JP2009005531A - Control method of vehicular charger - Google Patents

Control method of vehicular charger Download PDF

Info

Publication number
JP2009005531A
JP2009005531A JP2007165496A JP2007165496A JP2009005531A JP 2009005531 A JP2009005531 A JP 2009005531A JP 2007165496 A JP2007165496 A JP 2007165496A JP 2007165496 A JP2007165496 A JP 2007165496A JP 2009005531 A JP2009005531 A JP 2009005531A
Authority
JP
Japan
Prior art keywords
coil
drive motor
charging
charger
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165496A
Other languages
Japanese (ja)
Other versions
JP4798072B2 (en
Inventor
Yusuke Minagawa
Iwao Yasuda
巌 安田
裕介 皆川
Original Assignee
Nissan Motor Co Ltd
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, 日産自動車株式会社 filed Critical Nissan Motor Co Ltd
Priority to JP2007165496A priority Critical patent/JP4798072B2/en
Publication of JP2009005531A publication Critical patent/JP2009005531A/en
Application granted granted Critical
Publication of JP4798072B2 publication Critical patent/JP4798072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a vehicular charger capable of increasing an average charging current as large as possible, decreasing charging loss significantly, and furthermore maintaining charging efficiency at high level. <P>SOLUTION: This control method is used for a vehicular charger. In a vehicle including a vehicular battery 11, an inverter 12, and a drive motor 13, the vehicular battery is charged with a charger, which includes an external power source 16, the drive motor, and the inverter and uses the coils of the drive motor as a booster by connecting the positive side of the external power source to the neutral point of the drive motor. At least one coil of the drive motor is selected and used as a charging inductor in accordance with the inductance of each phase coil which fluctuates depending on the position of a rotor to the stator of the drive motor which has stopped. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルを昇圧器として用いた充電器を用いて、車両用バッテリを充電する際の車両用充電器の制御方法に関するものである。   The present invention relates to a vehicle including a vehicle battery, an inverter, and a drive motor. The drive motor includes an external power supply, a drive motor, and an inverter, and the positive side of the external power supply is connected to a neutral point of the drive motor. The present invention relates to a control method for a vehicle charger when charging a vehicle battery using a charger using the above coil as a booster.

従来、例えば電気自動車におけるバッテリの充電方法として、商用の交流電源からの充電を可能にしながら専用の充電装置を不要にし、また装置構成を簡単にする充電方法が知られている(例えば、特許文献1参照)。そして、特許文献1の図6において、車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルを昇圧器として用いた充電器を用いて、車両用バッテリを充電する方法が開示されている。   2. Description of the Related Art Conventionally, as a battery charging method in, for example, an electric vehicle, there is known a charging method that makes it possible to charge from a commercial AC power source while eliminating the need for a dedicated charging device and simplifying the device configuration (for example, Patent Documents). 1). In FIG. 6 of Patent Document 1, in a vehicle including a vehicle battery, an inverter, and a drive motor, the vehicle is composed of an external power supply, a drive motor, and an inverter, and the positive side of the external power supply is a neutral point of the drive motor. A method of charging a vehicle battery using a charger that uses a coil of a drive motor connected as a booster is disclosed.

特開平5−207664号公報JP-A-5-207664

上述した従来の充電方法のように、駆動用モータとインバータとを用いて車両用バッテリを充電する充電器において、駆動用モータのステータに対するロータ位置は、モータ停止時に特定の位置になることはない。ここで、一般に駆動用モータの各相コイルのインダクタンスは、ロータ位置により正弦波状に変化することが知られている。したがって、駆動用モータのコイルを昇圧器のインダクタとして利用する場合、一般の充電器に使用されるインダクタより非常に小さいので、バッテリ充電電流が大幅に変化し、平均充電電流が少ないという問題点があった。また、充電電流を大きくするため通電時間を長くした場合、充電ピーク電流が大幅に増大する。そのため、平均充電電流は増大するが充電損失も大幅に増大し、充電効率も低下するという問題点があった。   In the charger that charges the vehicle battery using the drive motor and the inverter as in the conventional charging method described above, the rotor position of the drive motor with respect to the stator does not become a specific position when the motor is stopped. . Here, it is generally known that the inductance of each phase coil of the drive motor changes in a sine wave shape depending on the rotor position. Therefore, when the coil of the drive motor is used as the inductor of the booster, it is much smaller than the inductor used in a general charger, so there is a problem that the battery charging current changes greatly and the average charging current is small. there were. Further, when the energization time is lengthened to increase the charging current, the charging peak current is greatly increased. For this reason, there is a problem in that although the average charging current increases, the charging loss also increases significantly and the charging efficiency also decreases.

本発明の目的は上述した問題点を解消して、平均充電電流を可能な限り多くすることができ、充電損失を大幅に減少でき、しかも、充電効率を高く維持することができる車両用充電器の制御方法を提供しようとするものである。   The object of the present invention is to solve the above-described problems, increase the average charging current as much as possible, greatly reduce charging loss, and maintain high charging efficiency. The control method is intended to be provided.

本発明の車両用充電器の制御方法は、車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルを昇圧器として用いた充電器を用いて、車両用バッテリを充電する際の車両用充電器の制御方法であって、停止した駆動用モータのステータに対するロータの位置により変化する各相コイルのインダクタンスに応じて、充電用インダクタとして使用する駆動用モータのコイルを少なくとも1つ選択して用いることを特徴とするものである。   The vehicle charger control method according to the present invention includes a vehicle battery, an inverter, and a drive motor. The vehicle charger includes an external power supply, a drive motor, and an inverter. A method of controlling a vehicle charger when charging a vehicle battery using a charger using a coil of a drive motor connected as a booster as a booster, the rotor for a stator of a stopped drive motor In accordance with the inductance of each phase coil that changes depending on the position, at least one coil of a driving motor used as a charging inductor is selected and used.

