JPH0520911B2 - - Google Patents

Info

Publication number
JPH0520911B2
JPH0520911B2 JP59112996A JP11299684A JPH0520911B2 JP H0520911 B2 JPH0520911 B2 JP H0520911B2 JP 59112996 A JP59112996 A JP 59112996A JP 11299684 A JP11299684 A JP 11299684A JP H0520911 B2 JPH0520911 B2 JP H0520911B2
Authority
JP
Japan
Prior art keywords
basic cell
basic
cell
integrated circuit
diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59112996A
Other languages
Japanese (ja)
Other versions
JPS60257542A (en
Inventor
Shigeo Kuboki
Ikuo Masuda
Tetsuo Mejiro
Toshiaki Masuda
Terumine Hayashi
Kazumi Hatakeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP11299684A priority Critical patent/JPS60257542A/en
Publication of JPS60257542A publication Critical patent/JPS60257542A/en
Publication of JPH0520911B2 publication Critical patent/JPH0520911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、半導体集積回路装置に係り、特に面
積効率のよいマスタスライスLSI(large scale
integrated circuit)に好適な半導体集積回路装
置に関する。 〔発明の背景〕 マスタスライスLSIとは、LISを製造する時に
用いる10数枚のマスクのうちで配線に相当するマ
スクのみを開発品種に応じて作成して所望の電気
回路動作を有するLSIを製造するのである。 従来のマスカスライスLSIの構成を第4図に示
す。半導体チツプ1は、その外周にボンデングパ
ツドおよび入出力回路領域2を持ち、内部にはト
ランジスタ等の機能素子から成る基本セル3をx
軸方向に多数個配列した基本セル列4を配線領域
5を挾んでy軸方向に繰返し配置した構成を採つ
ている。所望の電気回路動作を得るために、隣接
した基本セル3を1個あるいは数個結線して
NANDゲートやフリツプフロツプなどの論理ブ
ロツクを形成する。そして複数個の基本セル3で
形成した各種論理ブロツクを配置後、前記論理ブ
ロツク間を論理図に従つて結線することによつ
て、所望のLSIを製造する。なお、DAシステム
(Design automation system)により、前記配
置、配線は計算機により自動化されている。 ところで、論理回路を含む集積回路装置におい
ては種々の素子が所望の機能及び性能が得られる
か否か、テストパターンの入力信号を外部から加
えて判定しており、これを一般に診断と呼んでい
る。ここで入力テストパターンは内部の素子を漏
れなく診断できるものが必要であり、総素子数の
中で診断可能な素子の比率を診断率と定義する。
したがつて、この入力テストパターンを作る場合
実用上十分な診断率を、できるだけ少ないステツ
プ数で達成することが必要であるが、通常の論理
集積回路装置では数千ステツプを要するのが普通
である。さらに、最近の高集積化の動きに伴い、
100%近い診断率を得るのは数万ステツプにも及
び、困難になつている。 従来は、その入力テストパターンを入手で作成
していたため膨大な作業量になつていた。特に、
マスタスライスLSIのように設計作業の大半が自
動化され、設計期間が1ケ月前後に短縮されてい
ものでは、必然的に診断用の入力テストパターン
を作成する期間の比重が増大し、開発期間を短縮
する上での最大の障害になつている。 以上の問題点を解消するため、通信診断用の回
路を論理設計時に加えるのが行なわれている。特
公昭57−3107号公報に示されるように、内部回路
のうちのフリツフフロツプを直列に接続してシフ
トレジスタを構成させ、該シフトレジスタを通し
て集積回路に入力信号を与えて動作させ、その結
果を該シフトレジスタにより外部へ取出すように
したもの(スキヤンインスキヤンアウト方式)や
