JPH05208892A - Production of silicon single crystal rod - Google Patents

Production of silicon single crystal rod

Info

Publication number
JPH05208892A
JPH05208892A JP3847492A JP3847492A JPH05208892A JP H05208892 A JPH05208892 A JP H05208892A JP 3847492 A JP3847492 A JP 3847492A JP 3847492 A JP3847492 A JP 3847492A JP H05208892 A JPH05208892 A JP H05208892A
Authority
JP
Japan
Prior art keywords
single crystal
rotation speed
growth
silicon rod
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3847492A
Other languages
Japanese (ja)
Other versions
JP2795030B2 (en
Inventor
Akihiko Tamura
明彦 田村
Atsushi Iwasaki
淳 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP4038474A priority Critical patent/JP2795030B2/en
Publication of JPH05208892A publication Critical patent/JPH05208892A/en
Application granted granted Critical
Publication of JP2795030B2 publication Critical patent/JP2795030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an impurity-doped silicon single crystal having uniform resistivity distribution in the crosssection. CONSTITUTION:The objective single crystal rod is produced by periodically varying the rotational speed of a crucible in the pulling up of a silicon single crystal doped with impurity element by Czochralski process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単結晶シリコン棒の製造
方法に関し、より詳しくは不純物元素をドープしたシリ
コン単結晶を得る場合に、断面内の抵抗率分布を改善さ
せることができる単結晶棒シリコン棒の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal silicon rod, and more particularly to a single crystal rod capable of improving the resistivity distribution in a cross section when obtaining a silicon single crystal doped with an impurity element. The present invention relates to a method for manufacturing a silicon rod.

【0002】[0002]

【従来の技術】チョクラルスキー法(CZ法)によりシ
リコン単結晶棒を引上げるには、シリコン融液を入れた
ルツボを回転させながら、種単結晶をシリコン融液中に
浸け、種単結晶にシリコンを折出させて、単結晶を成長
させ、徐々に単結晶を引上げてゆくことにより棒状に成
長した単結晶を得る。不純物をドープしたシリコン単結
晶のうち、アンチモンドープシリコン単結晶を得るに
は、アンチモンを混入させたシリコン融液を用いて、上
記と同様に引上げることが行なわれていた。
2. Description of the Related Art In order to pull up a silicon single crystal ingot by the Czochralski method (CZ method), the seed single crystal is immersed in the silicon melt while rotating the crucible containing the silicon melt. A silicon single crystal is grown into a single crystal to grow a single crystal, and the single crystal is gradually pulled up to obtain a single crystal grown in a rod shape. In order to obtain an antimony-doped silicon single crystal among the impurity-doped silicon single crystals, it has been carried out in the same manner as above using a silicon melt mixed with antimony.

【0003】このアンチモンドープシリコン単結晶引上
げの際の操作条件としては、ルツボ回転が高速(8rp
m以上)の方が、結晶を安定して製造できる。しかし、
このようにすると断面内の抵抗率分布が不均一になって
しまう。これは、特に、軸方位〈111〉の単結晶で顕
著となる。従って、特に、軸方位〈111〉のアンチモ
ンドープシリコン単結晶の断面内の抵抗率分布を均一に
する技術の確立が望まれていた。
As an operating condition for pulling the antimony-doped silicon single crystal, crucible rotation is high speed (8 rp).
(m or more) can produce crystals more stably. But,
In this case, the resistivity distribution in the cross section becomes non-uniform. This becomes remarkable especially in the single crystal having the axial orientation <111>. Therefore, in particular, it has been desired to establish a technique for making the resistivity distribution uniform in the cross section of the antimony-doped silicon single crystal having the axis orientation <111>.