上述した本発明の車両用充電器の制御方法では、停止した駆動用モータのステータに対するロータの位置により変化する各相コイルのインダクタンスに応じて、充電用インダクタとして使用する駆動用モータのコイルを少なくとも1つ選択して用いることで、より具体的には、駆動用モータの各相のコイルのうち、インダクタンスの最も大きいコイルを、充電用インダクタとして駆動用モータのコイルを用いることで、平均充電電流を可能な限り多くすることができ、充電損失を大幅に減少でき、しかも、充電効率を高く維持することができる車両用充電器の制御方法を得ることができる。   In the vehicle charger control method of the present invention described above, at least the coil of the driving motor used as the charging inductor is at least in accordance with the inductance of each phase coil that changes depending on the position of the rotor with respect to the stator of the stopped driving motor. By selecting and using one, more specifically, among the coils of each phase of the driving motor, the coil having the largest inductance is used as the charging inductor, so that the average charging current is obtained. Can be increased as much as possible, charging loss can be greatly reduced, and a control method for a vehicle charger that can maintain high charging efficiency can be obtained.

以下、図面を参照して、本発明の車両用充電器の制御方法の実施態様を説明する。   Hereinafter, with reference to drawings, the embodiment of the control method of the charger for vehicles of the present invention is described.

本発明の車両用充電器の制御方法は、車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルのインダクタンスを昇圧器として用いた充電器を用いて、車両用バッテリを充電する用途であれば、どのような車両にも適用できる。その中でも、特許文献1に開示されているような電気自動車に、特に好適に用いることができる。   The vehicle charger control method according to the present invention includes a vehicle battery, an inverter, and a drive motor. The vehicle charger includes an external power supply, a drive motor, and an inverter. The present invention can be applied to any vehicle as long as it is used for charging a vehicle battery using a charger connected to a point and using a coil motor inductance as a booster. Among these, it can be particularly suitably used for an electric vehicle as disclosed in Patent Document 1.

本発明の車両用充電器の制御方法の最大の特徴は、停止した駆動用モータのステータに対するロータの位置により変化する各相コイルのインダクタンスに応じて、充電用インダクタンスとして使用する駆動用モータのコイルを少なくとも1つ選択して用いること、より具体的には、駆動用モータの各相のコイルのうち、インダクタンスの最も大きいコイルを、充電用インダクタンスとして使用する駆動用モータのコイルとして用いること、にある。なお、選択するコイルは1つが好適であるが、それに限定されるものではない。ただ、本発明は最適なコイルを選択する点が特徴であるため、充電のために使用するコイルとして、全相のコイルを選択することはない。   The greatest feature of the vehicle charger control method of the present invention is that the coil of the driving motor used as the charging inductance according to the inductance of each phase coil that changes depending on the position of the rotor with respect to the stator of the stopped driving motor. More specifically, it is preferable to select and use at least one of the coils of each phase of the driving motor, and use the coil having the largest inductance as the coil of the driving motor that is used as the charging inductance. is there. One coil is preferably selected, but is not limited to this. However, since the present invention is characterized in that an optimum coil is selected, a coil for all phases is not selected as a coil used for charging.

そして、コイルの選択方法としては、1.マップによりコイルを選択する方法、2.各コイルを1相ずつ通電することにより、コイルを選択する方法、3.全コイルに同時に交流を通電することにより、コイルを選択する方法がある。また、各コイルを1相ずつ通電する際には、一定時間通電する方法、および、電流制限値一定として通電する方法、が好適に用いられる。さらに、全コイルに同時に交流を通電する方法としては、一定電流通電する方法、および、一定電圧印加して通電する方法、が好適に用いられる。   And as a selection method of a coil, 1. 1. Method of selecting a coil by map 2. a method of selecting a coil by energizing each coil one phase at a time; There is a method of selecting a coil by energizing all coils simultaneously with alternating current. Moreover, when energizing each coil one phase at a time, a method of energizing for a certain period of time and a method of energizing with a constant current limit value are preferably used. Furthermore, as a method for energizing all the coils simultaneously, a method of energizing a constant current and a method of energizing by applying a constant voltage are preferably used.

以下、実際の例について説明する。 Hereinafter, an actual example will be described.

<第1実施例:コイルの選択をマップのルックアップにより行う例>
図1は本発明の車両用充電器の制御方法に係る第1実施例の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a first embodiment according to a control method for a vehicle charger of the present invention. 図1に示す例において、11は充電の対象となる車両用バッテリ、12はインバータ、13は3相のコイルからなるロータ14とステータ15とからなる駆動用リラクタンスモータ、16は外部電源(直流)、17はステータ15に対するロータ14の位置を検出するためのステータ15と一体に設けられたレゾルバ、18はレゾルバ17の測定結果に基づいてロータ位置を検出するロータ位置検出器、19は制御器である。 In the example shown in FIG. 1, 11 is a vehicle battery to be charged, 12 is an inverter, 13 is a drive reluctance motor including a rotor 14 and a stator 15 composed of three-phase coils, and 16 is an external power supply (direct current). , 17 is a resolver provided integrally with the stator 15 for detecting the position of the rotor 14 with respect to the stator 15, 18 is a rotor position detector for detecting the rotor position based on the measurement result of the resolver 17, and 19 is a controller. is there. 図1に示す例において、外部電源16は、モータ13が停止している充電時に外部から装着され、その正側をモータ13の中性点に接続し、その負側をグラウンドに接続している。 In the example shown in FIG. 1, the external power supply 16 is attached from the outside when the motor 13 is stopped and charging, the positive side thereof is connected to the neutral point of the motor 13, and the negative side thereof is connected to the ground. .. また、充電器を、外部電源17、駆動用リラクタンスモータ13およびインバータ12から構成し、駆動用リラクタンスモータ13の3つのコイルのうち、自己インダクタンスが最大と判断され選択されたコイルを昇圧器として用いている。 Further, the charger is composed of an external power supply 17, a drive reluctance motor 13 and an inverter 12, and the coil selected as having the maximum self-inductance among the three coils of the drive reluctance motor 13 is used as a booster. ing. <First Embodiment: Example of selecting coil by map lookup> <First Embodiment: Example of selecting coil by map lookup>
FIG. 1 is a diagram showing a configuration of a first embodiment according to a control method for a vehicle charger according to the present invention. In the example shown in FIG. 1, 11 is a vehicle battery to be charged, 12 is an inverter, 13 is a reluctance motor for driving consisting of a rotor 14 and a stator 15 consisting of three-phase coils, and 16 is an external power source (DC). , 17 is a resolver provided integrally with the stator 15 for detecting the position of the rotor 14 with respect to the stator 15, 18 is a rotor position detector for detecting the rotor position based on the measurement result of the resolver 17, and 19 is a controller. is there. In the example shown in FIG. 1, the external power source 16 is mounted from the outside during charging when the motor 13 is stopped, and its positive side is connected to the neutral point of the motor 13 and its negative side is connected to the ground. . The charger is composed of an external power source 17, a driv FIG. 1 is a diagram showing a configuration of a first embodiment according to a control method for a vehicle charger according to the present invention. In the example shown in FIG. 1, 11 is a vehicle battery to be charged, 12 is an inverter , 13 is a reluctance motor for driving consisting of a rotor 14 and a stator 15 consisting of three-phase generating, and 16 is an external power source (DC)., 17 is a resolver provided with the stator 15 for detecting the position of the rotor 14 with respect to the stator 15, 18 is a rotor position detector for detecting the rotor position based on the measurement result of the resolver 17, and 19 is a controller. Is there. In the example shown in FIG. 1, the external power source 16 is mounted from the outside during charging when the motor 13 is stopped, and its positive side is connected to the neutral point of the motor 13 and its negative side is connected to the ground .. The charger is composed of an external power source 17, a driv ing reluctance motor 13 and an inverter 12. Of the three coils of the driving reluctance motor 13, the coil selected as having the highest self-inductance is used as a booster. ing. ing reluctance motor 13 and an inverter 12. Of the three generating of the driving reluctance motor 13, the coil selected as having the highest self-inductance is used as a booster.