特開昭57−133644号公報に示されるように、半導
体基板の周辺に試験専用のシフトレジスタを設
け、該レジスタの各ビツトへ半導体基板に搭載さ
れたマスタスライスLSIの所望各部を配線により
接続し、該各部の出力状態を該レジスタへ並列入
力し、それをシフトクロツクにより直列出力する
ようにしたもの等が知られている。 前者の例では、シフトレジスタのクロツク信号
線をチツプ内のほとんどすべてのレジスタに共通
に接続する必要がある。また、後者の例では内部
ノードから周辺配置のレジスタに診断用配線を形
成する必要がある。これらの配線を以後、診断用
配線と称することにする。 したがつて、マスタスライスLSIにおいて前記
診断回路を形成する場合は、一般の論理接続用配
線と診断用配線が必要であり、配線領域5が不足
する。そのため、診断用配線を見込んだ配線領域
を確保しなければならず、チツプサイズの増加を
招いた。さらに、DAシステムにより自動配線さ
れるので、配線長が長くなつたり、製品LSI毎に
配線長が変わるので診断用信号のスピードの低
下、変動を招き、診断時間を増加させると同時に
診断を困難にする問題点があつた。 〔発明の目的〕 本発明の目的は、配線領域、チツプサイズの低
減が可能であり、かつ、診断信号のスピードを向
上させるとともに、その変動を低減するがことで
きる半導体集積回路装置を提供することにある。 〔発明の概要〕 上記目的を達成する本発明の特徴とするところ
は、一方の主表面に機能素子からなる基本セルを
一方向に多数個配設して基本セル列とし、該基本
セル列を該基本セル列と直角方向に複数個並設し
てなる半導体チツプと、該基本セル列を構成する
総ての基本セルに跨り、かつ、上記基本セル列と
略並行に設けられる第1及び第2の電源線とを具
備する半導体集積回路装置に於いて、上記基本セ
ル列を構成する総ての基本セルに跨り、かつ上記
第1及び第2の電源線と略並行に、上記機能素子
を診断する診断用制御信号配線を設け、上記基本
セル列のうちの少なくとも一つの基本セルは、上
記診断用制御信号配線と入力バツフア回路とを接
続するドライバセルを構成することにある。 本発明の好ましい実施態様では、上記ドライバ
セルは、複数段から構成され、前段のドライバセ
ルは、異なる基本セル列の複数のドライバセルに
接続される。 さらに、本発明の好ましい実施態様では、上記
ドライバセルは、上記基本セル列の一端に設けら
れる。 さらに、本発明の好ましい実施態様では、上記
基本セル列のうちの少なくとも一つの基本セル
は、上記配線と出力バツフア回路とを接続する3
ステートバツフアセルを構成する。 さらに、本発明の好ましい実施態様では、上記
3ステートバツフアセルは、上記基本セル列の他
端に設けられる。 〔発明の実施例〕 本発明の基礎となる診断について説明する。 本発明は、前述の診断回路方式にも適用できる
が、最も好適な例として本発明者等が先に特願昭
58−211355号として提案した診断用ラツチ付フリ
ツプフロツプを使用した診断方式について述べ
る。 第5図は診断用ラツチ付Dタイプフリツプフロ
ツプ10(以下フリツプフロツプをFFと称す)
の構成を示したものである。この場合はDタイプ
FFの例であるが、エツジトリガFFやJKタイプ
FFなども同様な構成で実現できる。診断用ラツ
チ付DタイプFF10は、主FF部11と診断用ラ
ツチ部12から成る。通常の論理動作用信号すな
わち、主FF部11のラツチタイミング信号CK、
入力データ信号D,Q出力データ信号Q1は、そ
れぞれ信号線13,14,15に転送される。ま
た、診断用ラツチ12のQ出力データ信号Q2,
Q出力データ信号2は、それぞれ信号線16,
17に転送される。他の信号線18,19,2
0,21,22は診断データのライト(スキヤ
ン・イン)、リード(スキヤン・アウト)のため
の診断用制御信号線である。主FF部11は、基
本的には通常のFF機能に診断用バス線22から、
独立に診断データのライト動作ができる機能をプ
ラスしたものである。ライト動作は診断モード信
号MC1を“0”レベルにして、通常の論理動作
用信号の入力を禁止すると同時に、ライト信号
SWの“1”レベルのタイミングに同期して行な
われる。診断用ラツチ部12は診断専用のラツチ
回路であり、主FF部11のQ出力データ信号Q
1をラツチタイミング信号C2の“1”レベルの
タイミングで取込み、またその取込みデータを信
号線21上のリード信号SRに同期して診断用バ
ス線22に送出する機能を持つ。 第6図は第5図を具体化したCMOS回路であ
り、第6図と同等物、同一物には同一符号を付け
てある。本回路はCMOSスイツチ100〜10
3、インバータ105〜108、110,11
1、2入力NANDゲート109、クロツクドゲ
ートインバータ104、それにNMOSスイツチ