【0004】[0004]

【発明が解決しようとする課題】上記従来の操作条件で
軸方位〈111〉のアンチモンドープシリコンの単結晶
を製造した場合について詳しく検討してみたところ、図
3に示すように結晶の中央部がファセット成長してお
り、その部分のドーパント濃度が高くなっていることが
わかった。すなわち、従来のアンチモンを混入したシリ
コン融液からの軸方位〈111〉の単結晶成長を行なう
と8rpm以上の高速のルツボ回転速度における引上げ
においては結晶中央部の成長界面がフラットになり、し
かもその部分のドーパント密度が高くなっていたのであ
る。
When a single crystal of antimony-doped silicon having an axial orientation of <111> was produced under the above-mentioned conventional operating conditions, a detailed study was conducted. As shown in FIG. It was found that the facet was grown and the dopant concentration in that part was high. That is, when a single crystal of <111> in the axial direction is grown from a conventional silicon melt mixed with antimony, the growth interface at the center of the crystal becomes flat during pulling at a high crucible rotation speed of 8 rpm or more, and The dopant density of the part was high.

【0005】一方、軸方位〈111〉とする以外は上記
と同条件でアンチモンドープシリコン単結晶を成長させ
ると断面内の抵抗率分布は比較的均一である。そこで、
この軸方位〈100〉の単結晶の成長状態を詳細に調べ
ると、図4に示すように結晶中央部の成長界面が下に凸
(融液側に凸)となる形で結晶が等温成長していること
がわかった。
On the other hand, when an antimony-doped silicon single crystal is grown under the same conditions as above except that the axial orientation is <111>, the resistivity distribution in the cross section is relatively uniform. Therefore,
A detailed examination of the growth state of the single crystal with this axis orientation <100> shows that the crystal grows isothermally with the growth interface at the center of the crystal being convex downward (convex to the melt side) as shown in FIG. I found out.

【0006】上記軸方位〈111〉の単結晶についての
観察と軸方位〈100〉の単結晶についての観察を対比
させることにより、軸方位〈111〉の単結晶では結晶
周辺部からの等温成長と、結晶中央部でのファセット成
長が同時進行していることがわかる。
By comparing the observation of the single crystal of the axial orientation <111> with the observation of the single crystal of the axial orientation <100>, the single crystal of the axial orientation <111> shows isothermal growth from the peripheral portion of the crystal. It can be seen that the facet growth in the central part of the crystal is proceeding at the same time.

【0007】本発明は上記の点を解決し、不純物をドー
プしたシリコン単結晶成長を好ましい等温成長を行わ
せ、特に、軸方位〈111〉の単結晶成長の場合におけ
る結晶中央部のファセット成長をなくし、断面内の抵抗
率分布を均一にすることにある。
The present invention solves the above-mentioned problems and makes it possible to carry out a preferred isothermal growth of an impurity-doped silicon single crystal, and in particular, the facet growth of the crystal center portion in the case of the single crystal growth of <111> in the axial direction. The purpose is to make the resistivity distribution uniform in the cross section.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の単結晶シリコン棒の製造方法は、チョクラ
ルスキー法により、不純物をドープしたシリコン単結晶
を引上げる際、ルツボ回転速度を周期的に変化させるこ
とで結晶中の断面内の抵抗率分布を改善することを特徴
としている。すなわち、本発明は、結晶引上げ中にルツ
ボ回転速度を周期的に変化させ、特にルツボ回転が低速
となったとき、ルツボ底部から成長界面に直接到達する
高温の対流を誘導することで、成長界面を全体的に上に
凸とし、好ましい等温成長を行なわせ、特に軸方位〈1
11〉の単結晶成長の場合における結晶中央部でのファ
セット成長をなくし、断面内の抵抗率分布を均一にする
ものである。
In order to achieve the above object, a method for producing a single crystal silicon rod according to the present invention comprises a crucible rotation speed when pulling an impurity-doped silicon single crystal by the Czochralski method. It is characterized in that the resistivity distribution in the cross section of the crystal is improved by periodically changing. That is, the present invention cyclically changes the crucible rotation speed during crystal pulling, and particularly when the crucible rotation becomes slow, by inducing high-temperature convection that directly reaches the growth interface from the crucible bottom, To have a convex shape on the whole to allow favorable isothermal growth, especially in the axial direction <1
In the case of 11> single crystal growth, facet growth at the center of the crystal is eliminated, and the resistivity distribution in the cross section is made uniform.

