JPH05207664A - Electric automobile - Google Patents

Electric automobile

Info

Publication number
JPH05207664A
JPH05207664A JP4010571A JP1057192A JPH05207664A JP H05207664 A JPH05207664 A JP H05207664A JP 4010571 A JP4010571 A JP 4010571A JP 1057192 A JP1057192 A JP 1057192A JP H05207664 A JPH05207664 A JP H05207664A
Authority
JP
Japan
Prior art keywords
motor
power
secondary battery
power converter
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4010571A
Other languages
Japanese (ja)
Other versions
JP3284571B2 (en
Inventor
Tadashi Shibuya
忠士 渋谷
Hiroyuki Miyake
博之 三宅
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Nissan Motor Co Ltd
Hokuto Denko Corp
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Nissan Motor Co Ltd
Hokuto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Nissan Motor Co Ltd, Hokuto Denko Corp filed Critical Meidensha Corp
Priority to JP01057192A priority Critical patent/JP3284571B2/en
Publication of JPH05207664A publication Critical patent/JPH05207664A/en
Application granted granted Critical
Publication of JP3284571B2 publication Critical patent/JP3284571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PURPOSE:To obviate the necessity of dedicated charger while making it possible to charge an electric automobile from AC commercial power supply and to simplify the constitution. CONSTITUTION:A motor drive power converter 22 mounted on an electric automobile is provided with bilateral power converting junction such that the battery of the electric automobile is charged with external AC or DC power whereas AC current is obtained through A/D or D/A conversion of the power converter 22. Furthermore, the motor drive power converter 22 is provided with bilateral D/D power converting function through the combination of D/A conversion and booster chopper control so that the battery of electric automobile is charged externally with AC or DC power by utilizing the winding of an AC motor 23 as a reactor required for chopper control whereas step-up or step-down charging is performed through chopper control of the power converter 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に係り、特
に搭載する蓄電池を充電するための充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle, and more particularly to a charging device for charging a storage battery mounted on the electric vehicle.

【0002】[0002]

【従来の技術】電気自動車は、モータを原動機とし、そ
の電源に二次電池(蓄電池)が搭載され、モータ制御装
置によるモータ制御がなされる。このため、電気自動車
は、内燃機関を原動機とする従来の自動車に必要なガソ
リン等の燃料を給油するのとは異なり、搭載した蓄電池
を充電する充電装置を必要とする。
2. Description of the Related Art In an electric vehicle, a motor is used as a prime mover, a secondary battery (storage battery) is mounted on its power source, and the motor is controlled by a motor controller. For this reason, the electric vehicle requires a charging device for charging the storage battery mounted therein unlike the refueling of fuel such as gasoline, which is necessary for a conventional vehicle having an internal combustion engine as a prime mover.

【0003】図7は従来の電気自動車用の充電装置を示
す。1は充電装置であり、2は電気自動車である。充電
装置1の出力端子A,Bには充電ケーブル3が接続さ
れ、この充電ケーブル3の他端を電気自動車2の入力端
子A′,B′に接続することにより、電気自動車2に搭
載された蓄電池4の充電を行う。
FIG. 7 shows a conventional charging device for an electric vehicle. Reference numeral 1 is a charging device, and 2 is an electric vehicle. The charging cable 3 is connected to the output terminals A and B of the charging device 1, and the other end of the charging cable 3 is connected to the input terminals A ′ and B ′ of the electric vehicle 2 to be mounted on the electric vehicle 2. The storage battery 4 is charged.

【0004】充電装置1では交流電源5からスイッチ6
を介して交流電力を取り込み、この交流電力を整流器7
により直流電力に変換し、スイッチ8を介して出力端子
A,Bに直流出力を得る。整流器7との組み合わせで充
電器を構成する制御部9は、電流検出部10及び電圧検
出部11によって検出された直流電流及び直流電圧に基
づいて整流器7の出力電流及び電圧を制御し、定電流定
電圧方式等の充電方式によって蓄電池4を充電する。
In the charging device 1, the AC power source 5 is switched to the switch 6
AC power is taken in through the rectifier 7
Is converted to DC power by means of the switch 8 and DC output is obtained at the output terminals A and B via the switch 8. The control unit 9 that constitutes a charger in combination with the rectifier 7 controls the output current and voltage of the rectifier 7 based on the DC current and the DC voltage detected by the current detection unit 10 and the voltage detection unit 11, and outputs the constant current. The storage battery 4 is charged by a charging method such as a constant voltage method.

【0005】なお、充電装置1は短時間で蓄電池4を充
電できることが、電気自動車の普及及びメンテナンス面
で要望され、出力の大電流,高電圧化が進められると共
に急速充電を可能とする蓄電池4の改良,研究も進めら
れている。
The charging device 1 is required to charge the storage battery 4 in a short time in order to popularize and maintain electric vehicles, and the storage battery 4 is capable of rapid charging as the output current is increased and the voltage is increased. Is being improved and research is also underway.

【0006】[0006]

【発明が解決しようとする課題】従来の電気自動車は、
搭載する蓄電池の充電装置が電気自動車専用の充電設備
として特定の場所に設置(据置)されるため、蓄電池の
充電を必要とするときに該充電設備の設置場所まで移動
させなければならない。
The conventional electric vehicle is
Since the charging device for the installed storage battery is installed (installed) in a specific place as a charging facility dedicated to the electric vehicle, it must be moved to the installation site of the charging facility when the storage battery needs to be charged.

【0007】このため、充電装置の設置場所までの移動
に手間取る問題があった。特に、現状では充電設備の設
置場所及びエリアが限られており、設置場所までの距離
が長くなることが多く、充電に要する手間が問題とな
る。また、充電装置の設置エリア外では充電不能になる
ことから電気自動車の遠隔地走行を難しくしている。
Therefore, there is a problem that it takes time to move the charging device to the installation place. In particular, at present, the installation location and area of the charging facility are limited, and the distance to the installation location is often long, and the labor required for charging becomes a problem. In addition, it is difficult to charge the electric vehicle outside the area where the charging device is installed, which makes it difficult to drive the electric vehicle in a remote area.

【0008】この問題を解決するには、電気自動車に充
電装置を搭載し、一般家庭や営業所に配電される商用の
交流電源から充電電力を取り込めるようにすることが考
えられる。
In order to solve this problem, it is conceivable to mount a charging device on the electric vehicle so that the charging power can be taken in from a commercial AC power source distributed to ordinary households or business offices.

【0009】しかし、充電装置を電気自動車に搭載する
ための設置スペース,重量増を招くし、電気自動車のコ
ストアップになる。
However, the installation space and weight for mounting the charging device on the electric vehicle are increased, and the cost of the electric vehicle is increased.

【0010】上述の充電装置に専用のものを不要にする
ものとして、電気自動車の駆動用モータを交流モータと
し、この交流モータをインバータで駆動し、該インバー
タが持つダイオード及びスイッチング素子を整流及びチ
ョッパ素子として利用し、さらにチョッパに必要なリア
クトルに駆動用モータの巻線を利用したものが提案され
ている(例えば、実開平1−134902号公報)。
In order to eliminate the need for a dedicated charging device, an AC motor is used as a driving motor for an electric vehicle, an AC motor is driven by an inverter, and a diode and a switching element of the inverter are rectified and choppered. There has been proposed a device which is used as an element and further uses a winding of a drive motor as a reactor required for a chopper (for example, Japanese Utility Model Laid-Open No. 1-134902).