M20,M21から成る。クロツクドゲートイン
バータ104は第7図にその回路を示すように、
PMOSトランジスタM22,M23、NMOSト
ランジスタM24,M25から成る。M22とM
25のゲート電極は共通に接続され、信号線11
2に接続される。なお、前出のものと同一物また
は相当物は同じ符号で示す。ライト信号SW=
“1”(=“0”)のときは、PMOSトランジス
タM23、NMOSトランジスタM24がともに
オフとなるので、出力113はハイインピーダン
スの状態となる。次に、ライト信号SW=“0”
(SW=“1”)のときはPMOSトランジスタM2、
NMOSトランジスタM24がともにオンになる
ので出力線113の出力は信号線112上の信号
レベルのインバータ信号となる。 次に動作について説明する。診断モード信号
MC1が“1”レベルのとき、2入力NANDゲー
ト109の信号線18が“1”レベルであるの
で、信号φ11はそれぞれ、ラツチタイミング
信号CKと同じ論理値、CKの反転の論理値をと
る。論理式ではφ1=CK、1=で表わされる。
以後、これと同じ表記法を使うことにする。この
状態で、ライト信号SW=“0”、リード信号SR=
“0”、ラツチタイミング信号C2=“1”にしてお
くことにより、診断用ラツチ付FF10は通常の
論理動作を行なう。信号線15上の主FF部11
のQ出力信号Q1は、CMOSスイツチ102
(C2=“1”であるのでφ2=1、2=0であり、
DC的にオンの状態になつている)、インバータ1
07,108を経由して信号線16,17から出
力される。 一方、診断モード信号MC1が“0”レベルに
なるとリード、ライト動作を行なうことができ
る。MC1=“0”レベルなので2入力NANDゲー
ト109の出力1は“1”に、インバータ11
0の出力φ1は“0”に固定され、CMOSスイツ
チ100は、CMOSスイツチ101はオンにな
る。これは、通常の論理入力信号を遮断したこと
になる。 まず、ライト動作について説明する。ライト信
号SWを一定時間“1”レベルにし、これに同期
して診断用バス線22に診断データを転送する。
このとき、クロツクドゲートインバーダ104の
出力はハイインピーダンス状態に、NMOSスイ
ツチM20はオンになるので、診断データはイン
バータ106、CMOSスイツチ101を介して
書込まれる。 次に、リード動作は下記の手順で行なわれる。
まず、ラツチタイミング信号C2を一定時間“1”
レベルにして、診断用ラツチ部12に前段の主
FF部11のQ出力データ信号Q1を転送し、そ
の後でリード信号SRを一定時間“1”レベルに
してNMOSスイツチM21をオンにする。信号
線17上の出力データ信号2はNMOSスイ
ツチM21を介して、診断バス線22に送出され
る。以上の動作モードにおける真理値表を表1に
示す。
[Field of Application of the Invention] The present invention relates to semiconductor integrated circuit devices, and particularly to area-efficient master slice LSIs (large scale LSIs).
The present invention relates to a semiconductor integrated circuit device suitable for an integrated circuit. [Background of the Invention] Master slice LSI is a method of manufacturing LSIs that have the desired electrical circuit behavior by creating only the mask corresponding to the wiring out of the 10-odd masks used when manufacturing LIS according to the product being developed. That's what I do. FIG. 4 shows the configuration of a conventional masker slice LSI. A semiconductor chip 1 has a bonding pad and an input/output circuit area 2 on its outer periphery, and has basic cells 3 consisting of functional elements such as transistors inside.