【0009】ルツボ回転速度の周期的変化は、8rpm
以上から2rpm以下に周期的に変化させるのが好まし
い。回転速度2rpm以下の時に、上記ルツボ底部から
成長界面に直接到達する高温の対流が効果的に誘導さ
れ、回転速度8rpm以上の時に結晶が異常の形状とな
らず、断面略円形の棒状になるような結晶成長が行なわ
れる。
The periodic change of the crucible rotation speed is 8 rpm
From the above, it is preferable to periodically change the speed to 2 rpm or less. When the rotation speed is 2 rpm or less, high-temperature convection that directly reaches the growth interface from the bottom of the crucible is effectively induced, and when the rotation speed is 8 rpm or more, the crystal does not have an abnormal shape and has a rod shape with a substantially circular cross section. Crystal growth is performed.

【0010】ルツボ回転速度を周期的に変化させる際の
周期Tは、30秒以上120秒以下とするのが好まし
く、高速あるいは低速回転にある時間tH 、tL は、そ
の周期の25〜75%とするのが好ましい。
The period T for periodically changing the crucible rotation speed is preferably 30 seconds or more and 120 seconds or less, and the times t H and t L in the high speed or low speed rotation are 25 to 75 of the cycle. % Is preferable.

【0011】図5に上記周期Tと高速回転にある時間t
H 、低速回転にある時間tL の関係の一例を示す。図5
においては、高速回転時のルツボ回転速度を8rpmと
し、低速回転時のルツボ回転速度を2rpmとし、周期
Tは60秒とし、高速回転にある時間tH を30秒と
し、低速回転にある時間tL を30秒とした場合が示さ
れている。
FIG. 5 shows the period T and time t in high-speed rotation.
An example of the relationship between H and the time t L during low speed rotation is shown. Figure 5
In the above, the crucible rotation speed during high-speed rotation is 8 rpm, the crucible rotation speed during low-speed rotation is 2 rpm, the cycle T is 60 seconds, the time t H during high-speed rotation is 30 seconds, and the time t during low-speed rotation is t. The case where L is 30 seconds is shown.

【0012】上記tH あるいはtL が周期Tの25〜7
5%となるようにすることにより、低速回転時におけ
る、結晶中央部での等温成長を可能とし、特に、軸方位
〈111〉の単結晶の成長の場合におけるファセット成
長を防止する対流と高速回転時における結晶の安定は成
長をバランスよく確保でき、断面的の抵抗率分布を均一
にするとともに、良好な形状にすることが可能となる。
The above t H or t L is 25 to 7 of the cycle T.
By setting it to be 5%, it is possible to achieve isothermal growth in the central part of the crystal at low speed rotation, and especially convection and high speed rotation to prevent facet growth in the case of single crystal growth of <111> axis direction. As for the stability of the crystal at the time, the growth can be secured in a balanced manner, the resistivity distribution in the cross section can be made uniform, and a good shape can be obtained.

【0013】本発明においては、軸方位〈111〉の単
結晶成長において特に著しい効果を発現する。すなわ
ち、ルツボ回転速度を例えば8rpmで一定にして引上
げた場合に生じていた図3に示すような、結晶中央部で
のファセット成長によりもたらされたフラットな成長界
面が、ルツボ回転速度を8rpmと2rpmで図5に示
すように周期的に変化させることにより、図1に示すよ
うに、成長界面を全体に上に凸な形状とし、軸方位〈1
11〉の単結晶成長において特に著しく生じていたファ
セット成長をなくし、等温成長を可能にし、断面内の抵
抗率分布を均一にすることができる。
In the present invention, a particularly remarkable effect is exhibited in the growth of a single crystal having an axis orientation of <111>. That is, the flat growth interface brought about by facet growth in the central portion of the crystal as shown in FIG. 3 which occurs when the crucible rotation speed is kept constant at, for example, 8 rpm, causes the crucible rotation speed to be 8 rpm. By periodically changing it at 2 rpm as shown in FIG. 5, as shown in FIG. 1, the growth interface is made to have a convex shape upward as a whole, and the axial orientation <1
It is possible to eliminate the facet growth, which was particularly remarkable in the single crystal growth of 11>, enable isothermal growth, and make the resistivity distribution in the cross section uniform.