図2−1〜2−3は、それぞれ、駆動用リラクタンスモータ13とインバータ12とを用いた図1に示すバッテリ充電器において、モータ13の選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートである。図2−1〜2−3に示す例においては、充電対象がバッテリなので、過電圧充電を防止するためにピーク電流を制限する方式を選択している。以下、図2−1〜2−3に従って、本発明の第1実施例における充電動作について説明する。   FIGS. 2-1 to 2-3 are battery chargers shown in FIG. 1 using a driving reluctance motor 13 and an inverter 12, respectively. It is a flowchart for demonstrating the case where it comprises. In the example shown in FIGS. 2-1 to 2-3, since the charging target is a battery, a method of limiting the peak current is selected to prevent overvoltage charging. Hereinafter, the charging operation in the first embodiment of the present invention will be described with reference to FIGS.

コイルの自己インダクタンスの導出およびコイルの選択
まず、図2−1に示すように、レゾルバ17(もしくはエンコーダ等)を用いるロータ位置検出器18によりロータ位置θを検出する。 First, as shown in FIG. 2-1, the rotor position θ is detected by the rotor position detector 18 using a resolver 17 (or an encoder or the like). つづいて測定したロータ位置θ'に対する各コイルの自己インダクタンスデータを、予めロータ位置と各コイルの自己インダクタンスデータとの関係を測定して求めて構成したマップをルックアップすることにより、各コイル(ここでは、三相モータなので、U、V、W相)の自己インダクタンスを導出する。 Next, by looking up the map configured by measuring the self-inductance data of each coil with respect to the measured rotor position θ'by measuring the relationship between the rotor position and the self-inductance data of each coil in advance, each coil (here). Then, since it is a three-phase motor, the self-inductance of U, V, W phase) is derived. 次に各相コイルの自己インダクタンスの大小を判定し、最も自己インダクタンスの大きなコイルを判定する。 Next, the magnitude of the self-inductance of each phase coil is determined, and the coil having the largest self-inductance is determined. 例えば、U相コイルの自己インダクタンスがもっとも大きい場合には、通電に使用するコイルとして、U相コイルが選択される。 For example, when the self-inductance of the U-phase coil is the largest, the U-phase coil is selected as the coil used for energization. Derivation of coil self-inductance and selection of coil First, as shown in FIG. 2A, a rotor position θ is detected by a rotor position detector 18 using a resolver 17 (or an encoder or the like). Each coil (here, the self-inductance data of each coil with respect to the rotor position θ ′ measured) is obtained by looking up a map configured by measuring the relationship between the rotor position and the self-inductance data of each coil in advance. Then, since it is a three-phase motor, the self-inductance of U, V, and W phases is derived. Next, the magnitude of the self-inductance of each phase coil is determined, and the coil having the largest self-inductance is determined. For example, when the self-inductance of the U-phase coil is the largest, the U-phase coil is selected as the coil used for energization. Derivation of coil self-inductance and selection of coil First, as shown in FIG. 2A, a rotor position θ is detected by a rotor position detector 18 using a resolver 17 (or an encoder or the like). Each coil (here, the self-inductance data of each coil with respect to the rotor position θ ′ measured) is obtained by looking up a map configured by measuring the relationship between the rotor position and the self-inductance data of each coil in advance. Then, since it is a three-phase motor, the self-inductance of U, V, and W phases is derived. Next, the magnitude of the self-inductance of each phase coil is determined, and the coil having the largest self-inductance is determined. For example, when the self-inductance of the U-phase coil is the largest, the U-phase coil is selected as the coil used for encoder.

充電動作説明
次に、実際に充電動作を行うのであるが、まず、充電動作を行うための初期値の設定を行う。具体的には、図2−1に示すように、充電周期Tp、下アームオン時間Ton、目標バッテリ充電電圧Vref、充電電流制御値Ilimが設定される。
Explanation of Charging Operation Next, the charging operation is actually performed. First, initial values for performing the charging operation are set. Specifically, as shown in FIG. 2A, a charging cycle Tp, a lower arm on time Ton, a target battery charging voltage Vref, and a charging current control value Ilim are set.

