied to R2 at room temperature, it was 2.5 kPa and 1.0 kPa, respectively, as shown in Table 1.
The yield stress of is shown. As can be seen from Table 1, this example is an excellent electrorheological fluid having a yield stress about 2 to 6 times that of the comparative example.

【0032】(実施例4)ポリ(2−(3−チエニル)
エタンスルホン酸)の銅塩とマグネシウム塩を3:1に
混合した粒子4gを70℃10時間真空乾燥後、シリコ
ーンオイル5mlに分散して本実施例の電気粘性流体を
調製した(サンプルNo.4)。これを室温下、5kV
/mmの電場を印加したところ、表1のように降伏応力
4.7kPaを示した。また、この特性は長時間持続し
た。
Example 4 Poly (2- (3-thienyl))
4 g of particles obtained by mixing a copper salt of (ethanesulfonic acid) and a magnesium salt in a ratio of 3: 1 were vacuum dried at 70 ° C. for 10 hours and then dispersed in 5 ml of silicone oil to prepare an electrorheological fluid of this example (Sample No. 4). ). This at room temperature, 5kV
When an electric field of / mm was applied, the yield stress was 4.7 kPa as shown in Table 1. Also, this property lasted for a long time.

【0033】表1からわかるように本実施例の電気粘性
流体もR1、R2、R3に比べて数倍すぐれた降伏応力
を有している。さらに、実施例3との比較により活性化
力の違う粒子との混合比を変えることにより本実施例の
電気粘性流体の特性を調整することができる。
As can be seen from Table 1, the electrorheological fluid of this embodiment also has a yield stress several times better than that of R1, R2 and R3. Furthermore, the characteristics of the electrorheological fluid of the present embodiment can be adjusted by changing the mixing ratio with particles having different activation forces in comparison with the third embodiment.

【0034】(実施例5)N−(4−スルホニルブチ
ル)ピロールのカリウム塩水溶液に窒素気流下で酸化剤
としてヨウ素を加え重合した後、メタノールで繰り返し
洗浄し、真空乾燥した。これを水酸化ナトリウムの0.
1Mメタノール溶液に24時間浸せきし、メタノールで
繰り返し洗浄し、50℃で真空乾燥することによってポ
リ(N−(4−スルホニルブチル)ピロール)カリウム
塩を得た。これを塩化第二銅の水溶液(10g/40m
l)に72時間浸せきした後、水、エタノールで繰り返
し洗浄し、50℃で真空乾燥後、粉砕することによって
ポリ(N−(4−スルホニルブチル)ピロール)銅塩粒
子(化3)を得た。この粒子2gを2.5mlのシリコ
ーン油に懸濁させた溶液(サンプルNo.5)に室温
下、2kV/mm、5kV/mmの電場を印加した所、
それぞれ降伏応力0.7kPa,3.5kPaを示した
(表1)。
Example 5 I-iodine was added as an oxidizing agent to a potassium salt aqueous solution of N- (4-sulfonylbutyl) pyrrole under a nitrogen stream to polymerize it, and the polymer was repeatedly washed with methanol and vacuum dried. This was added with sodium hydroxide at 0.
It was immersed in a 1M methanol solution for 24 hours, washed repeatedly with methanol, and dried in vacuum at 50 ° C. to obtain a poly (N- (4-sulfonylbutyl) pyrrole) potassium salt. An aqueous solution of cupric chloride (10 g / 40 m
After being soaked in 1) for 72 hours, it was repeatedly washed with water and ethanol, vacuum dried at 50 ° C., and then pulverized to obtain poly (N- (4-sulfonylbutyl) pyrrole) copper salt particles (Chemical Formula 3). .. When 2 gV of this particle was suspended in 2.5 ml of silicone oil (Sample No. 5) and an electric field of 2 kV / mm and 5 kV / mm was applied at room temperature,
The yield stress was 0.7 kPa and 3.5 kPa, respectively (Table 1).

【0035】[0035]

【化3】 [Chemical 3]

【0036】(実施例6)上記の実施例5と同じ操作で
得たポリ(N−(4−スルホニルブチル)ピロール)銅
塩粒子(比重1.73)2.0gをシリコーン油(信越
化学製シリコーン油KF96−CST)とフッ素系絶縁
油(ダイキン工業製ダイフロイル#3)の混合油(混合
体積比14:86)2.5mlに分散させた流体に、そ
れぞれ室温下で2kV/mm,4kV/mmの電場を印
加したところ、それぞれ降伏応力0.8kPa,2.0
kPaを示した。
Example 6 2.0 g of poly (N- (4-sulfonylbutyl) pyrrole) copper salt particles (specific gravity 1.73) obtained by the same operation as in Example 5 above was converted into silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.). Silicone oil KF96-CST) and fluorine-based insulating oil (Daikin Kogyo's Daifloyl # 3) mixed oil (mixed volume ratio 14:86) were dispersed in 2.5 ml of fluid, respectively, at room temperature to 2 kV / mm and 4 kV / When an electric field of mm was applied, the yield stress was 0.8 kPa and 2.0, respectively.
It showed kPa.