【0014】上記においては、ドーパントとしてアンチ
モンを使用した場合を例にとって説明したが、本発明は
成長界面形状を変えることにより断面内の抵抗率分布を
均一化するものであるため、他のドーパント、例えば砒
素、リン、アルミニウム、ボロン、ガリウム、インジウ
ム等に対しても適用可能なことは自明である。
In the above description, the case where antimony is used as a dopant has been described as an example. However, since the present invention makes the resistivity distribution in the cross section uniform by changing the growth interface shape, other dopants, It is obvious that it can be applied to arsenic, phosphorus, aluminum, boron, gallium, indium, etc., for example.

【0015】[0015]

【作用】単結晶引上げ中にルツボ回転速度を周期的に変
化させ、特にルツボ回転が低速となったとき、ルツボ底
部から成長界面に直接到達する高温の対流を誘導するこ
とで成長界面を上に凸にし、より好ましい等温成長を可
能にし、ドーパントが成長結晶中に均一に取り込まれる
ようになる。本発明の方法により軸方位〈111〉の単
結晶を成長させると、成長界面は全体に上に凸の形状に
なるとともにファセット成長が防止される。また、本発
明の方法により軸方位〈100〉の単結晶を成長させる
と、ルツボ回転速度一定の場合にみられる中央部にあっ
た下に凸の界面部はなくなり、全体が上に凸の界面とす
ることができる。これにより、不純物元素をドーパント
したシリコン単結晶棒を引上げる際に、断面内の抵抗率
分布を均一化することが可能となる。
[Function] By periodically changing the crucible rotation speed during pulling of the single crystal, and especially when the crucible rotation becomes slow, the high temperature convection that directly reaches the growth interface from the bottom of the crucible is induced to move the growth interface upward. It becomes convex, which enables more favorable isothermal growth and allows the dopant to be uniformly incorporated into the grown crystal. When a single crystal having an axis orientation of <111> is grown by the method of the present invention, the growth interface has an upwardly convex shape as a whole and facet growth is prevented. Further, when a single crystal with an axial orientation <100> is grown by the method of the present invention, the downward convex interface portion in the central portion observed when the crucible rotation speed is constant disappears, and the entire upward convex interface is obtained. Can be This makes it possible to make the resistivity distribution in the cross section uniform when pulling up the silicon single crystal rod doped with the impurity element.

【0016】[0016]

【実施例】次に実施例を挙げて本発明を説明する。 実施例1 ドーパントとしてアンチモンを使用し、直径4インチの
アンチモンドープシリコン単結晶棒をチョクラルスキー
法にて引上げた。引上げの際にルツボ回転速度を図5に
示すように周期的変化させた。高速回転時のルツボ回転
速度を8rpmとし、低速回転時のルツボ回転速度を2
rpmとし、周期Tは60秒とし、高速回転にある時間
H を30秒とし、低速回転にある時間tL を30秒と
した。得られた単結晶棒を成長軸に垂直な断面が出るよ
うに多数個に切断し、この断面内の抵抗率分布を測定
し、図6に示すような、軸方向の長さにおける半径方向
の抵抗率分布を求めた。図6から明らかなように、軸方
向に垂直な断面及び軸方向に平行な断面の両断面内の抵
抗率分布は10%以下である。
EXAMPLES Next, the present invention will be described with reference to examples. Example 1 Using antimony as a dopant, a 4 inch diameter antimony-doped silicon single crystal rod was pulled up by the Czochralski method. During pulling, the crucible rotation speed was periodically changed as shown in FIG. The crucible rotation speed during high-speed rotation is 8 rpm, and the crucible rotation speed during low-speed rotation is 2 rpm.
rpm, the period T was 60 seconds, the time t H in high speed rotation was 30 seconds, and the time t L in low speed rotation was 30 seconds. The obtained single crystal ingot was cut into a plurality of pieces so that a cross section perpendicular to the growth axis was obtained, and the resistivity distribution in this cross section was measured, and the radial direction in the axial length as shown in FIG. 6 was measured. The resistivity distribution was determined. As is clear from FIG. 6, the resistivity distribution in both the cross section perpendicular to the axial direction and the cross section parallel to the axial direction is 10% or less.