図2−2に従って、充電電流のピーク電流による制限を実施した場合の充電動作について説明すると、まず、インバータゲート信号を出力可能に設定し、前述と同様に通電コイルをU相コイルとした場合、図1におけるインバータ12のIGBT: Q1(以後Q1とする)を下アームオン時間Tonの間、ONする。これにより、U相コイルに外部直流電圧Emが印加され電流Iuが流れる。つづいて電流Iuをインバータ12に備わった電流センサにより検出し、充電電流制御値Ilimと比較する。コイル電流Iuが充電電流制御値Ilimより小さい場合には、下アームオン時間Ton経過後、Q1をOFFにする。これにより、U相コイルに誘起電圧LUdi1/dtが発生しダイオードD2を介してバッテリに電流Iuが充電されることとなる。つづいて、バッテリ電圧を電圧センサを用いて検出し、目標バッテリ電圧Vrefと比較する。ここで、検出したバッテリ電圧が目標バッテリ電圧より小さい場合には、再び充電動作を実施するためQ1をONする。   Referring to FIG. 2-2, the charging operation when the charging current is limited by the peak current will be described. First, the inverter gate signal is set to be outputable, and when the energizing coil is a U-phase coil as described above, The IGBT 12 of the inverter 12 in FIG. 1: Q1 (hereinafter referred to as Q1) is turned ON during the lower arm ON time Ton. Thereby, external DC voltage Em is applied to the U-phase coil, and current Iu flows. Subsequently, the current Iu is detected by a current sensor provided in the inverter 12 and compared with the charging current control value Ilim. When the coil current Iu is smaller than the charging current control value Ilim, Q1 is turned off after the lower arm on time Ton has elapsed. As a result, an induced voltage LUdi1 / dt is generated in the U-phase coil, and the current Iu is charged in the battery via the diode D2. Subsequently, the battery voltage is detected using a voltage sensor and compared with the target battery voltage Vref. Here, when the detected battery voltage is lower than the target battery voltage, Q1 is turned on to perform the charging operation again.

図2−2に示すように、前記動作を繰り返すことにより、バッテリ電圧が上昇し目標バッテリ電圧Vrefに到達すると充電動作を停止する。また、コイル電流Iuと充電電流制限値Ilimと比較し、コイル電流Iuが充電電流制限値Ilimより大きい場合には、図2−3に示すように、直ちにQ1をOFFにし、再び充電動作を実施するために、充電周期Tp、下アームオン時間Tonを再計算し、前記動作を繰り返すこととなる。   As shown in FIG. 2B, by repeating the above operation, when the battery voltage rises and reaches the target battery voltage Vref, the charging operation is stopped. Also, when the coil current Iu is compared with the charging current limit value Ilim and the coil current Iu is larger than the charging current limit value Ilim, as shown in FIG. 2-3, Q1 is immediately turned off and the charging operation is performed again. Therefore, the charging cycle Tp and the lower arm on time Ton are recalculated and the above operation is repeated.

効果の説明
図3に、第1実施例において、ピーク電流を一定とした場合のロータ位置θに対するバッテリ平均充電電流特性を示す。 FIG. 3 shows the battery average charging current characteristic with respect to the rotor position θ when the peak current is constant in the first embodiment. 一般にモータのロータを構成する各コイルの自己インダクタンスは、モータのステータに対するロータ位置θに関して正弦波状の増減を繰り返す。 Generally, the self-inductance of each coil constituting the rotor of the motor repeats a sinusoidal increase / decrease with respect to the rotor position θ with respect to the stator of the motor. ここで、ロータ角度θは、ロータ磁極突極部中心が巻線ステータ中心と重なる位置θをゼロとし、時計回りに進むものとする。 Here, it is assumed that the rotor angle θ advances clockwise with the position θ where the center of the rotor pole salient pole overlaps with the center of the winding stator is zero. Description of Effect FIG. 3 shows the battery average charging current characteristic with respect to the rotor position θ when the peak current is constant in the first embodiment. In general, the self-inductance of each coil constituting the motor rotor repeatedly increases and decreases sinusoidally with respect to the rotor position θ relative to the stator of the motor. Here, the rotor angle θ assumes that the position θ where the rotor magnetic pole salient pole center overlaps the winding stator center is zero, and proceeds in the clockwise direction. Description of Effect FIG. 3 shows the battery average charging current characteristic with respect to the rotor position θ when the peak current is constant in the first embodiment. In general, the self-inductance of each coil individually the motor rotor repeatedly increases and decreases sinusoidally. with respect to the rotor position θ relative to the constant of the motor. Here, the rotor angle θ assumes that the position θ where the rotor magnetic pole salient pole center overlaps the winding constant center is zero, and proceeds in the clockwise direction.

ピーク充電電流を一定とした場合、自己インダクタンスが大きいほど充電周期が長くなるため、自己インダクタンスの最小値または平均値を用いて決定される。ただし、自己インダクタンスの平均値を用いた場合、その充電周期に達する前にピーク充電電流に至るため、平均充電電流は相対的に減少する。   When the peak charging current is constant, the charging cycle becomes longer as the self-inductance increases, and therefore, it is determined using the minimum value or the average value of the self-inductance. However, when the average value of the self-inductance is used, the peak charging current is reached before the charging cycle is reached, so the average charging current is relatively reduced.

ここで、図3からロータ位置θにおいて、最も大きな自己インダクタンスを有するコイルを選択することにより、充電電流をもっとも大きくすることが可能であり、充電効率向上に非常に有効であることがわかる。   Here, it can be seen from FIG. 3 that the charging current can be maximized by selecting the coil having the largest self-inductance at the rotor position θ, which is very effective in improving the charging efficiency.

無作為にモータが停止した場合、ステータに対するロータ位置θは特定できず、選択したコイルの自己インダクタンスも特定できないため、平均自己インダクタンスで充電されると考えられる。したがって、この場合、バッテリは平均充電電流で充電されることになる。一方、本発明の充電方法では、例えばロータ位置θが90度であった場合、U相の自己インダクタンスが最も大きいので、充電コイルとしてU相コイルを選択する。この場合、充電器は、従来の平均充電電流の約1.7倍の充電電流で充電することが可能となる。   When the motor is stopped at random, the rotor position θ with respect to the stator cannot be specified, and the self-inductance of the selected coil cannot be specified. Therefore, in this case, the battery is charged with an average charging current. On the other hand, in the charging method of the present invention, for example, when the rotor position θ is 90 degrees, the U-phase self-inductance is the largest, so the U-phase coil is selected as the charging coil. In this case, the charger can be charged with a charging current approximately 1.7 times the conventional average charging current.