【0011】この従来装置ではインバータ回路素子を整
流及びチョッパ回路素子として利用するため、インバー
タ回路と整流及びチョッパ回路の構成の切り換えのため
の多くの切換スイッチを必要とする。また、モータの巻
線をリアクトルとして利用するのにモータの巻線の接続
関係を切り換えるための切換スイッチ及びモータの巻線
端子の引出しも必要とする。これら多くの切換スイッチ
を必要とするため、従来装置では複雑な回路構成及び切
換スイッチ制御回路も複雑になる問題があるし、モータ
自体も複雑にする問題があった。
In this conventional device, since the inverter circuit element is used as the rectification and chopper circuit element, many changeover switches for switching the configuration of the inverter circuit and the rectification and chopper circuit are required. Further, in order to use the winding of the motor as a reactor, a changeover switch for switching the connection relation of the winding of the motor and drawing out of the winding terminal of the motor are required. Since many such changeover switches are required, the conventional device has a problem that the circuit configuration and the changeover switch control circuit are complicated, and the motor itself is complicated.

【0012】本発明の目的は、商用の交流電源からの充
電を可能にしながら専用の充電装置を不要にして装置構
成も簡単にする電気自動車を提供することにある。
It is an object of the present invention to provide an electric vehicle which enables charging from a commercial AC power source, but does not require a dedicated charging device and has a simple device configuration.

【0013】[0013]

【課題を解決するための手段】本発明は前記課題の解決
を図るため、交流モータを原動機とし、該モータの駆動
に必要な電源を二次電池とする電気自動車において、直
流入出力端が前記二次電池に接続され交流入出力端との
間で交流と直流の双方向電力変換を行う電力変換器と、
前記電力変換器の交流入出力端からの交流出力を前記交
流モータに供給するモータ駆動モードと、外部の交流電
源からの交流入力を該電力変換器の交流入出力端に供給
する二次電池充電モードとを切り換える切換制御回路と
を備えたことを特徴とする。
In order to solve the above problems, the present invention is directed to an electric vehicle which uses an AC motor as a prime mover and a secondary battery as a power source required for driving the motor. A power converter that is connected to the secondary battery and performs bidirectional AC / DC power conversion between the AC input / output terminal,
A motor drive mode in which an AC output from the AC input / output terminal of the power converter is supplied to the AC motor, and a secondary battery charging in which an AC input from an external AC power supply is supplied to the AC input / output terminal of the power converter. And a switching control circuit for switching between the modes.

【0014】また、本発明は、交流モータを原動機と
し、該モータの駆動に必要な電源を二次電池とする電気
自動車において、直流入出力端が前記二次電池に接続さ
れ該二次電池からの直流を交流に変換しかつ外部の直流
電源からの直流電力をチョッパ制御で昇圧又は降圧して
該二次電池側に直流電力を得る電力変換器と、前記電力
変換器の交流出力を前記交流モータに供給するモータ駆
動モードと前記直流電源からの直流入力をチョッパ用リ
アクトルを介して該電力変換器に供給する二次電池充電
モードとを切り換える切換制御回路とを備えたことを特
徴とする。
Further, according to the present invention, in an electric vehicle having an AC motor as a prime mover and a power source required for driving the motor as a secondary battery, a DC input / output terminal is connected to the secondary battery, and the secondary battery is connected to the secondary battery. A power converter for converting the direct current of the battery into an alternating current and for boosting or lowering the direct current power from an external direct current power source by chopper control to obtain the direct current power on the secondary battery side, and the alternating current output of the power converter is the alternating current A switching control circuit for switching between a motor drive mode for supplying to the motor and a secondary battery charging mode for supplying the DC input from the DC power source to the power converter via the chopper reactor is provided.

【0015】また、本発明は交流モータを原動機とし該
モータの駆動に必要な電源を二次電池とする電気自動車
において、直流入出力端が前記二次電池に接続され該二
次電池からの直流を交流に変換して前記交流モータの一
次側スター巻線に供給しかつ該交流モータの巻線を通し
た直流電流をチョッパ制御で昇圧して該二次電池側に直
流電力を得る電力変換器と、前記電力変換器の交流出力
を前記交流モータに供給するモータ駆動モードと外部の
直流電源からの直流入力を前記交流モータの巻線を介し
て該電力変換器に供給する二次電池充電モードとを切換
える切換制御回路とを備えたことを特徴とする。
Further, according to the present invention, in an electric vehicle in which an AC motor is a prime mover and a power source required for driving the motor is a secondary battery, a DC input / output terminal is connected to the secondary battery, and a direct current from the secondary battery is supplied. Power converter for converting DC into AC and supplying it to the primary side star winding of the AC motor and for boosting the DC current passing through the winding of the AC motor by chopper control to obtain DC power on the secondary battery side. And a motor drive mode for supplying the AC output of the power converter to the AC motor and a secondary battery charging mode for supplying a DC input from an external DC power source to the power converter via the winding of the AC motor. And a switching control circuit for switching between and.

【0016】また、本発明は、交流モータを原動機とし
該モータの駆動に必要な電源を二次電池とする電気自動
車において、直流入出力端が前記二次電池に接続され該
二次電池からの直流を交流に変換して前記交流モータの
一次側スター巻線に供給しかつ該交流モータの巻線を通
した直流電流をチョッパ制御で昇圧可能にして該二次電
池側に直流電力を得る電力変換器と、前記交流モータの
巻線に降圧制御した直流電流を供給するスイッチ回路
と、前記電力変換器の交流出力を前記交流モータに供給
するモータ駆動モードと直流電源からの直流入力を前記
交流モータの巻線を介して該電力変換器に供給する二次
電池充電モードとを切換える切換制御回路とを備えたこ
とを特徴とする。
Further, according to the present invention, in an electric vehicle having an AC motor as a prime mover and a secondary battery as a power source required for driving the motor, a DC input / output terminal is connected to the secondary battery, Electric power for converting direct current to alternating current and supplying it to the primary side star winding of the alternating current motor and for boosting the direct current passing through the winding of the alternating current motor by chopper control to obtain direct current power on the secondary battery side. A converter, a switch circuit for supplying a DC current that is step-down controlled to the winding of the AC motor, a motor drive mode for supplying the AC output of the power converter to the AC motor, and a DC input from a DC power supply to the AC input. And a switching control circuit for switching between a secondary battery charging mode supplied to the power converter via the winding of the motor.

【0017】[0017]

【作用】請求項1では、電気自動車の二次電池から直流
電力を得て交流モータを駆動する電力変換器を双方向電
力変換器とし、二次電池の充電には商用の交流電源から
の交流電力を電力変換器を交流・直流変換器として動作
させることで専用の充電装置を不要にする。
According to the present invention, the power converter for driving the AC motor by obtaining DC power from the secondary battery of the electric vehicle is a bidirectional power converter, and the secondary battery is charged by the AC from the commercial AC power source. By operating the power converter as an AC / DC converter, it eliminates the need for a dedicated charging device.

【0018】請求項2では、電力変換器を直流・交流変
換とチョッパ制御による直流・直流変換の双方向電力変
換器とし、チョッパ制御を昇圧又は降圧とすることで交
流電源と二次電池の電圧関係を任意にする。
According to a second aspect of the present invention, the power converter is a bidirectional power converter for DC / AC conversion and DC / DC conversion by chopper control, and the voltage of the AC power supply and the secondary battery is increased by increasing or decreasing the chopper control. Make the relationship optional.

【0019】請求項3では電気自動車の二次電池から直
流電力を得て交流モータを駆動する電力変換器を直流・
交流変換と昇圧チョッパ制御による直流・直流変換の双
方向電力変換器とし、チョッパ制御に必要なリアクトル
に交流モータの巻線を利用する。
According to a third aspect of the present invention, a power converter for driving an AC motor by receiving DC power from a secondary battery of an electric vehicle is used.
It is a bidirectional power converter for AC / DC conversion with DC conversion and boost chopper control, and the winding of the AC motor is used for the reactor required for chopper control.