A configuration is adopted in which a large number of basic cell rows 4 arranged in the axial direction are repeatedly arranged in the y-axis direction with a wiring region 5 in between. In order to obtain the desired electrical circuit operation, one or several adjacent basic cells 3 may be connected together.
Forms logic blocks such as NAND gates and flip-flops. After arranging various logic blocks formed by a plurality of basic cells 3, a desired LSI is manufactured by connecting the logic blocks according to the logic diagram. Note that the placement and wiring are automated by a computer using a DA system (Design automation system). By the way, in integrated circuit devices including logic circuits, it is determined whether various elements can obtain the desired functions and performance by applying test pattern input signals from the outside, and this is generally called diagnosis. . Here, the input test pattern must be one that can diagnose all internal elements, and the ratio of diagnosable elements to the total number of elements is defined as the diagnostic rate.
Therefore, when creating this input test pattern, it is necessary to achieve a practically sufficient diagnostic rate with as few steps as possible, but normal logic integrated circuit devices usually require several thousand steps. . Furthermore, with the recent trend toward higher integration,
Achieving a diagnosis rate of nearly 100% involves tens of thousands of steps, making it difficult. Previously, input test patterns had to be obtained and created, resulting in a huge amount of work. especially,
In products like Master Slice LSI, where most of the design work is automated and the design period is shortened to around one month, the period for creating input test patterns for diagnosis inevitably increases, shortening the development period. This has become the biggest obstacle to doing so. In order to solve the above problems, a circuit for communication diagnosis is added at the time of logic design. As shown in Japanese Patent Publication No. 57-3107, flip-flops in the internal circuit are connected in series to form a shift register, an input signal is given to the integrated circuit through the shift register to operate it, and the result is transferred to the integrated circuit. As shown in JP-A No. 57-133644, a shift register for testing is provided around the semiconductor substrate, and each bit of the register is It is known that desired parts of a master slice LSI mounted on a semiconductor substrate are connected by wiring, and the output states of the parts are input in parallel to the register, and then output in series using a shift clock. In the former example, the shift register's clock signal line must be commonly connected to almost all registers in the chip. Furthermore, in the latter example, it is necessary to form diagnostic wiring from internal nodes to peripherally arranged registers. These wirings will hereinafter be referred to as diagnostic wirings. Therefore, when forming the diagnostic circuit in the master slice LSI, general logic connection wiring and diagnostic wiring are required, and the wiring area 5 becomes insufficient. Therefore, it was necessary to secure a wiring area for diagnostic wiring, which resulted in an increase in chip size. Furthermore, since the wiring is automatically done by the DA system, the wiring length becomes long, and the wiring length changes for each product LSI, resulting in a reduction in the speed and fluctuation of the diagnostic signal, increasing the diagnostic time and making the diagnosis difficult. I came across a problem. [Object of the Invention] An object of the present invention is to provide a semiconductor integrated circuit device that can reduce the wiring area and chip size, improve the speed of diagnostic signals, and reduce their fluctuations. be. [Summary of the Invention] The present invention that achieves the above object is characterized by arranging a large number of basic cells made of functional elements on one main surface in one direction to form a basic cell row, and forming the basic cell row. A plurality of semiconductor chips arranged in parallel in a direction perpendicular to the basic cell row, and first and second semiconductor chips arranged across all the basic cells constituting the basic cell row and substantially parallel to the basic cell row. In a semiconductor integrated circuit device having two power supply lines, the functional element is connected across all the basic cells constituting the basic cell array and substantially parallel to the first and second power supply lines. Diagnostic control signal wiring for diagnosis is provided, and at least one basic cell of the basic cell array constitutes a driver cell that connects the diagnostic control signal wiring and the input buffer circuit. In a preferred embodiment of the present invention, the driver cells are composed of multiple stages, and the driver cells in the previous stage are connected to multiple driver cells in different basic cell rows. Furthermore, in a preferred embodiment of the present invention, the driver cell is provided at one end of the basic cell column. Furthermore, in a preferred embodiment of the present invention, at least one basic cell of the basic cell array has three basic cells connecting the wiring and the output buffer circuit.
Configure the state buffer cell. Furthermore, in a preferred embodiment of the present invention, the three-state buffer cell is provided at the other end of the basic cell column. [Embodiments of the Invention] Diagnosis, which is the basis of the present invention, will be explained. Although the present invention can be applied to the above-mentioned diagnostic circuit system, the most suitable example is the
A diagnostic method using a flip-flop with a diagnostic latch proposed as No. 58-211355 will be described. Figure 5 shows a D-type flip-flop with a diagnostic latch 10 (hereinafter the flip-flop will be referred to as FF).
This shows the configuration of In this case, type D
This is an example of FF, but Edge Trigger FF and JK type
FF etc. can also be realized with a similar configuration. The D-type FF 10 with a diagnostic latch consists of a main FF section 11 and a diagnostic latch section 12. Normal logic operation signals, that is, the latch timing signal CK of the main FF section 11,
Input data signal D and Q output data signal Q1 are transferred to signal lines 13, 14, and 15, respectively. Furthermore, the Q output data signal Q2 of the diagnostic latch 12,
The Q output data signal 2 is connected to signal lines 16 and 16, respectively.
Transferred to 17. Other signal lines 18, 19, 2
Reference numerals 0, 21, and 22 are diagnostic control signal lines for writing (scan-in) and reading (scan-out) diagnostic data. The main FF section 11 basically has a normal FF function from the diagnostic bus line 22.
It has the added function of independently writing diagnostic data. For write operation, the diagnostic mode signal MC 1 is set to “0” level, inhibiting the input of normal logic operation signals, and at the same time
This is done in synchronization with the timing of SW's "1" level. The diagnostic latch section 12 is a latch circuit dedicated to diagnosis, and the Q output data signal Q of the main FF section 11
1 at the "1" level timing of the latch timing signal C2 , and sends the captured data to the diagnostic bus line 22 in synchronization with the read signal SR on the signal line 21. FIG. 6 is a CMOS circuit that embodies FIG. 5, and the same components as those in FIG. 6 are given the same reference numerals. This circuit is a CMOS switch 100 to 10
3. Inverters 105-108, 110, 11
It consists of a 1- and 2-input NAND gate 109, a clocked gate inverter 104, and NMOS switches M20 and M21. The circuit of the clocked gate inverter 104 is shown in FIG.
It consists of PMOS transistors M22, M23 and NMOS transistors M24, M25. M22 and M
25 gate electrodes are commonly connected, and the signal line 11
Connected to 2. Note that items that are the same as or equivalent to those described above are indicated by the same reference numerals. Write signal SW=
When it is "1"(="0"), both the PMOS transistor M23 and the NMOS transistor M24 are turned off, so the output 113 is in a high impedance state. Next, write signal SW="0"
(SW="1"), PMOS transistor M2,
Since both NMOS transistors M24 are turned on, the output of the output line 113 becomes an inverter signal at the signal level on the signal line 112. Next, the operation will be explained. Diagnostic mode signal
When MC 1 is at the "1" level, the signal line 18 of the 2-input NAND gate 109 is at the "1" level, so the signals φ 1 and 1 have the same logic value as the latch timing signal CK and the inverted logic of CK, respectively. Takes a value. In the logical formula, φ 1 =CK, 1 =.
From now on, we will use this same notation. In this state, write signal SW = “0”, read signal SR =
By setting the latch timing signal C 2 to "0" and the latch timing signal C 2 to "1", the FF 10 with a diagnostic latch performs a normal logical operation. Main FF section 11 on signal line 15
Q output signal Q1 of CMOS switch 102
(Since C 2 = “1”, φ 2 = 1, 2 = 0,
(DC on state), inverter 1
The signals are output from signal lines 16 and 17 via lines 07 and 108. On the other hand, when the diagnostic mode signal MC1 becomes "0" level, read and write operations can be performed. Since MC 1 = “0” level, the output 1 of the 2-input NAND gate 109 becomes “1”, and the inverter 11
The output φ 1 of 0 is fixed at "0", and the CMOS switch 100 and the CMOS switch 101 are turned on. This means that the normal logic input signal is cut off. First, the write operation will be explained. The write signal SW is set at "1" level for a certain period of time, and diagnostic data is transferred to the diagnostic bus line 22 in synchronization with this.