<第2実施例:コイルの選択を各コイル1相ずつ通電することにより行う例>
図4は本発明の車両用充電器の制御方法に係る第2実施例の構成を示す図である。図4に示す第2実施例において、図1に示す第1実施例と同じ部材には同じ符号を付し、その説明を省略する。図4に示す第2実施例において、図1に示す第1実施例と異なる点は、駆動用リラクタンスモータ13の代わりにIPMモータ21を用いた点である。
<Second Embodiment: Example of selecting coils by energizing one phase of each coil>
FIG. 4 is a diagram showing the configuration of a second embodiment according to the vehicle charger control method of the present invention. In the second embodiment shown in FIG. 4, the same members as those in the first embodiment shown in FIG. The second embodiment shown in FIG. 4 is different from the first embodiment shown in FIG. 1 in that an IPM motor 21 is used instead of the driving reluctance motor 13. FIG. 4 is a diagram showing the configuration of a second embodiment according to the vehicle charger control method of the present invention. In the second embodiment shown in FIG. 4, the same members as those in the first embodiment shown in FIG. The second embodiment shown in FIG. 4 is different from the first embodiment shown in FIG. 1 in that an IPM motor 21 is used instead of the driving reluctance motor 13.

図5−1〜5−8は、それぞれ、駆動用IPMモータ21とインバータ12とを用いた図4に示すバッテリ充電器において、モータ21の選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートである。図5−1〜5−8に示す例においては、一定充電時間の充電電流値で自己インダクタンスの大小を判定しており、各相コイルを通電してコイル電流最大値を測定し、コイル電流最大値の最も小さいコイルをインダクタンスの最も大きいコイルとして選択している。以下、図5−1〜5−8に従って、本発明の第2実施例における充電動作について説明する。   FIGS. 5A to 5E are schematic views of the battery charger shown in FIG. 4 using the driving IPM motor 21 and the inverter 12, respectively, using the self-inductance of the selected coil of the motor 21. It is a flowchart for demonstrating the case where it comprises. In the examples shown in FIGS. 5-1 to 5-8, the magnitude of the self-inductance is determined based on the charging current value for a fixed charging time, and the coil current maximum value is measured by energizing each phase coil. The coil having the smallest value is selected as the coil having the largest inductance. Hereinafter, the charging operation in the second embodiment of the present invention will be described with reference to FIGS.

通電コイルの選択
まず、図5−1に示すように、各モータコイルに通電する下アーム通電時間Tonを設定し、通電電流制御値Ilimを読み込む。 First, as shown in FIG. 5-1, the lower arm energization time Ton for energizing each motor coil is set, and the energization current control value Illim is read. 電流制限フラグ及び通電カウンタをゼロに初期化する。 Initialize the current limit flag and energization counter to zero. つづいて通電コイルを選択し、コイルの接続されている下アームのゲート信号を通電可能な状態にする。 Next, select the energizing coil and make the gate signal of the lower arm to which the coil is connected energized. ここで、図5−8に示すフローチャートに従ってタイマ割込みルーチンが実行される。 Here, the timer interrupt routine is executed according to the flowchart shown in FIG. 5-8. ここで、図5−1に示すように、例として三相モータなのでu相コイルが通電される。 Here, as shown in FIG. 5-1 because it is a three-phase motor as an example, the u-phase coil is energized. 以後、この操作をモータ相数分繰り返す(図5−2、5−3)。 After that, this operation is repeated for the number of motor phases (FIGS. 5-2, 5-3). 上記ルーチンを実施することにより、各相コイル通電時間Tpを一定とした場合の各相コイルのコイル電流最大値が測定され、Iumax、Ivmax、Iwmaxに記憶される。 By executing the above routine, the maximum coil current value of each phase coil when the energization time Tp of each phase coil is constant is measured and stored in Iumax, Ivmax, and Iwmax. この結果より、最大通電電流の最も小さなコイルが、最も大きな自己インダクタンスを有するコイルと判定される(図5−4)。 From this result, it is determined that the coil having the smallest maximum energizing current is the coil having the largest self-inductance (Fig. 5-4). Selection of Energizing Coil First, as shown in FIG. 5A, the lower arm energizing time Ton energizing each motor coil is set, and the energizing current control value Ilim is read. The current limit flag and energization counter are initialized to zero. Subsequently, the energizing coil is selected, and the gate signal of the lower arm to which the coil is connected is made energized. Here, a timer interrupt routine is executed according to the flowchart shown in FIG. Here, as shown in FIG. 5A, the u-phase coil is energized because it is a three-phase motor as an example. Thereafter, this operation is repeated for the number of motor phases (FIGS. 5-2 and 5-3). By executing the above routine, the maximum coil current value of each phase coil when each phase coil energization time Tp is constant is measured and stored in Iumax, Ivmax, and Iwmax. From this result, the coil with the smallest maximum energization current is determined to be the coil with the largest self-inductance (FIG. 5 Selection of Energizing Coil First, as shown in FIG. 5A, the lower arm energizing time Ton energizing each motor coil is set, and the energizing current control value Ilim is read. The current limit flag and energization counter are initialized to zero. the energizing coil is selected, and the gate signal of the lower arm to which the coil is connected is made energized. Here, a timer interrupt routine is executed according to the flowchart shown in FIG. Here, as shown in FIG. 5A, the u-phase coil is energized because it is a three-phase motor as an example. Therefore, this operation is repeated for the number of motor phases (FIGS. 5-2 and 5-3). By executing the above routine, the maximum coil current value of each phase coil when each phase coil energization time Tp is constant is measured and stored in Iumax, Ivmax, and Iwmax. From this result, the coil with the smallest maximum energization current is determined to be the coil with the largest self -inductance (FIG. 5 -4). -Four).

充電動作の実行
つづいて、充電動作が実行されるが、充電動作を行う前に最大通電電流Imaxより、コイルの自己インダクタンスLを算出し、そのLを基に充電周期Tp、下アームオン時間Tonを算出する(図5−5)。以下、実施例1の充電動作で示したものと同様の操作が実施される(図5−6、5−7)。
Following the execution of the charging operation, the charging operation is executed. Before performing the charging operation, the self-inductance L of the coil is calculated from the maximum energization current Imax, and the charging cycle Tp and the lower arm on time Ton are calculated based on the L. Calculate (FIG. 5-5). Thereafter, the same operation as that shown in the charging operation of the first embodiment is performed (FIGS. 5-6 and 5-7).

なお、上述した第2実施例では、コイルを選択するにあたり、各コイルを1相ずつ通電して自己インダクタンスを求める際の通電方法として、一定時間通電する方法をとっていたが、電流制限値を一定として通電する方法を用いることもできる。 In the second embodiment described above, when selecting a coil, a method of energizing each coil one phase at a time and obtaining a self-inductance is a method of energizing for a certain period of time. It is also possible to use a method of energizing as constant.