【0020】請求項4では、交流モータの巻線に供給す
る直流電流をスイッチ回路で降圧制御し、電力変換器の
昇圧チョッパ制御との組合わせで外部の交流電源と二次
電池の電圧関係を任意にする。
According to the present invention, the DC current supplied to the winding of the AC motor is step-down controlled by the switch circuit, and the voltage relationship between the external AC power source and the secondary battery is controlled in combination with the step-up chopper control of the power converter. Make it optional.

【0021】[0021]

【実施例】図1は本発明の一実施例を示す構成図であ
る。電気自動車21は、蓄電池4を電源として搭載し、
蓄電池4の直流電力を電力変換器22によって交流電力
に変換し、この交流電力をモータ23に供給することで
モータ23を駆動し、走行のための駆動力を該モータか
ら得る。
1 is a block diagram showing an embodiment of the present invention. The electric vehicle 21 has the storage battery 4 as a power source,
The DC power of the storage battery 4 is converted into AC power by the power converter 22, and the AC power is supplied to the motor 23 to drive the motor 23, and a driving force for traveling is obtained from the motor.

【0022】このための電力変換器22は、半導体スイ
ッチ素子構成の主回路24を例えばPWM制御し、電圧
及び周波数制御された交流電力を得てモータ23に供給
する。この主回路制御はモータ制御回路25によって行
われ、走行速度信号等からなるモータ指令と電圧検出器
26からのモータ23への印加電圧検出信号との突き合
わせによってフィードバック制御される。
The power converter 22 for this purpose performs PWM control of the main circuit 24 having a semiconductor switch element structure, obtains AC power whose voltage and frequency are controlled, and supplies the AC power to the motor 23. The main circuit control is performed by the motor control circuit 25, and feedback control is performed by matching a motor command including a traveling speed signal and the like and a voltage detection signal applied from the voltage detector 26 to the motor 23.

【0023】ここで、本実施例では電力変換器22は双
方向電力変換器として機能させ、蓄電池4からの直流電
力を交流電力に変換してモータ23に供給するモータ駆
動モードと、モータ側からの交流電力を直流電力に変換
して蓄電池4に供給する蓄電池充電モードの両機能を持
たせる。
Here, in this embodiment, the power converter 22 functions as a bidirectional power converter, converts the DC power from the storage battery 4 into AC power and supplies it to the motor 23, and the motor drive mode from the motor side. It has both functions of a storage battery charging mode for converting the AC power of the above into DC power and supplying it to the storage battery 4.

【0024】この両機能のうち、蓄電池充電モードは、
充電制御回路27による主回路24のPWMゲート制御
でなされ、この制御には電流検出器28による交流入力
検出電流と電圧検出器29による蓄電池充電電圧とによ
り定電流・定電圧充電方式等によって充電電流,電圧制
御がなされる。このとき、主回路24は例えば昇圧整流
制御によって交流・直流変換する。
Of these two functions, the storage battery charging mode is
The charging control circuit 27 performs PWM gate control of the main circuit 24. This control is performed by a constant current / constant voltage charging method or the like according to the AC input detection current by the current detector 28 and the storage battery charging voltage by the voltage detector 29. , Voltage control is performed. At this time, the main circuit 24 performs AC / DC conversion by, for example, boost rectification control.

【0025】主回路24に対するモータ駆動モードでの
ゲート制御と蓄電池充電モードでのゲート制御はゲート
切換回路30によって切り換えられ、このモード切換制
御は切換制御部31と切換スイッチ32と電圧検出器3
3によって構成される。
The gate control in the motor drive mode and the gate control in the battery charging mode for the main circuit 24 are switched by the gate switching circuit 30, and this mode switching control is performed by the switching control unit 31, the switching switch 32, and the voltage detector 3.
It is composed of three.

【0026】切換スイッチ32は、電力変換器の交流入
出力端Aへの接続をモータ23と外部交流電源ライン3
4との切り換えを行い、電圧検出器33は交流電源ライ
ン34への外部交流電源接続を検出する。切換制御部3
1は交流電源ライン34への交流電圧印加を電圧検出器
33で検出したときに切換スイッチ32をライン34側
に切り換えると共にゲート切換回路30を充電制御回路
側へ切り換える。なお、電圧検出器33は省略し、切換
制御部31の切換指令スイッチを手動で切り換える構成
やライン34への交流電源接続操作で切り換える構成で
も良い。
The change-over switch 32 connects the motor 23 and the external AC power supply line 3 to the AC input / output terminal A of the power converter.
4 and the voltage detector 33 detects the external AC power supply connection to the AC power supply line 34. Switching control unit 3
Reference numeral 1 switches the changeover switch 32 to the line 34 side and the gate changeover circuit 30 to the charge control circuit side when the AC voltage application to the AC power supply line 34 is detected by the voltage detector 33. Note that the voltage detector 33 may be omitted, and the configuration may be such that the switching command switch of the switching control unit 31 is manually switched or the switching power supply is connected to the line 34.

【0027】電気自動車21への外部交流電源印加は、
商用の交流電源35から絶縁トランス36及びLCフィ
ルタ37を通してコネクタ接続でなされる。この場合、
絶縁トランス36及びフィルタ37は充電制御のための
リアクトルとしても利用されるが電気自動車21内に実
装し、交流電源35へ接続する構成でも良い。
Applying external AC power to the electric vehicle 21
A commercial AC power source 35 is connected by a connector through an insulating transformer 36 and an LC filter 37. in this case,
The insulating transformer 36 and the filter 37 are also used as a reactor for charging control, but may be mounted in the electric vehicle 21 and connected to the AC power supply 35.

【0028】本実施例において、電気自動車21の走行
時には電力変換器22をモータ駆動モードによって制御
し、蓄電池4からの直流電力を電力変換器22によって
交流電力に変換し、モータ23の速度制御等を行う。
In the present embodiment, when the electric vehicle 21 is running, the power converter 22 is controlled by the motor drive mode, the DC power from the storage battery 4 is converted into AC power by the power converter 22, and the speed control of the motor 23, etc. I do.

【0029】一方、蓄電池4の充電には電力変換器22
を蓄電池充電モードによって制御し、交流電源35から
の交流電力を電力変換器22によって直流電力に変換
し、蓄電池4の充電を行う。
On the other hand, the power converter 22 is used to charge the storage battery 4.
Is controlled by the storage battery charging mode, the AC power from the AC power supply 35 is converted into DC power by the power converter 22, and the storage battery 4 is charged.

【0030】従って、電力変換器22は電気自動車のモ
ータ駆動のほかに蓄電池4の充電器として利用する。こ
れにより、電気自動車21には蓄電池充電のための専用
の充電器を設けることを不要とし、切換スイッチ32や
充電制御回路27などの回路要素を設けることで済む。
Therefore, the power converter 22 is used as a charger for the storage battery 4 in addition to driving the motor of the electric vehicle. As a result, it is not necessary to provide the electric vehicle 21 with a dedicated charger for charging the storage battery, and circuit elements such as the changeover switch 32 and the charge control circuit 27 can be provided.

【0031】図2は本発明の他の実施例を示す構成図で
ある。同図が図1と異なる部分は、蓄電池モードでは電
力変換器22をチョッパ制御にして直流・直流変換する
構成とした点にある。このチュッパ制御には、外部から
リアクトル40を通した直流電力をライン34に導入
し、分路スイッチ41を通して主回路24の3相出力端
に印加し、主回路24の各相スイッチ素子になるトラン
ジスタTrx,Try,Trzのオン・オフ制御によっ
て昇圧チョッパ動作にする。
FIG. 2 is a block diagram showing another embodiment of the present invention. 1 is different from FIG. 1 in that in the storage battery mode, the power converter 22 is chopper-controlled to perform DC / DC conversion. For this tupper control, a DC power that has passed through the reactor 40 from the outside is introduced into the line 34, and is applied to the three-phase output terminal of the main circuit 24 through the shunt switch 41 to become a switching element for each phase of the main circuit 24. The boost chopper operation is performed by the on / off control of Trx, Try, and Trz.