【0017】比較例1 ルツボ回転速度を8rpmで一定とする以外は実施例1
と同様にして、抵抗率分布を求めた。その結果を図6に
併記する。図6から明らかなように断面内の抵抗率分布
は最大20%のバラツキを示した。
Comparative Example 1 Example 1 except that the crucible rotation speed was kept constant at 8 rpm.
The resistivity distribution was obtained in the same manner as in. The results are also shown in FIG. As is clear from FIG. 6, the resistivity distribution in the cross section showed a variation of maximum 20%.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、チョクラルスキー法により、不純物元素をドー
プしたシリコン単結晶を引上げる際、ルツボ回転速度を
周期的に変化させることで、成長界面を上に凸にし、好
ましい等温成長を可能にして、ドーパントが成長結晶中
に均一に取り込まれるようにし、成長結晶断面内の抵抗
率分布を均一化することができる。特に、本発明の方法
により軸方位〈111〉の単結晶を成長させると、ファ
セット成長が防止され、抵抗率分布の均一化の効果が顕
著に表われる。
As is apparent from the above description, according to the present invention, when the silicon single crystal doped with an impurity element is pulled by the Czochralski method, the crucible rotation speed is periodically changed. It is possible to make the growth interface convex upward, to enable preferable isothermal growth, to uniformly incorporate the dopant into the grown crystal, and to make the resistivity distribution in the grown crystal cross section uniform. In particular, when a single crystal having an axis orientation <111> is grown by the method of the present invention, facet growth is prevented and the effect of making the resistivity distribution uniform is remarkably exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により軸方位〈111〉の単結晶
成長を行なった場合における成長界面の断面形状を示す
説明図である。
FIG. 1 is an explanatory diagram showing a cross-sectional shape of a growth interface when a single crystal having an axis orientation <111> is grown by the method of the present invention.

【図2】本発明の方法により軸方位〈100〉の単結晶
成長を行なった場合における成長界面の断面形状を示す
説明図である。
FIG. 2 is an explanatory view showing a cross-sectional shape of a growth interface in the case of growing a single crystal with an axis orientation of <100> by the method of the present invention.

【図3】ルツボ回転速度を一定にして軸方位〈111〉
の単結晶成長を行なった場合における成長界面の断面形
状を示す説明図である。
[Fig. 3] Axis orientation <111> with the crucible rotation speed kept constant.
FIG. 3 is an explanatory view showing a cross-sectional shape of a growth interface when the single crystal growth of FIG.

【図4】ルツボ回転速度を一定にして軸方位〈100〉
の単結晶成長を行なった場合における成長界面の断面形
状を説明図である。
[Fig. 4] Axial azimuth <100> with a constant crucible rotation speed.
FIG. 3 is an explanatory diagram showing a cross-sectional shape of a growth interface when the single crystal growth of FIG.

【図5】本発明の方法におけるルツボ回転速度を周期的
に変化させる場合の一例を示すグラフである。
FIG. 5 is a graph showing an example of a case where the crucible rotation speed is changed periodically in the method of the present invention.

【図6】実施例及び比較例で得られるアンチモンドープ
シリコン単結晶棒の断面の抵抗率分布を示すグラフであ
る。
FIG. 6 is a graph showing a resistivity distribution of a cross section of an antimony-doped silicon single crystal ingot obtained in Examples and Comparative Examples.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法により、不純物元素
をドープしたシリコン単結晶を引上げる際、ルツボ回転
速度を周期的に変化させることで結晶中の断面内の抵抗
率分布を改善することを特徴とする単結晶シリコン棒の
製造方法。
1. When pulling a silicon single crystal doped with an impurity element by the Czochralski method, the crucible rotation speed is periodically changed to improve the resistivity distribution in the cross section of the crystal. And a method for manufacturing a single crystal silicon rod.
【請求項2】 ルツボ回転速度の周期的変化が8rpm
以上の回転速度と2rpm以下の回転速度との周期的な
増減により行なわれる請求項1記載の単結晶シリコン棒
の製造方法。
2. The crucible rotation speed has a periodic change of 8 rpm.
The method for manufacturing a single crystal silicon rod according to claim 1, wherein the method is performed by periodically increasing and decreasing the above rotation speed and the rotation speed of 2 rpm or less.
【請求項3】 ルツボ回転速度を周期的に変化させる際
の周期が30秒以上120秒以下であり、高速あるいは
低速回転にある時間は、その周期の25〜75%である
請求項1記載の単結晶シリコン棒の製造方法。
3. The method according to claim 1, wherein the cycle for periodically changing the crucible rotation speed is 30 seconds or more and 120 seconds or less, and the time during high speed or low speed rotation is 25 to 75% of the cycle. Method for manufacturing single crystal silicon rod.
【請求項4】 単結晶が軸方位〈111〉の単結晶であ
る請求項1〜3のいずれか1項に記載の単結晶シリコン
棒の製造方法。
4. The method for producing a single crystal silicon rod according to claim 1, wherein the single crystal is a single crystal having an axial orientation of <111>.
【請求項5】 不純物元素がアンチモンである請求項1
〜5のいずれか1項に記載の単結晶シリコン棒の製造方
法。
5. The impurity element is antimony.
6. The method for manufacturing a single crystal silicon rod according to any one of items 1 to 5.
【請求項6】 不純物元素が砒素、リン、アルミニウ
ム、ボロン、ガリウム、またはインジウムである請求項
1〜5のいずれか1項に記載の単結晶シリコン棒の製造
方法。
6. The method for producing a single crystal silicon rod according to claim 1, wherein the impurity element is arsenic, phosphorus, aluminum, boron, gallium, or indium.
JP4038474A 1992-01-29 1992-01-29 Manufacturing method of single crystal silicon rod Expired - Lifetime JP2795030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038474A JP2795030B2 (en) 1992-01-29 1992-01-29 Manufacturing method of single crystal silicon rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038474A JP2795030B2 (en) 1992-01-29 1992-01-29 Manufacturing method of single crystal silicon rod

Publications (2)

Publication Number Publication Date
JPH05208892A true JPH05208892A (en) 1993-08-20
JP2795030B2 JP2795030B2 (en) 1998-09-10

Family

ID=12526254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038474A Expired - Lifetime JP2795030B2 (en) 1992-01-29 1992-01-29 Manufacturing method of single crystal silicon rod

Country Status (1)

Country Link
JP (1) JP2795030B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073542A1 (en) * 1999-05-28 2000-12-07 Shin-Etsu Handotai Co., Ltd. CZ SINGLE CRYSTAL DOPED WITH Ga AND WAFER AND METHOD FOR PRODUCTION THEREOF
WO2004003265A1 (en) * 2002-07-01 2004-01-08 Sumitomo Titanium Corporation Silicon single crystal material and its production method
WO2008038693A1 (en) * 2006-09-29 2008-04-03 Sumco Techxiv Corporation Dopant gas injecting method
WO2008114822A1 (en) * 2007-03-19 2008-09-25 Mnk-Sog Silicon, Inc. Method and apparatus for manufacturing silicon ingot
JP2014509584A (en) * 2011-03-28 2014-04-21 エルジー シルトロン インコーポレイテッド Method for producing single crystal ingot and single crystal ingot and wafer produced thereby
WO2018105317A1 (en) * 2016-12-09 2018-06-14 信越半導体株式会社 Silicon single crystal production method, and silicon single crystal wafer
CN114381799A (en) * 2021-12-31 2022-04-22 杭州中欣晶圆半导体股份有限公司 Method for eliminating heavily antimony-doped pipeline