<第3実施例:コイルの選択を全コイル1に同時に通電することにより行う例>
図6は本発明の車両用充電器の制御方法に係る第3実施例の構成を示す図である。 FIG. 6 is a diagram showing a configuration of a third embodiment according to a control method for a vehicle charger of the present invention. 図6に示す第3実施例において、図1に示す第1実施例と同じ部材には同じ符号を付し、その説明を省略する。 In the third embodiment shown in FIG. 6, the same members as those in the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. 図6に示す第3実施例において、図1に示す第1実施例と異なる点は、駆動用リラクタンスモータ13の代わりにIPMモータ21を用いた点である。 The third embodiment shown in FIG. 6 differs from the first embodiment shown in FIG. 1 in that the IPM motor 21 is used instead of the driving reluctance motor 13. そのため、構成は図4に示す第2実施例と同じである。 Therefore, the configuration is the same as that of the second embodiment shown in FIG. <Third embodiment: Example in which selection of coils is performed by energizing all coils 1 simultaneously> <Third embodiment: Example in which selection of coil is performed by energizing all promoting 1 simultaneously>
FIG. 6 is a diagram showing a configuration of a third embodiment according to the control method for a vehicle charger of the present invention. In the third embodiment shown in FIG. 6, the same members as those in the first embodiment shown in FIG. The third embodiment shown in FIG. 6 is different from the first embodiment shown in FIG. 1 in that an IPM motor 21 is used instead of the driving reluctance motor 13. Therefore, the configuration is the same as that of the second embodiment shown in FIG. FIG. 6 is a diagram showing a configuration of a third embodiment according to the control method for a vehicle charger of the present invention. In the third embodiment shown in FIG. 6, the same members as those in the first embodiment shown in FIG. The third embodiment shown in FIG. 6 is different from the first embodiment shown in FIG. 1 in that an IPM motor 21 is used instead of the driving reluctance motor 13. Therefore, the configuration is the same as that of the second embodiment shown in FIG.

図7−1〜7−6は、それぞれ、駆動用IPMモータ21とインバータ12とを用いた図6に示すバッテリ充電器において、モータ21の選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートである。図7−1〜7−6に示す例においては、全相のコイルに同時に交流を通電することによりモータを一定電圧にて励磁しており、各相コイルの電流最大値を計算し、コイル電流最大値の最も小さいコイルを、インダクタンスの最も大きいコイルとして選択している。以下、図7−1〜7−6に従って、本発明の第3実施例における充電動作について説明する。   FIGS. 7-1 to 7-6 are battery chargers shown in FIG. 6 using the drive IPM motor 21 and the inverter 12, respectively. It is a flowchart for demonstrating the case where it comprises. In the example shown in FIGS. 7-1 to 7-6, the motor is excited at a constant voltage by energizing all phases of the coil simultaneously, and the maximum current value of each phase coil is calculated. The coil having the smallest maximum value is selected as the coil having the largest inductance. Hereinafter, the charging operation in the third embodiment of the present invention will be described with reference to FIGS. 7-1 to 7-6.

通電コイルの選択
まず、図7−1に示すように、各相コイルに通電するために、メインルーチンにて各相コイルの平均インダクタンスLave、励磁スイッチング周期Tsw、励磁周波数fex、励磁電圧振幅Vexを読み込み、励磁電気角ωex、通電時間tsumをゼロに初期化する。 First, as shown in FIG. 7-1, in order to energize each phase coil, the average inductance Love, the exciting switching cycle Tsw, the exciting frequency fex, and the exciting voltage amplitude Vex of each phase coil are read in the main routine to excite electricity. Initialize the angle ωex and the energization time tsum to zero. つづいて、インバータのすべてのゲート信号を通電可能な状態にする。 Next, make all the gate signals of the inverter energized. ここで、図3−6に示すフローチャートに従ってタイマ割込みルーチンが実行される。 Here, the timer interrupt routine is executed according to the flowchart shown in FIG. 3-6. 上記ルーチンを実施することにより、励磁電圧振幅を一定とした場合に各相コイルに流れるコイル電流が計測され、最大値Iumax、Ivmax、Iwmaxに記憶される。 By executing the above routine, the coil current flowing through each phase coil is measured when the excitation voltage amplitude is constant, and is stored in the maximum values ​​Iumax, Ivmax, and Iwmax. この結果より、最大通電電流の最も小さなコイルが、最も大きな自己インダクタンスを有するコイルと判定される(図7−2)。 From this result, it is determined that the coil having the smallest maximum energizing current is the coil having the largest self-inductance (Fig. 7-2). Selection of Energizing Coil First, as shown in FIG. 7A, in order to energize each phase coil, an average inductance Lave, excitation switching period Tsw, excitation frequency fex, and excitation voltage amplitude Vex of each phase coil are set in the main routine. Reading, the excitation electrical angle ωex, and the energization time tsum are initialized to zero. Subsequently, all the gate signals of the inverter are made energized. Here, a timer interrupt routine is executed in accordance with the flowchart shown in FIG. By executing the above routine, the coil current flowing through each phase coil when the excitation voltage amplitude is constant is measured and stored in the maximum values Iumax, Ivmax, and Iwmax. From this result, the coil with the smallest maximum energization current is determined to be the coil with the largest self-inductance (FIG. 7-2). Selection of Energizing Coil First, as shown in FIG. 7A, in order to energize each phase coil, an average inductance Lave, excitation switching period Tsw, excitation frequency fex, and excitation voltage amplitude Vex of each phase coil are set in the main routine Reading, the excitation electrical angle ωex, and the energization time tsum are initialized to zero. Thus, all the gate signals of the inductance are made energized. Here, a timer interrupt routine is executed in accordance with the amplitude shown in FIG. By executing the above routine, the coil current flowing through each phase coil when the excitation voltage amplitude is constant is measured and stored in the maximum values ​​Iumax, Ivmax, and Iwmax. From this result, the coil with the smallest maximum energization current is determined to be the coil with the largest self-inductance (FIG. 7-2).