【0032】即ち、分路スイッチ41のオン状態でトラ
ンジスタTrx,Try,Trzを同時にオン制御する
と、リアクトル40に短路電流が流れ始め、この後のト
ランジスタTrx,Try,Trzのオフによってリア
クトル40の短路電流がダイオードDu,Dv,Dwを
通して蓄電池4側の充電電流になる。このときの充電電
流はトランジスタTrx〜Trzのオン・オフ比として
制御され、充電時の電流及び電圧制御のための検出はモ
ータ制御モードでの電流・電圧検出回路42が利用され
る。43は外部交流電源35から直流電力を得るための
整流器である。
That is, when the transistors Trx, Try, Trz are simultaneously turned on while the shunt switch 41 is turned on, a short-circuit current starts to flow in the reactor 40, and the short-circuit current of the reactor 40 is subsequently turned off by turning off the transistors Trx, Try, Trz. The current becomes a charging current on the side of the storage battery 4 through the diodes Du, Dv, Dw. The charging current at this time is controlled as an on / off ratio of the transistors Trx to Trz, and the current / voltage detection circuit 42 in the motor control mode is used for detection for controlling the current and voltage during charging. 43 is a rectifier for obtaining DC power from the external AC power supply 35.

【0033】本実施例においては、チョッパ制御による
充電電流発生になるが、図1の実施例と同様に電力変換
器22を双方向電力変換手段として利用することで専用
の充電器を不要にする。
In this embodiment, the charging current is generated by the chopper control, but as in the embodiment of FIG. 1, the power converter 22 is used as the bidirectional power conversion means, so that the dedicated charger is not required. ..

【0034】なお、外部入力は直流になるため、電力変
換器22とモータ23とは充電制御モードでも接続した
ままで済み、図1の場合の切換スイッチ32を不要にす
る。分路スイッチ41は直流入力を電力変換器22の各
相に共通に供給することで電力変換器のスイッチ素子全
部を有効に使用するが、外部交流電源35が単相の場合
には該スイッチ41を不要になる。
Since the external input is direct current, the power converter 22 and the motor 23 can be left connected even in the charging control mode, and the changeover switch 32 in the case of FIG. 1 is unnecessary. The shunt switch 41 effectively uses all switch elements of the power converter by supplying a DC input to each phase of the power converter 22 in common, but when the external AC power supply 35 is a single phase, the switch 41 is used. Becomes unnecessary.

【0035】また、リアクトル40及び整流器43を電
気自動車21内に設ける構成では交流電源35への接続
のみで充電機能を得ることができる。
Further, in the structure in which the reactor 40 and the rectifier 43 are provided in the electric vehicle 21, the charging function can be obtained only by connecting to the AC power source 35.

【0036】図3は本発明の他の実施例を示す。同図が
図2と異なる部分は、外部からの直流入力をスイッチ回
路44によってチョッパ動作させ、分路スイッチ41を
通して主回路24の出力端と高圧側アーム間(蓄電池4
の正極)に充電電流を供給する降圧チョッパ制御を行う
点にある。
FIG. 3 shows another embodiment of the present invention. 2 is different from FIG. 2 in that a direct current input from the outside is chopper-operated by a switch circuit 44, and a shunt switch 41 is provided between the output end of the main circuit 24 and the high-voltage side arm (storage battery 4
The point is to perform the step-down chopper control for supplying the charging current to the positive electrode of.

【0037】即ち、分路スイッチ41のオン状態でスイ
ッチ回路44のトランジスタTrをオン動作させると、
リアクトル40には蓄電池4→ダイオードDx,Dy,
Dz→スイッチ41→整流器43の経路で充電電流が流
れ、トランジスタTrのオフにはダイオードDを通した
フライホイール電流が流れて蓄電池4を降圧充電する。
このときの充電電流はトランジスタTrのオン・オフ比
で制御できるが、トランジスタTru,Trv,Trw
のオン・オフ制御との組み合わせで昇圧チョッパ制御機
能を持たせることができる。
That is, when the transistor Tr of the switch circuit 44 is turned on while the shunt switch 41 is on,
The reactor 40 has a storage battery 4 → diodes Dx, Dy,
A charging current flows through the path of Dz → switch 41 → rectifier 43, and a flywheel current that flows through the diode D flows to turn off the transistor Tr, so that the storage battery 4 is step-down charged.
The charging current at this time can be controlled by the on / off ratio of the transistor Tr, but the transistors Tru, Trv, Trw
A boost chopper control function can be provided in combination with the ON / OFF control of.

【0038】本実施例においても前述までの実施例と同
様に電力変換器22を利用することで専用の充電器を不
要にする。これに加えて、本実施例では充電電流に昇圧
と降圧チョッパ制御ができ、蓄電池4の電圧と交流電源
35の電圧の大小によって昇圧と降圧を選択制御するこ
とにより、充電に使用できる外部交流電源の電圧階級範
囲を広げ、充電の自由度を高める。
In this embodiment as well, by using the power converter 22 as in the above-described embodiments, a dedicated charger is not required. In addition to this, in the present embodiment, the charging current can be stepped up and stepped down by chopper control, and by selectively controlling step-up and step-down depending on the magnitude of the voltage of the storage battery 4 and the voltage of the AC power source 35, an external AC power source that can be used for charging Widen the voltage range of and increase the freedom of charging.

【0039】なお、分路スイッチ41を省略した構成及
び整流器43を電気自動車内に設けることができるのは
勿論である。
It goes without saying that the shunt switch 41 may be omitted and the rectifier 43 may be provided in the electric vehicle.

【0040】図4は本発明の他の実施例を示す。同図が
図3と異なる部分は、リアクトル40の電流を分路スイ
ッチ41を通して主回路24のモータ側入出力端に供給
する構成になる。
FIG. 4 shows another embodiment of the present invention. 3 is different from FIG. 3 in that the current of the reactor 40 is supplied to the motor side input / output end of the main circuit 24 through the shunt switch 41.

【0041】本実施例における充電制御モードではスイ
ッチ41をオンさせ、スイッチ回路44のオン・オフと
主回路42の低圧側トランジスタTrx,Try,Tr
zのオン・オフ制御による昇圧チョッパ制御又は該トラ
ンジスタのオフ保持による降圧チョッパ制御を選択で
き、図3の実施例と同等の作用効果を得ることができ
る。 図5は本発明の他の実施例を示す構成図である。
In the charging control mode of this embodiment, the switch 41 is turned on to turn on / off the switch circuit 44 and the low-voltage side transistors Trx, Try, Tr of the main circuit 42.
It is possible to select the step-up chopper control by the on / off control of z or the step-down chopper control by keeping the transistor off, and it is possible to obtain the same effect as that of the embodiment of FIG. FIG. 5 is a block diagram showing another embodiment of the present invention.

【0042】電力変換器22は、半導体スイッチ素子構
成の主回路24を例えばPWM制御し、電圧及び周波数
制御された交流電力を得てモータ23に供給する。この
主回路制御はモータ制御回路25によって行われ、走行
速度信号等からなるモータ指令と電圧検出器45及び電
流検出器46からの検出信号を電流・電圧検出回路47
から得てモータ23への電圧・電流フィードバック制御
がなされる。
The power converter 22 performs, for example, PWM control on the main circuit 24 having a semiconductor switch element structure, obtains AC power whose voltage and frequency are controlled, and supplies the AC power to the motor 23. This main circuit control is performed by the motor control circuit 25, and the motor / command including a traveling speed signal and the detection signals from the voltage detector 45 and the current detector 46 are supplied to the current / voltage detection circuit 47.
Then, the voltage / current feedback control to the motor 23 is performed.

【0043】ここで、本実施例では電力変換器22は双
方向電力変換器として機能させ、蓄電池4からの直流電
力を交流電力に変換してモータ23に供給するモータ駆
動モードと、モータの巻線を通した直流電流を昇圧チョ
ッパ制御で直流電力に変換して蓄電池4に供給する蓄電
池充電モードの両機能を持たせる。
Here, in this embodiment, the power converter 22 functions as a bidirectional power converter, converts the DC power from the storage battery 4 into AC power and supplies it to the motor 23, and the motor winding mode. It has both functions of a storage battery charging mode in which the direct current passing through the line is converted into direct current power by boost chopper control and supplied to the storage battery 4.

【0044】この両機能のうち、蓄電池充電モードは、
充電制御回路48による主回路24の昇圧チョッパ制御
でなされ、この制御には電圧検出器49による蓄電池充
電電圧と電流検出器46の検出電流により定電流・定電
圧充電方式等によって充電電流,電圧制御がなされる。
Of these two functions, the storage battery charging mode is
The charging control circuit 48 performs a step-up chopper control of the main circuit 24. For this control, the charging current and voltage are controlled by a constant current / constant voltage charging method by the storage battery charging voltage by the voltage detector 49 and the detection current of the current detector 46. Is done.

【0045】主回路24に対するモータ駆動モードでの
ゲート制御と蓄電池充電モードでのゲート制御はゲート
切換回路50によって切換えられる。このモード切換制
御は切換制御部51によって行われ、電圧検出器45の
検出電圧からモータ23の巻線への直流電圧印加を検出
し、ゲート切換回路50への切換制御指令及び充電制御
回路48への充電制御指令でなされる。
Gate control in the motor drive mode and gate control in the battery charging mode for the main circuit 24 is switched by the gate switching circuit 50. This mode switching control is performed by the switching control unit 51, detects the application of the DC voltage to the winding of the motor 23 from the detection voltage of the voltage detector 45, and sends the switching control command to the gate switching circuit 50 and the charging control circuit 48. The charge control command of

【0046】交流モータ23は一次巻線がスター結線さ
れ、そのスターポイント(中性点)には蓄電池充電時に
外部から直流電力が供給される。このための直流電源
は、一般家庭等の商用の交流電源35から整流する整流
器43にされる。
The primary winding of the AC motor 23 is star-connected, and DC power is externally supplied to the star point (neutral point) of the AC battery 23 when the storage battery is charged. The DC power supply for this purpose is a rectifier 43 that rectifies the commercial AC power supply 35 in a home or the like.

【0047】なお、直流電圧印加は電圧検出器45の検
出で切換制御部51で判別されるが、切換制御部51の
切換指令スイッチを手動で切換える構成や整流器43と
電気自動車21の接続操作で切換える構成でも良い。ま
た、整流器43は電気自動車21内に実装し、交流電源
33へ接続する構成でも良い。
The application of the DC voltage is determined by the switching control unit 51 by the detection of the voltage detector 45, but it is possible to manually switch the switching command switch of the switching control unit 51 or to connect the rectifier 43 and the electric vehicle 21. It may be configured to switch. The rectifier 43 may be mounted in the electric vehicle 21 and connected to the AC power supply 33.

【0048】本実施例において、電気自動車21の走行
時には電力変換器22をモータ駆動モードによって制御
し、蓄電池4からの直流電力を電力変換器22によって
交流電力に変換し、モータ23の速度制御等を行う。
In the present embodiment, when the electric vehicle 21 is running, the power converter 22 is controlled by the motor drive mode, the DC power from the storage battery 4 is converted into AC power by the power converter 22, and the speed control of the motor 23, etc. I do.

【0049】一方、蓄電池4の充電には電力変換器22
を蓄電池充電モードによって制御し、整流器34からの
直流電力をモータ23の巻線をリアクトルとして利用
し、電力変換器22を昇圧チョッパ制御することで蓄電
池4の充電を行う。
On the other hand, the power converter 22 is used to charge the storage battery 4.
Is controlled by the storage battery charging mode, the DC power from the rectifier 34 is used as a reactor of the winding of the motor 23, and the power converter 22 is step-up chopper-controlled to charge the storage battery 4.

【0050】この昇圧チョッパ制御は、主回路24の低
圧側トランジスタTrX,TrY,TrZのオン制御によりモ
ータ23の巻線に短絡電流を流し、この後のトランジス
タTrX,TrY,TrZのオフによって巻線の短絡電流がダ
イオードDU,DV,DWを通して蓄電池4側の充電電流
として取出す。このときの充電電流はトランジスタTrX
〜TrZのオン・オフ比として制御される。
In this step-up chopper control, a short-circuit current is caused to flow through the winding of the motor 23 by the ON control of the low-voltage side transistors T rX , T rY , T rZ of the main circuit 24, and the subsequent transistors T rX , T rY , T are provided. When rZ is turned off, the short-circuit current of the winding is taken out as a charging current on the side of the storage battery 4 through the diodes D U , D V and D W. The charging current at this time is the transistor T rX.
Controlled as an on / off ratio of ~ T rZ .

【0051】従って、電力変換器22は電気自動車のモ
ータ駆動のほかに蓄電池4の充電器として利用し、しか
も昇圧チョッパ制御に必要なリアクトルを交流モータ2
3の巻線を利用する。これにより、電気自動車21には
蓄電池充電のための専用の充電器を設けることを不要に
し、充電制御回路48などの回路要素を設けることで済
む。
Therefore, the power converter 22 is used as a charger for the storage battery 4 in addition to driving the motor of the electric vehicle, and the reactor necessary for controlling the step-up chopper is used as the AC motor 2.
Use 3 windings. As a result, it is not necessary to provide the electric vehicle 21 with a dedicated charger for charging the storage battery, and circuit elements such as the charge control circuit 48 can be provided.

【0052】なお、実施例におけるモータ巻線への直流
電力供給は、整流器43の負側をモータ23の巻線側に
接続し、正側を主回路24の高圧側(蓄電池4の正極)
に接続し、トランジスタTrU,TrV,TrXのチョッパ制
御によって昇圧充電を行うことができる。
For supplying DC power to the motor winding in the embodiment, the negative side of the rectifier 43 is connected to the winding side of the motor 23, and the positive side is the high voltage side of the main circuit 24 (the positive electrode of the storage battery 4).
, And boost charging can be performed by chopper control of the transistors T rU , T rV and T rX .

【0053】図6は本発明の他の実施例を示す構成図で
ある。同図が図5と異なる部分は、整流器34からの直
流入力をスイッチ回路52によってチョッパ動作させる
ことで交流モータ23の巻線に降圧制御した直流電流を
供給する点にある。ダイオードDはフライホイールダイ
オードである。
FIG. 6 is a block diagram showing another embodiment of the present invention. 5 is different from FIG. 5 in that the direct current input from the rectifier 34 is chopper-operated by the switch circuit 52 to supply the step-down controlled direct current to the winding of the AC motor 23. The diode D is a flywheel diode.

【0054】蓄電池充電モードにおいて、主回路24の
低圧側トランジスタTrX〜TrZのオフ状態でスイッチ回
路52のトランジスタTrをチョッパ制御することでス
イッチ回路52→モータ巻線→ダイオードDU,DV,D
X→蓄電池4の経路で充電電流を供給し、トランジスタ
rのオン・オフ比で制御された降圧充電を行う。
[0054] In battery charging mode, the switch circuit 52 → the motor windings → diode D U by chopper control of the transistor T r of the switching circuit 52 in the off state of the low-pressure side transistor T rX through T rZ of the main circuit 24, D V , D
X → supplying charge current path of the battery 4, performs step-down charging, which is controlled by on-off ratio of the transistor T r.