At this time, the output of the clocked gate inverter 104 is in a high impedance state and the NMOS switch M20 is turned on, so that diagnostic data is written via the inverter 106 and the CMOS switch 101. Next, a read operation is performed according to the following procedure.
First, the latch timing signal C2 is set to “1” for a certain period of time.
level, and place the front main unit on the diagnostic latch part 12.
The Q output data signal Q1 of the FF section 11 is transferred, and then the read signal SR is kept at the "1" level for a certain period of time and the NMOS switch M21 is turned on. Output data signal 2 on signal line 17 is sent to diagnostic bus line 22 via NMOS switch M21. Table 1 shows the truth table for the above operation modes.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば、配線領域、
チツプサイズの低減が可能であり、かつ、診断信
号のスピードを向上させるとともに、その変動を
低減することができる半導体集積回路装置を得る
ことができる。
As described above, according to the present invention, the wiring area,
It is possible to obtain a semiconductor integrated circuit device in which the chip size can be reduced, the speed of diagnostic signals can be improved, and variations thereof can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による基本セルを示
す平面図、第2図は本発明の一実施例による論理
セルの結線図、第3図は本発明の実施例の全体構
成を示す回路ブロツク図、第4図は従来例を示す
チツプ平面図、第5図は診断用ラツチ付FFのブ
ロツク図、第6図は前記FFの回路図、第7図は
第6図を補足する回路図、第8図は分割診断方式
を示す回路構成図、第9図は第8図を補足する回
路図である。 3……基本セル、4……基本セル列、26……
電源電位線、27……接地電位線、304,30
5……診断用制御信号線。
FIG. 1 is a plan view showing a basic cell according to an embodiment of the invention, FIG. 2 is a wiring diagram of a logic cell according to an embodiment of the invention, and FIG. 3 is a circuit showing the overall configuration of an embodiment of the invention. 4 is a chip plan view showing a conventional example, FIG. 5 is a block diagram of an FF with a diagnostic latch, FIG. 6 is a circuit diagram of the FF, and FIG. 7 is a circuit diagram supplementing FIG. 6. , FIG. 8 is a circuit configuration diagram showing the divided diagnosis method, and FIG. 9 is a circuit diagram supplementing FIG. 8. 3...Basic cell, 4...Basic cell column, 26...
Power supply potential line, 27... Ground potential line, 304, 30
5...Diagnostic control signal line.

Claims (1)

【特許請求の範囲】 1 一方の主表面に機能素子からなる基本セルを
一方向に多数個配設して基本セル列とし、該基本
セル列を該基本セル列と直角方向に複数個並設し
てなる半導体チツプと、該基本セル列を構成する
総ての基本セルに跨り、かつ、上記基本セル列と
略並行に設けられる第1及び第2の電源線とを具
備する半導体集積回路装置に於いて、上記基本セ
ル列を構成する総ての基本セルに跨り、かつ上記
第1及び第2の電源線と略並行に、上記機能素子
を診断する診断用制御信号配線を設け、上記基本
セル列のうちの少なくとも一つの基本セルは、上
記診断用制御信号配線と入力バツフア回路とを接
続するドライバセルを構成することを特徴とする
半導体集積回路装置。 2 特許請求の範囲第1項に於いて、上記ドライ
バセルは、複数段から構成され、前段のドライバ
セルは、異なる基本セル列の複数のドライバセル
に接続されることを特徴とする半導体集積回路装
置。 3 特許請求の範囲第1項に於いて、上記ドライ
バセルは、上記基本セル列の一端に設けられるこ
とを特徴とする半導体集積回路装置。 4 特許請求の範囲第1項に於いて、上記基本セ
ル列のうちの少なくとも一つの基本セルは、上記
診断用制御信号配線と出力バツフア回路とを接続
する3ステートバツフアセルを構成することを特
徴とする半導体集積回路装置。 5 特許請求の範囲第4項に於いて、上記3ステ
ートバツフアセルは、上記基本セル列の他端に設
けられることを特徴とする半導体集積回路装置。
[Scope of Claims] 1. A large number of basic cells made of functional elements are arranged in one direction on one main surface to form a basic cell row, and a plurality of the basic cell rows are arranged in parallel in a direction perpendicular to the basic cell row. A semiconductor integrated circuit device comprising: a semiconductor chip formed by a semiconductor chip; and first and second power supply lines extending across all the basic cells constituting the basic cell string and provided substantially parallel to the basic cell string. A diagnostic control signal wiring for diagnosing the functional element is provided across all the basic cells constituting the basic cell array and approximately parallel to the first and second power supply lines, and A semiconductor integrated circuit device, wherein at least one basic cell in the cell array constitutes a driver cell that connects the diagnostic control signal wiring and the input buffer circuit. 