充電動作の実行
つづいて、充電動作が実行されるが、充電動作を行う前に最大通電電流Imaxにより、コイルの自己インダクタンスLを算出し、そのLを基に充電周期Tp、下アームオン時間Tonを算出する(図7−3)。 Subsequently, the charging operation is executed, but before the charging operation is performed, the self-inductance L of the coil is calculated by the maximum energizing current Imax, and the charging cycle Tp and the lower arm on time Ton are calculated based on the L (FIG. 7-3). 以下は、実施例1の充電動作で示したものと同様の操作が実施される(図7−4、7−5)。 In the following, the same operation as that shown in the charging operation of the first embodiment is performed (FIGS. 7-4 and 7-5). Following the execution of the charging operation, the charging operation is executed. Before performing the charging operation, the self-inductance L of the coil is calculated from the maximum energization current Imax, and the charging cycle Tp and the lower arm on time Ton are calculated based on the L. Calculate (FIG. 7-3). In the following, the same operation as that shown in the charging operation of the first embodiment is performed (FIGS. 7-4 and 7-5). Following the execution of the charging operation, the charging operation is executed. Before performing the charging operation, the self-inductance L of the coil is calculated from the maximum energization current Imax, and the charging cycle Tp and the lower arm on time Ton are calculated based on the L. Calculate (FIG. 7-3). In the following, the same operation as that shown in the charging operation of the first embodiment is performed (FIGS. 7-4 and 7-5).

なお、上述した第3実施例では、コイルを選択するにあたり、全コイルに同時に交流を通電して自己インダクタンスを求める際の通電方法として、一定電圧を印加して通電する方法をとっていたが、一定電流を通電する方法を用いることもできる。   In the above-described third embodiment, when selecting a coil, a method of applying a constant voltage and energizing was adopted as an energizing method when energizing all coils simultaneously to obtain self-inductance. A method of supplying a constant current can also be used.

本発明の車両用充電器の制御方法によれば、停止した駆動用モータのステータに対するロータの位置により変化する各相コイルのインダクタンスに応じて、充電用インダクタとして使用する駆動用モータのコイルを少なくとも1つ選択して用いることで、より具体的には、駆動用モータの各相のコイルのうち、インダクタンスの最も大きいコイルを、充電用インダクタとして駆動用モータを用いることで、平均充電電流を可能な限り多くすることができ、充電損失を大幅に減少でき、しかも、充電効率を高く維持することができ、車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルのインダクタンスを昇圧器として用いた充電器を用いて、車両用バッテリを充電する用途であれば、どのような車両にも適用できる。   According to the vehicle charger control method of the present invention, at least the coil of the driving motor used as the charging inductor is selected according to the inductance of each phase coil that changes depending on the position of the rotor with respect to the stator of the stopped driving motor. By selecting and using one, more specifically, among the coils of each phase of the drive motor, the coil having the largest inductance can be used as the charge inductor, so that the average charge current can be obtained. In a vehicle having a vehicle battery, an inverter and a drive motor, the external power supply, the drive motor and the inverter can be increased as much as possible, charging loss can be greatly reduced, and charging efficiency can be maintained high. The positive side of the external power supply is connected to the neutral point of the drive motor, and the coil of the drive motor is The inductance using a charger used as booster, if applications for charging the vehicle battery, can be applied to any vehicle.

本発明の車両用充電器の制御方法に係る第1実施例の構成を示す図である。 It is a figure which shows the structure of 1st Example which concerns on the control method of the charger for vehicles of this invention. 第1実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 1st Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第1実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 1st Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第1実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 1st Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第1実施例において、ピーク電流を一定とした場合のロータ位置θに対するバッテリ平均充電電流特性を示すグラフである。 In a 1st Example, it is a graph which shows the battery average charging current characteristic with respect to rotor position (theta) when a peak current is made constant. 本発明の車両用充電器の制御方法に係る第2実施例の構成を示す図である。 It is a figure which shows the structure of 2nd Example which concerns on the control method of the charger for vehicles of this invention. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第2実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 2nd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 本発明の車両用充電器の制御方法に係る第3実施例の構成を示す図である。 It is a figure which shows the structure of 3rd Example which concerns on the control method of the vehicle charger of this invention. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil. 第3実施例において、選択されたコイルの自己インダクタンスを利用して充電器を構成する場合について説明するためのフローチャートの一部を示す図である。 In 3rd Example, it is a figure which shows a part of flowchart for demonstrating the case where a charger is comprised using the self-inductance of the selected coil.

符号の説明Explanation of symbols

11 車両用バッテリ
12 インバータ
13 駆動用リラクタンスモータ
14 ロータ
15 ステータ
16 外部電源
17 レゾルバ
18 ロータ位置検出器
19 制御器
21 駆動用IPMモータ
DESCRIPTION OF SYMBOLS 11 Vehicle battery 12 Inverter 13 Drive reluctance motor 14 Rotor 15 Stator 16 External power supply 17 Resolver 18 Rotor position detector 19 Controller 21 Driving IPM motor

Claims (9)