【0055】また、上述の降圧充電に主回路24の低圧
側トランジスタTrX〜TrZのオン・オフを付け加えた制
御により、昇圧充電を行う。
Further, the step-up charging is performed by the control in which the low-voltage side transistors Trx to Trz of the main circuit 24 are turned on / off in addition to the step-down charging described above.

【0056】従って、蓄電池4の電圧に対し、充電用と
して接続される交流電源35の電圧が高い場合には降圧
充電により両者の電圧差を調節し、逆に交流電源35の
電圧が蓄電池4の電圧より低い場合には昇圧充電により
電圧差を調節できる。これにより、充電に使用できる交
流電源35の電圧階級範囲を広げ、充電の自由度を高め
る。
Therefore, when the voltage of the AC power supply 35 connected for charging is higher than the voltage of the storage battery 4, the voltage difference between the two is adjusted by step-down charging. When the voltage is lower than the voltage, the voltage difference can be adjusted by boost charging. As a result, the voltage class range of the AC power supply 35 that can be used for charging is expanded, and the degree of freedom of charging is increased.

【0057】なお、実施例におけるスイッチ回路52と
整流器43の直流電力供給は、その負側をモータ23の
巻線側に接続し、正側を主回路24の高圧側(蓄電池4
の正極)に接続した降圧充電又はこれにトランジスタT
rU,TrV,TrXのチョッパ制御を組合わせた昇降圧充電
を行うことができる。
In the DC power supply of the switch circuit 52 and the rectifier 43 in the embodiment, the negative side is connected to the winding side of the motor 23, and the positive side is connected to the high voltage side of the main circuit 24 (storage battery 4
Positive charge) or a transistor T
Buck-boost charging that combines chopper control of rU , T rV , and T rX can be performed.

【0058】上述までの図5及び図6に示す実施例にお
いて、蓄電池充電モードにおける主回路24のトランジ
スタ昇圧チョッパ制御は、1相分のみ(例えばトランジ
スタTrX)又は2相分のみを制御する構成にできる。こ
の場合、整流器43の定格電流容量が小さい場合に有効
となる。
In the embodiment shown in FIGS. 5 and 6 described above, the transistor boosting chopper control of the main circuit 24 in the battery charging mode controls only one phase (for example, the transistor T rX ) or only two phases. You can In this case, it is effective when the rated current capacity of the rectifier 43 is small.

【0059】[0059]

【発明の効果】以上のとおり、本発明によれば、電気自
動車に搭載するモータ駆動用電力変換器に双方向電力変
換の機能を持たせ、蓄電池の充電には外部から交流又は
直流電力を供給し、電力変換器の交流・直流変換又は直
流・直流変換によって充電電流を得るようにしたため、
一般家庭等の交流電源を利用して容易に充電でき、しか
も電気自動車には専用の充電装置を搭載することを不要
にし、その設置スペース,重量増が少なくなるし、電気
自動車のコストダウンを図ることができる。
As described above, according to the present invention, a motor-driving power converter mounted on an electric vehicle has a function of bidirectional power conversion, and AC or DC power is externally supplied to charge a storage battery. However, since the charging current is obtained by AC / DC conversion or DC / DC conversion of the power converter,
It can be charged easily by using AC power supply in general households, etc. Moreover, it is not necessary to mount a dedicated charging device on the electric vehicle, the installation space and weight increase are reduced, and the cost of the electric vehicle is reduced. be able to.

【0060】また、モータ駆動用電力変換器を直流・交
流変換と昇圧チョッパ制御による直流・直流変換の双方
向電力変換の機能を持たせ、昇圧チョッパ制御に必要な
リアクトルに交流モータの巻線を使用し、蓄電池の充電
には外部から交流又は直流電力を供給し、電力変換器の
チョッパ制御との組合わせで昇圧充電又は降圧充電する
ようにしたため、チョッパ制御に必要なリアクトルの設
置を不要にする。
Further, the motor drive power converter is provided with a function of bidirectional power conversion of DC / AC conversion and DC / DC conversion by step-up chopper control, and the winding of the AC motor is connected to the reactor required for step-up chopper control. The AC battery is used to charge the storage battery from the outside, and the boost converter or buck converter is used in combination with the chopper control of the power converter to eliminate the need to install the reactor required for chopper control. To do.

【0061】また、本発明は、モータ駆動用電力変換器
の主回路構成を変えることなく交流・直流変換器等を行
うため、従来のインバータと整流・チョッパ回路の切り
換えのための多くの切換スイッチを不要にする。さら
に、モータの巻線をチョッパのリアクトルとして利用す
るのに該モータの巻線接続関係を切り換える切換スイッ
チを不要にすると共にモータ自体の巻線端子構造を簡単
にする。
Further, according to the present invention, since the AC / DC converter or the like is operated without changing the main circuit configuration of the motor drive power converter, many changeover switches for switching between the conventional inverter and the rectifying / chopper circuit are used. Is unnecessary. Further, when the winding of the motor is used as the reactor of the chopper, the changeover switch for switching the winding connection relation of the motor is not necessary and the winding terminal structure of the motor itself is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】他の実施例の構成図。FIG. 2 is a configuration diagram of another embodiment.

【図3】他の実施例の構成図。FIG. 3 is a configuration diagram of another embodiment.

【図4】他の実施例の構成図。FIG. 4 is a configuration diagram of another embodiment.

【図5】他の実施例の構成図。FIG. 5 is a configuration diagram of another embodiment.

【図6】他の実施例の構成図。FIG. 6 is a configuration diagram of another embodiment.

【図7】従来の充電装置の構成図。FIG. 7 is a configuration diagram of a conventional charging device.

【符号の説明】[Explanation of symbols]

2,21…電気自動車、4…蓄電池、22…電力変換
器、23…モータ、24…主回路、25…モータ制御回
路、27…充電制御回路、30…ゲート切換回路、31
…切換制御部、32…切換スイッチ、41…分路スイッ
チ、43…整流器、44…スイッチ回路、45…電圧検
出器、46…電流・電圧検出回路、50…ゲート切換回
路、51…切換制御部。
2, 21 ... Electric vehicle, 4 ... Storage battery, 22 ... Power converter, 23 ... Motor, 24 ... Main circuit, 25 ... Motor control circuit, 27 ... Charging control circuit, 30 ... Gate switching circuit, 31
... switching control unit, 32 ... switching switch, 41 ... shunt switch, 43 ... rectifier, 44 ... switch circuit, 45 ... voltage detector, 46 ... current / voltage detection circuit, 50 ... gate switching circuit, 51 ... switching control unit ..

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 博之 東京都目黒区碑文谷4丁目22番13号 北斗 電工株式会社内 (72)発明者 堀江 英明 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Miyake 4-22-13 Himonya, Meguro-ku, Tokyo Hokuto Electric Works Co., Ltd. (72) Hideaki Horie 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. Within

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流モータを原動機とし、該モータの駆
動に必要な電源を二次電池とする電気自動車において、
直流入出力端が前記二次電池に接続され交流入出力端と
の間で交流と直流の双方向電力変換を行う電力変換器
と、前記電力変換器の交流入出力端からの交流出力を前
記交流モータに供給するモータ駆動モードと、外部の交
流電源からの交流入力を該電力変換器の交流入出力端に
供給する二次電池充電モードとを切り換える切換制御回
路とを備えたことを特徴とする電気自動車。
1. An electric vehicle using an AC motor as a prime mover and a power source required for driving the motor as a secondary battery,
A direct current input / output terminal is connected to the secondary battery, and a power converter that performs bidirectional power conversion between alternating current and direct current with the alternating current input / output terminal; and an alternating current output from the alternating current input / output terminal of the power converter A switching control circuit for switching between a motor drive mode for supplying to an AC motor and a secondary battery charging mode for supplying an AC input from an external AC power source to an AC input / output terminal of the power converter; Electric car to do.
【請求項2】 交流モータを原動機とし、該モータの駆
動に必要な電源を二次電池とする電気自動車において、
直流入出力端が前記二次電池に接続され該二次電池から
の直流を交流に変換しかつ外部の直流電源からの直流電
力をチョッパ制御で昇圧又は降圧して該二次電池側に直
流電力を得る電力変換器と、前記電力変換器の交流出力
を前記交流モータに供給するモータ駆動モードと前記直
流電源からの直流入力をチョッパ用リアクトルを介して
該電力変換器に供給する二次電池充電モードとを切り換
える切換制御回路とを備えたことを特徴とする電気自動
車。
2. An electric vehicle using an AC motor as a prime mover and a power supply required for driving the motor as a secondary battery,
A DC input / output terminal is connected to the secondary battery to convert DC from the secondary battery into AC, and DC power from an external DC power source is stepped up or down by chopper control to direct the DC power to the secondary battery side. And a motor drive mode for supplying an AC output of the power converter to the AC motor and a secondary battery charging for supplying a DC input from the DC power supply to the power converter via a chopper reactor. An electric vehicle comprising a switching control circuit for switching between modes.
【請求項3】 交流モータを原動機とし該モータの駆動
に必要な電源を二次電池とする電気自動車において、直
流入出力端が前記二次電池に接続され該二次電池からの
直流を交流に変換して前記交流モータの一次側スター巻
線に供給しかつ該交流モータの巻線を通した直流電流を
チョッパ制御で昇圧して該二次電池側に直流電力を得る
電力変換器と、前記電力変換器の交流出力を前記交流モ
ータに供給するモータ駆動モードと外部の直流電源から
の直流入力を前記交流モータの巻線を介して該電力変換
器に供給する二次電池充電モードとを切換える切換制御
回路とを備えたことを特徴とする電気自動車。
3. An electric vehicle having an AC motor as a prime mover and a power source required for driving the motor as a secondary battery, wherein a DC input / output terminal is connected to the secondary battery to convert DC from the secondary battery into AC. A power converter for converting and supplying to the primary side star winding of the AC motor and for boosting the DC current passing through the winding of the AC motor by chopper control to obtain DC power to the secondary battery side; Switching between a motor drive mode for supplying the AC output of the power converter to the AC motor and a secondary battery charging mode for supplying the DC input from an external DC power source to the power converter via the winding of the AC motor. An electric vehicle comprising a switching control circuit.
【請求項4】 交流モータを原動機とし該モータの駆動
に必要な電源を二次電池とする電気自動車において、直
流入出力端が前記二次電池に接続され該二次電池からの
直流を交流に変換して前記交流モータの一次側スター巻
線に供給しかつ該交流モータの巻線を通した直流電流を
チョッパ制御で昇圧可能にして該二次電池側に直流電力
を得る電力変換器と、前記交流モータの巻線に降圧制御
した直流電流を供給するスイッチ回路と、前記電力変換
器の交流出力を前記交流モータに供給するモータ駆動モ
ードと外部の直流電源からの直流入力を前記交流モータ
の巻線を介して該電力変換器に供給する二次電池充電モ
ードとを切換える切換制御回路とを備えたことを特徴と
する電気自動車。
4. An electric vehicle having an AC motor as a prime mover and a power source required for driving the motor as a secondary battery, wherein a DC input / output terminal is connected to the secondary battery to convert DC from the secondary battery into AC. A power converter for converting and supplying to the primary side star winding of the AC motor and for boosting the DC current passing through the winding of the AC motor by chopper control to obtain DC power on the secondary battery side; A switch circuit that supplies a DC current that has been step-down controlled to the winding of the AC motor, a motor drive mode that supplies the AC output of the power converter to the AC motor, and a DC input from an external DC power supply of the AC motor. An electric vehicle comprising: a switching control circuit that switches between a secondary battery charging mode supplied to the power converter via a winding.
JP01057192A 1992-01-24 1992-01-24 Electric car Expired - Lifetime JP3284571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01057192A JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01057192A JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Publications (2)

Publication Number Publication Date
JPH05207664A true JPH05207664A (en) 1993-08-13
JP3284571B2 JP3284571B2 (en) 2002-05-20

Family

ID=11753927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01057192A Expired - Lifetime JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Country Status (1)

Country Link
JP (1) JP3284571B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228796A (en) * 2004-02-20 2007-09-06 Railway Technical Res Inst Circuit arrangement and railway vehicle operation system
JP2009005531A (en) * 2007-06-22 2009-01-08 Nissan Motor Co Ltd Control method of vehicular charger
JP2010045961A (en) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc Power control apparatus
JP2010104227A (en) * 2008-10-22 2010-05-06 General Electric Co <Ge> Device for transmitting energy using power electronic device and machine inductance and method of manufacturing the device
JP2010239713A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Power storage controller, battery pack, vehicle, and power storage control method
JP2011055700A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Device for transferring energy using onboard power electronics and method for manufacturing the same
US8091665B2 (en) 2006-06-07 2012-01-10 Toyota Jidosha Kabushiki Kaisha Vehicle drive system and vehicle equipped with it
US20120019174A1 (en) * 2009-03-27 2012-01-26 Jochen Mahlein Drive System, Method for Operating a Drive System, and Use
JP2012034537A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Drive circuit for electric vehicle
US8264196B2 (en) 2009-03-30 2012-09-11 The Japan Research Institute, Limited Charge control apparatus, battery pack, and vehicle
CN102684283A (en) * 2011-03-18 2012-09-19 Ls产电株式会社 Inverter/charger integrated device and method for controlling the same
US8278859B2 (en) 2009-08-06 2012-10-02 Denso Corporation Electric motor drive device, control method of electric motor drive device, and electrically driven device
CN102837621A (en) * 2011-06-23 2012-12-26 Ls产电株式会社 Switching device for electric vehicle and method of controlling switching device
JP2014075853A (en) * 2012-10-02 2014-04-24 Toyota Motor Corp Vehicle control device and vehicle
JP2014082871A (en) * 2012-10-17 2014-05-08 Fuji Electric Co Ltd Charging device
US8912750B2 (en) 2010-01-25 2014-12-16 Ls Industrial Systems Co., Ltd. Charger
US8933579B2 (en) 2009-03-27 2015-01-13 The Japan Research Institute, Limited Manufacturing method and vehicle
JP2017011993A (en) * 2016-08-08 2017-01-12 日立オートモティブシステムズ株式会社 Charger
JP2017530678A (en) * 2014-09-22 2017-10-12 ルノー エス.ア.エス. Apparatus and method for correcting neutral current set value of battery charger without galvanic insulation used in electric vehicle or hybrid vehicle
US9809121B2 (en) 2008-10-22 2017-11-07 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US10252629B2 (en) * 2016-10-05 2019-04-09 Voltu Motor, Inc. Electric vehicle
US10454290B2 (en) 2010-11-05 2019-10-22 General Electric Company Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
US10507716B2 (en) 2016-04-25 2019-12-17 General Electric Company Integrated charger for vehicles and method of making same
WO2020125625A1 (en) * 2018-12-21 2020-06-25 比亚迪股份有限公司 Charging method for power battery, motor control circuit and vehicle
JP2020145886A (en) * 2019-03-08 2020-09-10 株式会社日立パワーソリューションズ Electric moving body
EP2427342B1 (en) * 2009-05-08 2020-11-11 SEW-EURODRIVE GmbH & Co. KG Charging arrangement for a vehicle and a vehicle with such an arrangement
JP2020537479A (en) * 2017-10-13 2020-12-17 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロントThe Governing Council Of The University Of Toronto On-board bidirectional AC quick charger for electric vehicles
JP2021027657A (en) * 2019-08-02 2021-02-22 株式会社日立パワーソリューションズ Electric moving body and electric moving body charging system
CN112751396A (en) * 2019-10-31 2021-05-04 比亚迪股份有限公司 Energy conversion device and vehicle
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376025B2 (en) * 2013-02-06 2016-06-28 Lg Electronics Inc. Charging apparatus and electric vehicle including the same
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
CA2997565A1 (en) 2015-09-11 2017-03-16 Invertedpower Pty Ltd A controller for an inductive load having one or more inductive windings