2. The semiconductor integrated circuit according to claim 1, wherein the driver cells are comprised of multiple stages, and the driver cells in the previous stage are connected to multiple driver cells in different basic cell rows. Device. 3. The semiconductor integrated circuit device according to claim 1, wherein the driver cell is provided at one end of the basic cell row. 4. Claim 1 provides that at least one basic cell in the basic cell array constitutes a 3-state buffer cell that connects the diagnostic control signal wiring and the output buffer circuit. Features of semiconductor integrated circuit devices. 5. The semiconductor integrated circuit device according to claim 4, wherein the three-state buffer cell is provided at the other end of the basic cell row.
JP11299684A 1984-06-04 1984-06-04 Semiconductor integrated circuit device Granted JPS60257542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11299684A JPS60257542A (en) 1984-06-04 1984-06-04 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11299684A JPS60257542A (en) 1984-06-04 1984-06-04 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS60257542A JPS60257542A (en) 1985-12-19
JPH0520911B2 true JPH0520911B2 (en) 1993-03-22

Family

ID=14600811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11299684A Granted JPS60257542A (en) 1984-06-04 1984-06-04 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60257542A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956421B2 (en) * 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207666A (en) * 1982-03-26 1983-12-03 トムソン−セエスエフ・テレフオンヌ Already diffused integrated circuit and method of connecting same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207666A (en) * 1982-03-26 1983-12-03 トムソン−セエスエフ・テレフオンヌ Already diffused integrated circuit and method of connecting same

Also Published As

Publication number Publication date
JPS60257542A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
KR900004888B1 (en) Integrated circuit system
US4631686A (en) Semiconductor integrated circuit device
US6255845B1 (en) Efficient use of spare gates for post-silicon debug and enhancements
JPH0527981B2 (en)
US6462583B2 (en) Gate array architecture
JPS6329276A (en) Logic lsi
JPH0677403A (en) Semiconductor integrated circuit device and designing method therefor
JPH0520911B2 (en)
JP2002340986A (en) Semiconductor integrated circuit and failure detecting method of semiconductor integrated circuit
EP1204990B1 (en) An integrated circuit with metal programmable logic having enhanced reliability
JPH0897364A (en) Semiconductor integrated circuit
JPH0652640B2 (en) Semiconductor integrated circuit with built-in memory
JP2690083B2 (en) Semiconductor integrated circuit device
JPH06188397A (en) Semiconductor integrated circuit
JP3278833B2 (en) Logic circuit test method, test input circuit and test output circuit
JPH0626234B2 (en) Semiconductor integrated circuit device
JPH0722509A (en) Semiconductor integrated circuit
EP0422930A2 (en) Semiconductor integrated circuit devices
JPH058576B2 (en)
JPS62239545A (en) Scan path circuit built-in gate array master
JPS63152145A (en) Semiconductor integrated circuit device
JP2957072B2 (en) Semiconductor device
JPH0395957A (en) Semiconductor logic integrated circuit
JPH10223764A (en) Semiconductor integrated circuit device
JPH05283659A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term