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317291A (en) * 1986-07-09 1988-01-25 Seiji Kumakawa Method for growing crystal and device therefor
JPH03164495A (en) * 1989-11-24 1991-07-16 Shin Etsu Handotai Co Ltd Method for growing antimony doped silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317291A (en) * 1986-07-09 1988-01-25 Seiji Kumakawa Method for growing crystal and device therefor
JPH03164495A (en) * 1989-11-24 1991-07-16 Shin Etsu Handotai Co Ltd Method for growing antimony doped silicon single crystal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073542A1 (en) * 1999-05-28 2000-12-07 Shin-Etsu Handotai Co., Ltd. CZ SINGLE CRYSTAL DOPED WITH Ga AND WAFER AND METHOD FOR PRODUCTION THEREOF
US6815605B1 (en) 1999-05-28 2004-11-09 Shin-Etsu Handotai Co., Ltd. Silicon single crystal and wafer doped with gallium and method for producing them
KR100676459B1 (en) * 1999-05-28 2007-01-31 신에쯔 한도타이 가부시키가이샤 CZ SINGLE CRYSTAL DOPED WITH Ga AND WAFER AND METHOD FOR PRODUCTION THEREOF
WO2004003265A1 (en) * 2002-07-01 2004-01-08 Sumitomo Titanium Corporation Silicon single crystal material and its production method
WO2008038693A1 (en) * 2006-09-29 2008-04-03 Sumco Techxiv Corporation Dopant gas injecting method
WO2008114822A1 (en) * 2007-03-19 2008-09-25 Mnk-Sog Silicon, Inc. Method and apparatus for manufacturing silicon ingot
JP2014509584A (en) * 2011-03-28 2014-04-21 エルジー シルトロン インコーポレイテッド Method for producing single crystal ingot and single crystal ingot and wafer produced thereby
WO2018105317A1 (en) * 2016-12-09 2018-06-14 信越半導体株式会社 Silicon single crystal production method, and silicon single crystal wafer
JP2018095489A (en) * 2016-12-09 2018-06-21 信越半導体株式会社 Method for manufacturing silicon single crystal, and silicon single crystal wafer
KR20190092417A (en) 2016-12-09 2019-08-07 신에쯔 한도타이 가부시키가이샤 Silicon single crystal manufacturing method and silicon single crystal wafer
DE112017005704T5 (en) 2016-12-09 2019-09-26 Shin-Etsu Handotai Co., Ltd. A method of producing a silicon single crystal and silicon single crystal wafers
US11053606B2 (en) 2016-12-09 2021-07-06 Shin-Etsu Handotai Co., Ltd. Method of producing silicon single crystal, and silicon single crystal wafer
CN114381799A (en) * 2021-12-31 2022-04-22 杭州中欣晶圆半导体股份有限公司 Method for eliminating heavily antimony-doped pipeline

Also Published As

Publication number Publication date
JP2795030B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US6472040B1 (en) Semi-pure and pure monocrystalline silicon ingots and wafers
JP5831436B2 (en) Method for producing silicon single crystal
JP3555081B2 (en) Single crystal rod and method for producing the same
US5902394A (en) Oscillating crucible for stabilization of Czochralski (CZ) silicon melt
JPH05208892A (en) Production of silicon single crystal rod
Shibata et al. Observation of edge-facets in< 100> InP crystals grown by LEC method
JP2688137B2 (en) Method of pulling silicon single crystal
JP2004307305A (en) Silicon single crystal and single crystal growing method
JPH09255485A (en) Production of single crystal and seed crystal
JP4207577B2 (en) Method for producing P-doped silicon single crystal
JPH11130592A (en) Production of silicon single crystal
US5089082A (en) Process and apparatus for producing silicon ingots having high oxygen content by crucible-free zone pulling, silicon ingots obtainable thereby and silicon wafers produced therefrom
JP3927786B2 (en) Single crystal manufacturing method
US5976246A (en) Process for producing silicon single crystal
JP3141975B2 (en) Method for growing doped silicon single crystal
JP4215249B2 (en) Method for producing silicon seed crystal and silicon single crystal
KR20030069822A (en) Process for producing a highly doped silicon single crystal
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
KR102514915B1 (en) Dopant Concentration Control in Silicon Melts to Improve Ingot Quality
JP2001199789A (en) Method for producing silicon single crystal
JPH04305091A (en) Method and device for pulling up single crystal
JP2001199788A (en) Method for producing silicon single crystal
RU2177513C1 (en) Method of growing silicon monocrystals
JPS62182190A (en) Production of compound semiconductor single crystal
JPH11322492A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080626

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080626

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090626

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120626