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228796A (en) * 2004-02-20 2007-09-06 Railway Technical Res Inst Circuit arrangement and railway vehicle operation system
JP4523954B2 (en) * 2004-02-20 2010-08-11 財団法人鉄道総合技術研究所 Circuit device and vehicle operation system
US8091665B2 (en) 2006-06-07 2012-01-10 Toyota Jidosha Kabushiki Kaisha Vehicle drive system and vehicle equipped with it
JP2009005531A (en) * 2007-06-22 2009-01-08 Nissan Motor Co Ltd Control method of vehicular charger
JP2010045961A (en) * 2008-07-16 2010-02-25 Toyota Central R&D Labs Inc Power control apparatus
US10604023B2 (en) 2008-10-22 2020-03-31 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US11167654B2 (en) 2008-10-22 2021-11-09 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US11752887B2 (en) 2008-10-22 2023-09-12 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US10994623B2 (en) 2008-10-22 2021-05-04 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
JP2010104227A (en) * 2008-10-22 2010-05-06 General Electric Co <Ge> Device for transmitting energy using power electronic device and machine inductance and method of manufacturing the device
US10131234B2 (en) 2008-10-22 2018-11-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US9809121B2 (en) 2008-10-22 2017-11-07 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US9620974B2 (en) 2008-10-22 2017-04-11 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US20120019174A1 (en) * 2009-03-27 2012-01-26 Jochen Mahlein Drive System, Method for Operating a Drive System, and Use
CN102365188A (en) * 2009-03-27 2012-02-29 索尤若驱动有限及两合公司 Drive system, method for operating the drive system and use
US8912738B2 (en) * 2009-03-27 2014-12-16 Sew-Eurodrive Gmbh & Co. Kg Drive system, method for operating a drive system, and use
US8933579B2 (en) 2009-03-27 2015-01-13 The Japan Research Institute, Limited Manufacturing method and vehicle
US8264196B2 (en) 2009-03-30 2012-09-11 The Japan Research Institute, Limited Charge control apparatus, battery pack, and vehicle
JP2010239713A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Power storage controller, battery pack, vehicle, and power storage control method
EP2427342B1 (en) * 2009-05-08 2020-11-11 SEW-EURODRIVE GmbH & Co. KG Charging arrangement for a vehicle and a vehicle with such an arrangement
US8278859B2 (en) 2009-08-06 2012-10-02 Denso Corporation Electric motor drive device, control method of electric motor drive device, and electrically driven device
JP2016106511A (en) * 2009-08-31 2016-06-16 ゼネラル・エレクトリック・カンパニイ Electric vehicle
JP2011055700A (en) * 2009-08-31 2011-03-17 General Electric Co <Ge> Device for transferring energy using onboard power electronics and method for manufacturing the same
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics
US8912750B2 (en) 2010-01-25 2014-12-16 Ls Industrial Systems Co., Ltd. Charger
JP2012034537A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Drive circuit for electric vehicle
US10454290B2 (en) 2010-11-05 2019-10-22 General Electric Company Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
CN102684283A (en) * 2011-03-18 2012-09-19 Ls产电株式会社 Inverter/charger integrated device and method for controlling the same
CN106972605A (en) * 2011-03-18 2017-07-21 Ls产电株式会社 Inverter/charger integrating device and its control method
JP2012200139A (en) * 2011-03-18 2012-10-18 Ls Industrial Systems Co Ltd Inverter/charger integrated device and method for controlling the same
US8736203B2 (en) 2011-03-18 2014-05-27 Lsis Co., Ltd. Inverter/charger integrated device and method for controlling the same
JP2013009587A (en) * 2011-06-23 2013-01-10 Ls Industrial Systems Co Ltd Switching device of electric car and control method thereof
CN102837621A (en) * 2011-06-23 2012-12-26 Ls产电株式会社 Switching device for electric vehicle and method of controlling switching device
US8981730B2 (en) 2011-06-23 2015-03-17 Lsis Co., Ltd. Switching device for electric vehicle and method of controlling the switching device
JP2014075853A (en) * 2012-10-02 2014-04-24 Toyota Motor Corp Vehicle control device and vehicle
JP2014082871A (en) * 2012-10-17 2014-05-08 Fuji Electric Co Ltd Charging device
JP2017530678A (en) * 2014-09-22 2017-10-12 ルノー エス.ア.エス. Apparatus and method for correcting neutral current set value of battery charger without galvanic insulation used in electric vehicle or hybrid vehicle
US10507716B2 (en) 2016-04-25 2019-12-17 General Electric Company Integrated charger for vehicles and method of making same
JP2017011993A (en) * 2016-08-08 2017-01-12 日立オートモティブシステムズ株式会社 Charger
US10252629B2 (en) * 2016-10-05 2019-04-09 Voltu Motor, Inc. Electric vehicle
JP2020537479A (en) * 2017-10-13 2020-12-17 ザ ガバニング カウンシル オブ ザ ユニバーシティ オブ トロントThe Governing Council Of The University Of Toronto On-board bidirectional AC quick charger for electric vehicles
WO2020125625A1 (en) * 2018-12-21 2020-06-25 比亚迪股份有限公司 Charging method for power battery, motor control circuit and vehicle
US11876396B2 (en) 2018-12-21 2024-01-16 Byd Company Limited Power battery charging method, motor control circuit, and vehicle
JP2020145886A (en) * 2019-03-08 2020-09-10 株式会社日立パワーソリューションズ Electric moving body
JP2021027657A (en) * 2019-08-02 2021-02-22 株式会社日立パワーソリューションズ Electric moving body and electric moving body charging system
CN112751396A (en) * 2019-10-31 2021-05-04 比亚迪股份有限公司 Energy conversion device and vehicle
CN112751396B (en) * 2019-10-31 2023-01-06 比亚迪股份有限公司 Energy conversion device and vehicle

Also Published As

Publication number Publication date
JP3284571B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP3284571B2 (en) Electric car
US8030882B2 (en) Power supply unit
JP3477850B2 (en) Electric vehicle charger
US7177163B2 (en) Two-way DC-DC converter
US8922050B2 (en) Method for controlling a power supply device having an inverter
JP5348326B2 (en) Electric vehicle and charging control method thereof
US9227523B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
JP3211323B2 (en) Charging device
JPH0630505A (en) Electric system for electric automobile
JP2008312394A (en) Voltage conversion device
JP4454444B2 (en) Bidirectional DC-DC converter
US5642021A (en) Method and system for controlling an alternator to optimize direct current output
JPS5961402A (en) Charger for battery driven vehicle
US7301247B2 (en) Power supply device incorporated in vehicle driven by internal combustion engine
JPH06292304A (en) Power converter for electric vehicle driving system
JP2000152408A (en) Electric vehicle
CN115280658A (en) Bidirectional DC-DC converter
JP2000102177A (en) Battery charger for hybrid vehicle
KR20090097030A (en) Charging and driving apparatus for electric vehicle and charging method therof
KR20190070784A (en) Vehicle power control device
JP2827488B2 (en) Charging device for electric vehicles
JP2012090458A (en) Power supply device
JP2850742B2 (en) Charger
CN112389176B (en) Integrated electric drive system and electric vehicle comprising same
CN210680638U (en) Vehicle-mounted distribution box and electric vehicle comprising same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

EXPY Cancellation because of completion of term