【0037】即ち、本実施例は、分散粒子より低比重の
シリコーン油と分散粒子より高比重のフッ素系絶縁油と
の混合媒中でも、本発明の電気粘性流体が有効にER効
果を発現することを示している。従って、電気粘性流体
の分散状態を長期にわたり安定させるために、分散媒の
比重を分散粒子の比重と一致させるべく適宜に調整する
ことができる。
That is, in this example, the electrorheological fluid of the present invention effectively exhibits the ER effect even in a mixed medium of a silicone oil having a lower specific gravity than the dispersed particles and a fluorine-based insulating oil having a higher specific gravity than the dispersed particles. Is shown. Therefore, in order to stabilize the dispersed state of the electrorheological fluid for a long period of time, the specific gravity of the dispersion medium can be appropriately adjusted to match the specific gravity of the dispersed particles.

【0038】[0038]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10N 40:14 (72)発明者 岡田 茜 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 倉内 紀雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C10N 40:14 (72) Inventor Akane Okada Ai-gun Nagakute-cho, Aichi-gun 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Norio Kurauchi 41 Chuoji, Nagakute-cho, Aichi-gun, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体粒子を電気絶縁油に分散させてなる
電気粘性流体において、該固体粒子が不飽和結合を有す
る高分子部分と、該不飽和結合を活性化する力を有する
イオン部分と、該イオン部分を保持するための対イオン
部分とを有することを特徴とする電気粘性流体。
1. An electrorheological fluid obtained by dispersing solid particles in an electrically insulating oil, wherein the solid particles have a polymer portion having an unsaturated bond, and an ionic portion having a force for activating the unsaturated bond. An electrorheological fluid having a counterion portion for holding the ion portion.
JP29226492A 1991-10-04 1992-10-05 Electroviscous fluid Pending JPH05209185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29226492A JPH05209185A (en) 1991-10-04 1992-10-05 Electroviscous fluid

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP28566591 1991-10-04
JP3-285665 1991-12-02
JP3-347983 1991-12-02
JP34798391 1991-12-02
JP29226492A JPH05209185A (en) 1991-10-04 1992-10-05 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH05209185A true JPH05209185A (en) 1993-08-20

Family

ID=27337186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29226492A Pending JPH05209185A (en) 1991-10-04 1992-10-05 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH05209185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device
JPWO2017094894A1 (en) * 2015-12-04 2018-07-12 旭化成株式会社 Electrorheological fluids and electrical devices
CN108473906A (en) * 2015-12-04 2018-08-31 旭化成株式会社 ER fluid and electric equipment
JP2019070163A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device
JP2019070447A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device
JP2021042858A (en) * 2015-12-04 2021-03-18 旭化成株式会社 Force presentation system
US10961482B2 (en) 2015-12-04 2021-03-30 Asahi Kasei Kabushiki Kaisha Electrorheological fluid and electric device

Similar Documents

Publication Publication Date Title
KR100751203B1 (en) Electrolyte comprising eutectic mixture
TWI711647B (en) Composition for colloidal electrolyte
EP1095090B1 (en) Polymer gel electrode
JP2007119386A (en) Method for purifying indole derivative trimer, electrode active substance containing formed trimer, method for producing electrode active substance and electrochemical cell using the same
JP2014041824A (en) Highly electron conductive polymer and electric energy storage device with high capacity and high power using the same
JP2009104819A (en) Electricity storage material and secondary battery using it
CN113948318B (en) High-pressure water system electrolyte and preparation method and application thereof
JP2009102461A (en) Conductive water-containing gel
US20210118626A1 (en) Redox-mediated poly(vinylphosphonic acid) useful in capacitors
JPH05209185A (en) Electroviscous fluid
Yang et al. Highly Effective Hydrophilic Modified Carbon Microspheres for Electrochemical Double-layer Capacitors
KR20070013840A (en) Composition of nanoparticle based on organic-inorganic hybrid and nanocomposite polymer electrolyte for lithium polymer rechargeable batteries
CN1965018B (en) composition comprising colloidal conductive polymer and carbon
US8120893B2 (en) Tether-containing conducting polymers
JP2761774B2 (en) Electrorheological fluid
CN106883409B (en) Poly 2-mercapto-1, 3, 4-thiadiazole nanoparticle and synthesis method and application thereof
JPH0391541A (en) Variable modulus material
JP2684096B2 (en) Electrorheological fluid
JP2020038948A (en) Method for manufacturing hybrid material, hybrid material, method for manufacturing electrode, electrode, and electrochemical device
CN110814332B (en) Silver nanowire post-treatment method
TWI464255B (en) Friction variable molded body and friction variable structure
JPH0465424A (en) Functional particle and production thereof
Mortensen et al. Electrochemical generation of highly reduced oligoanthrylene systems ε-a voltammetric study
JPH06220481A (en) Electroviscous fluid
JPH05239482A (en) Electroviscous fluid