  1. 車両用バッテリ、インバータおよび駆動用モータを備える車両において、外部電源、駆動用モータおよびインバータから構成され、外部電源の正側を駆動用モータの中性点に接続して駆動用モータのコイルを昇圧器として用いた充電器を用いて、車両用バッテリを充電する際の車両用充電器の制御方法であって、停止した駆動用モータのステータに対するロータの位置により変化する各相コイルのインダクタンスに応じて、充電用インダクタとして使用する駆動用モータのコイルを少なくとも1つ選択して用いることを特徴とする車両用充電器の制御方法。   In a vehicle equipped with a vehicle battery, an inverter and a drive motor, it is composed of an external power supply, a drive motor and an inverter, and the positive side of the external power supply is connected to the neutral point of the drive motor to boost the coil of the drive motor. A vehicle charger control method for charging a vehicle battery using a charger used as a charger, according to the inductance of each phase coil that changes depending on the position of the rotor with respect to the stator of the stopped drive motor Then, at least one coil of a driving motor used as a charging inductor is selected and used.
  2. 駆動用モータの各相のコイルのうち、インダクタンスの最も大きいコイルを選択して、充電用インダクタとして駆動用モータのコイルを用いることを特徴とする請求項1に記載の車両用充電器の制御方法。   2. The vehicle charger control method according to claim 1, wherein a coil having the largest inductance is selected from coils of each phase of the drive motor, and the coil of the drive motor is used as the charging inductor. .
  3. 駆動用モータの各相のコイルにおいて、ロータの位置とインダクタンスとの関係を予めマップとして求めておき、マップによりインダクタンスの最も大きいコイルを選択することを特徴とする請求項2に記載の車両用充電器の制御方法。   3. The vehicle charging according to claim 2, wherein, in the coils of each phase of the drive motor, the relationship between the position of the rotor and the inductance is obtained in advance as a map, and the coil having the largest inductance is selected from the map. Control method.
  4. 駆動用モータの各相のコイルにおいて、各コイルを1相ずつ通電することにより、各相コイルのコイル電流最大値を測定し、コイル電流最大値の最も小さいコイルをインダクタンスの最も大きいコイルとして選択することを特徴とする請求項2に記載の車両用充電器の制御方法。   In each phase coil of the drive motor, by energizing each coil one phase at a time, the maximum coil current value of each phase coil is measured, and the coil having the smallest coil current maximum value is selected as the coil having the largest inductance. The vehicle charger control method according to claim 2.
  5. 通電にあたり、一定時間通電することを特徴とする請求項4に記載の車両用充電器の制御方法。 5. The method for controlling a vehicle charger according to claim 4, wherein the energization is performed for a certain period of time.
  6. 通電にあたり、一定電流を通電することを特徴とする請求項4に記載の車両用充電器の制御方法。 5. The vehicle charger control method according to claim 4, wherein a constant current is applied when energized.
  7. 駆動用モータの各相のコイルにおいて、全相のコイルに同時に交流を通電することにより、各相コイルの電流最大値を測定し、コイル電流最大値の最も小さいコイルを、インダクタンスの最も大きいコイルとして選択することを特徴とする請求項2に記載の車両用充電器の制御方法。   In each phase coil of the drive motor, the maximum current value of each phase coil is measured by energizing all phases of the coil simultaneously, and the coil having the smallest coil current value is regarded as the coil having the largest inductance. The vehicle charger control method according to claim 2, wherein the vehicle charger is selected.
  8. 通電にあたり、一定電圧を通電することを特徴とする請求項7に記載の車両用充電器の制御方法。 8. The vehicle charger control method according to claim 7, wherein a constant voltage is applied when energizing.
  9. 通電にあたり、一定電流を印加して通電することを特徴とする請求項7に記載の車両用充電器の制御方法。 The method for controlling a vehicle charger according to claim 7, wherein the energization is performed by applying a constant current.
JP2007165496A 2007-06-22 2007-06-22 Control method for vehicle charger Expired - Fee Related JP4798072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165496A JP4798072B2 (en) 2007-06-22 2007-06-22 Control method for vehicle charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165496A JP4798072B2 (en) 2007-06-22 2007-06-22 Control method for vehicle charger

Publications (2)

Publication Number Publication Date
JP2009005531A true JP2009005531A (en) 2009-01-08
JP4798072B2 JP4798072B2 (en) 2011-10-19

Family

ID=40321302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165496A Expired - Fee Related JP4798072B2 (en) 2007-06-22 2007-06-22 Control method for vehicle charger

Country Status (1)

Country Link
JP (1) JP4798072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082602A1 (en) 2009-01-14 2010-07-22 株式会社 資生堂 Process for producing o/w microemulsion preparation for external application
JP2011010426A (en) * 2009-06-25 2011-01-13 Toyota Central R&D Labs Inc Power controller
JP2011015495A (en) * 2009-06-30 2011-01-20 Toyota Central R&D Labs Inc Power control device
CN102195269A (en) * 2010-03-03 2011-09-21 唐山普林亿威科技有限公司 Vehicle-mounted charger with drive motor function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207664A (en) * 1992-01-24 1993-08-13 Hokuto Denko Kk Electric automobile
JPH08126121A (en) * 1994-10-19 1996-05-17 Toyota Motor Corp Charging apparatus mounted on electric automobile
JP2008220073A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207664A (en) * 1992-01-24 1993-08-13 Hokuto Denko Kk Electric automobile
JPH08126121A (en) * 1994-10-19 1996-05-17 Toyota Motor Corp Charging apparatus mounted on electric automobile
JP2008220073A (en) * 2007-03-06 2008-09-18 Toyota Motor Corp Electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082602A1 (en) 2009-01-14 2010-07-22 株式会社 資生堂 Process for producing o/w microemulsion preparation for external application
JP2011010426A (en) * 2009-06-25 2011-01-13 Toyota Central R&D Labs Inc Power controller
JP2011015495A (en) * 2009-06-30 2011-01-20 Toyota Central R&D Labs Inc Power control device
CN102195269A (en) * 2010-03-03 2011-09-21 唐山普林亿威科技有限公司 Vehicle-mounted charger with drive motor function

Also Published As

Publication number Publication date
JP4798072B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
Gan et al. New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion
EP2625778B1 (en) Control of an electrical machine
JP5454685B2 (en) Motor drive device and vehicle equipped with the same
US6577087B2 (en) Multilevel DC link inverter
KR101628385B1 (en) Control method for permanent magnet synchronous motor
US9242567B2 (en) Charge apparatus and electric vehicle including the same
US8860356B2 (en) Variable magnetic flux motor drive system
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
US8639405B2 (en) Electric motor drive system for an electric vehicle
JP4466882B2 (en) Electric motor control device
US7026774B2 (en) Rotor position determination device of rotating electric machine and control device of rotating electric machine
JP5120586B2 (en) Field winding type synchronous machine
CN1290996B (en) High efficient motor device and method for controlling motor
JP5109290B2 (en) Electric motor drive control system and control method thereof
US8013553B2 (en) Rotary electric system with neutral-point powering system
JP4001120B2 (en) Voltage converter
US8232753B2 (en) Control device for electric motor drive apparatus
US7164253B2 (en) Motor drive control apparatus
JP5652659B2 (en) Electric motor control device
US7391180B2 (en) Pulse width modulation control circuit for a multimode electrical machine, and a multimode electrical machine equipped with such a control circuit
JP5261539B2 (en) Electromagnetic rotating electric machine
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
US8427088B2 (en) Apparatus for carrying out improved control of rotary machine
JP4985780B2 (en) Electric motor control device, drive device and hybrid drive device
EP1990908B1 (en) Rotary electric system designed to utilize zero-phase circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees