JPH05207086A - System and equipment for duplex differential coding communication - Google Patents

System and equipment for duplex differential coding communication

Info

Publication number
JPH05207086A
JPH05207086A JP4010694A JP1069492A JPH05207086A JP H05207086 A JPH05207086 A JP H05207086A JP 4010694 A JP4010694 A JP 4010694A JP 1069492 A JP1069492 A JP 1069492A JP H05207086 A JPH05207086 A JP H05207086A
Authority
JP
Japan
Prior art keywords
signal
phase
time slot
modulated
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4010694A
Other languages
Japanese (ja)
Other versions
JP2744541B2 (en
Inventor
Yasunori Sueyoshi
康則 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4010694A priority Critical patent/JP2744541B2/en
Publication of JPH05207086A publication Critical patent/JPH05207086A/en
Application granted granted Critical
Publication of JP2744541B2 publication Critical patent/JP2744541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To provide communication equipment by a duplex differential coding system capable of easily compensating a phase error due to the fluctuation of a carrier frequency in digital data communication by a phase modulation system. CONSTITUTION:This system and equipment is comprised of a duplex differential modulation system in which the phase of the carrier of a first modulation signal on which a digital signal to be transmitted is added by delaying by one time slot is modulated and transmitted by a second modulation signal generated by adding the first modulation signal by delaying by one time slot again, and a duplex detection system which demodulates the first modulation signal obtained by phase-detecting a baseband signal orthogonally intersecting from a reception frequency signal, and delaying and detecting from the baseband signal and the one before one time slot to the digital signal to be transmitted by delaying and detecting by one time slot again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、携帯電話やLAN等の
高速デジタル信号伝送用の無線ネットワークで使用され
る二重差動符号化通信方式及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual differential encoding communication system and its apparatus used in a wireless network for high speed digital signal transmission such as a mobile phone and a LAN.

【0002】[0002]

【従来の技術】上述の無線ネットワークで使用される通
信装置、特に受信装置としては、位相変調された受信高
周波信号から直交するベースバンド信号を検波する位相
検波手段と、その位相検波手段により検波されたベース
バンド信号と1タイムスロット前のベースバンド信号と
から変調デジタル信号を演算導出する遅延検波手段とで
構成したものがあり、前記遅延検波手段を、今回のベー
スバンド信号と、1タイムスロット前のベースバンド信
号とから変調デジタル信号を演算導出するべく、直交成
分データを1タイムスロット遅延させる遅延回路と、3
乃至4個の乗算器及び加減算器等でなる演算回路とを設
けて構成したものがあった(特願平2−252338
号)。そして、位相検波手段によりベースバンド信号を
検波する際に、搬送波等に生じる周波数変動により1タ
イムスロットに位相差が生じる結果、誤り特性が劣化す
るという欠点を回避するため、前記演算回路に、位相差
の移動平均等を用いて周波数変動を補償する位相補償回
路を設けていた。
2. Description of the Related Art A communication device, particularly a receiving device, used in the above-mentioned wireless network includes a phase detecting means for detecting a baseband signal orthogonal to a phase-modulated received high frequency signal, and a phase detecting means for detecting the phase detecting means. There is a delay detection means for calculating and deriving a modulated digital signal from the baseband signal and the baseband signal one time slot before, and the delay detection means is used for this baseband signal and one time slot before. A delay circuit for delaying the quadrature component data by one time slot in order to calculate and derive a modulated digital signal from the baseband signal of
There is a configuration in which an arithmetic circuit including four to four multipliers and adders / subtractors is provided (Japanese Patent Application No. 2-252338).
issue). When the baseband signal is detected by the phase detection means, a phase difference occurs in one time slot due to a frequency change occurring in a carrier wave or the like, and as a result, the error characteristic is deteriorated. A phase compensating circuit that compensates for frequency fluctuations using a moving average of the phase difference is provided.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
のベースバンド遅延検波方式を用いた受信装置によれ
ば、位相のずれを演算する位相補償回路の構成が複雑で
あるばかりか、1タイムスロットあたりの位相誤差が変
調位相単位(BPSKではπ、QPSKではπ/2)の
1/2以上になると正確に補償できないという欠点があ
った。本発明の目的は上記欠点を解消する点にある。
However, according to the above-mentioned conventional receiver using the baseband differential detection method, not only is the structure of the phase compensation circuit for calculating the phase shift complicated, but one time slot is used. However, if the phase error per unit becomes 1/2 or more of the modulation phase unit (π for BPSK, π / 2 for QPSK), there is a drawback that accurate compensation cannot be performed. An object of the present invention is to eliminate the above drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
本発明による二重差動符号化通信方式の特徴構成は、伝
送すべきデジタル信号を1タイムスロット遅延させて加
算した第一変調信号を、再度1タイムスロット遅延させ
て加算して生成した第二変調信号により搬送波の位相を
変調して送信する二重差動変調方式と、受信高周波信号
からπ/2位相の異なるベースバンド信号を位相検波し
て、そのベースバンド信号と1タイムスロット前のベー
スバンド信号とから遅延検波して得られた前記第一変調
信号を、再度1タイムスロット遅延検波して前記伝送す
べきデジタル信号に復調する二重遅延検波方式とから構
成してあることにある。
In order to achieve this object, a characteristic configuration of a dual differential encoding communication system according to the present invention is that a first modulated signal obtained by delaying and adding a digital signal to be transmitted by one time slot is added. , A double differential modulation method in which the carrier wave phase is modulated by the second modulation signal generated by delaying by one time slot and then added, and a baseband signal having a different π / 2 phase from the received high frequency signal is phased. The first modulated signal obtained by detecting and delay-detecting the baseband signal and the baseband signal one time slot before is again detected by one time slot delay and demodulated to the digital signal to be transmitted. It consists of a double delay detection method.

【0005】上述の二重差動符号化通信方式を実現する
にあたり、本発明による二重差動符号化通信装置の特徴
構成は、位相変調された受信高周波信号からベースバン
ド信号を検波する位相検波手段と、その位相検波手段に
より検波されたベースバンド信号と1タイムスロット前
のベースバンド信号とから変調デジタル信号を演算導出
する遅延検波手段とで構成し、前記遅延検波手段を、変
調デジタル信号を導出する第一遅延検波部と、その第一
遅延検波部により導出された変調デジタル信号から周波
数誤差を除去する第二遅延検波部とで構成してあること
にある。
In realizing the above-mentioned dual differential encoding communication system, the characteristic configuration of the dual differential encoding communication device according to the present invention is a phase detection for detecting a baseband signal from a phase-modulated received high frequency signal. Means and delay detection means for calculating and deriving a modulated digital signal from the baseband signal detected by the phase detection means and the baseband signal one time slot before, and the delay detection means detects the modulated digital signal. It is composed of a first differential detection unit to be derived and a second differential detection unit to remove a frequency error from the modulated digital signal derived by the first differential detection unit.

【0006】上述の二重差動符号化通信装置において、
前記位相検波手段を、搬送波の周波数FC、変調デジタ
ル信号のシンボルレートFB、正整数Nに対して、 |FC−FL|≧(1/2)・N・FB なる関係を有する周波数FLの参照信号で前記ベースバ
ンド信号を検波する位相検波部と、前記位相検波部で抽
出され周波数FC−FLで位相回転する前記ベースバンド
信号に対してπ/2間隔でA/D変換して直交成分デー
タを導出する直交成分導出部とで構成して、前記遅延検
波手段を、前記直交成分データを角度成分データに変換
して、その角度成分データと1タイムスロット前の角度
成分データとから変調デジタル信号を演算導出するよう
に構成してあることが好ましい。
In the above-mentioned dual differential encoding communication device,
Said phase detection means, the frequency F C of the carrier, the symbol rate F B of the modulated digital signal, for positive integer N, | having ≧ (1/2) · N · F B the relationship | F C -F L frequency F and phase detection unit in L of the reference signal for detecting said baseband signal, extracted by the phase detection unit frequency F C -F L in at the baseband signal to the [pi / 2 interval of phase rotation a / A quadrature component deriving unit that performs D conversion to derive quadrature component data, and the differential detection means converts the quadrature component data into angle component data, and the angle component data and an angle one time slot before. It is preferable that the modulated digital signal is calculated and derived from the component data.

【0007】受信高周波信号を生成する二重差動符号化
通信装置は、伝送すべきデジタル信号を1タイムスロッ
ト遅延させて加算する第一差動手段と、その第一差動手
段により生成された第一変調信号を再度1タイムスロッ
ト遅延させて加算する第二差動手段と、その第二差動手
段により生成された第二変調信号により搬送波の位相を
変調する位相変調手段と、その位相変調手段により生成
された信号を送信する送信手段とから構成してあればよ
い。
A dual differential encoding communication device for generating a received high frequency signal is generated by first differential means for delaying and adding a digital signal to be transmitted by one time slot, and the first differential means. Second differential means for delaying and adding the first modulated signal again for one time slot, phase modulating means for modulating the phase of the carrier wave by the second modulated signal generated by the second differential means, and phase modulation thereof It suffices if it is composed of a transmitting means for transmitting the signal generated by the means.

【0008】[0008]

【作用】Δφを位相角初期値、Δωを周波数誤差による
1タイムスロットあたりの位相誤差、S1,S2を一次
差動位相差として、位相検波手段により検波された2タ
イムスロット前の直交検波出力を(cos(Δφ),s
in(Δφ))、1タイムスロット前の直交検波出力を
(cos(Δφ+Δω+S2),sin(Δφ+Δω+
S2))、現在の直交検波出力を(cos(Δφ+Δω
+S1+S2),sin(Δφ+Δω+S1+S2))
とすると、2タイムスロット前の遅延検波演算は、 I2’=cos(Δφ)・cos(Δφ+Δω+S2) +sin(Δφ)・sin(Δφ+Δω+S2) =cos(Δω+S2) Q2’=cos(Δφ)・sin(Δφ+Δω+S2) −sin(Δφ)・cos(Δφ+Δω+S2) =sin(Δω+S2) 同様に、1タイムスロット前の遅延検波演算は、 I1’=cos(Δφ+Δω+S2)・cos(Δφ+Δω+S1+S2) +sin(Δφ+Δω+S2)・sin(Δφ+Δω+S1+S2) =cos(Δω+S1) Q1’=cos(Δφ+Δω+S2)・sin(Δφ+Δω+S1+S2) −sin(Δφ+Δω+S2)・cos(Δφ+Δω+S1+S2) =sin(Δω+S1) となり一次遅延検波でΔφの項が消去される。これらを
さらに遅延検波すると、 I1=cos(Δω+S2)・cos(Δω+S1) +sin(Δω+S2)・sin(Δω+S1) =cos(S1−S2) Q1=cos(Δω+S2)・sin(Δω+S1) −sin(Δω+S2)・cos(Δω+S1) =sin(S1−S2) となり、二次遅延検波ではΔωの項が消去される。即
ち、周波数誤差による位相誤差が除去できる。
The quadrature detection output two time slots before detected by the phase detection means, where Δφ is an initial phase angle value, Δω is a phase error per time slot due to a frequency error, and S1 and S2 are primary differential phase differences. (Cos (Δφ), s
in (Δφ)), the quadrature detection output one time slot before is (cos (Δφ + Δω + S2), sin (Δφ + Δω +
S2)), the current quadrature detection output is (cos (Δφ + Δω
+ S1 + S2), sin (Δφ + Δω + S1 + S2))
Then, the differential detection operation two time slots before is as follows: I2 ′ = cos (Δφ) · cos (Δφ + Δω + S2) + sin (Δφ) · sin (Δφ + Δω + S2) = cos (Δω + S2) Q2 ′ = cos (Δφ) · sin (Δφ + Δω + S2) ) −sin (Δφ) · cos (Δφ + Δω + S2) = sin (Δω + S2) Similarly, in the differential detection calculation one time slot before, I1 ′ = cos (Δφ + Δω + S2) · cos (Δφ + Δω + S1 + S2) + sin (Δφ + Δω + S2) + sin (Δ2 + Sω) Sin = Cos (Δω + S1) Q1 ′ = cos (Δφ + Δω + S2) · sin (Δφ + Δω + S1 + S2) −sin (Δφ + Δω + S2) · cos (Δφ + Δω + S1 + S2) = sin (Δω + S1), and the term of Δφ is obtained by the first-order differential detection. When these are further detected by delay detection, I1 = cos (Δω + S2) · cos (Δω + S1) + sin (Δω + S2) · sin (Δω + S1) = cos (S1-S2) Q1 = cos (Δω + S2) · sin (Δω + S1) −sin (Δω + S2) Cos (Δω + S1) = sin (S1-S2), and the Δω term is eliminated in the second-order differential detection. That is, the phase error due to the frequency error can be removed.

【0009】上述の二重差動符号化通信装置において、
前記位相検波手段を、搬送波の周波数FC、変調デジタ
ル信号のシンボルレートFB、正整数Nに対して、 |FC−FL|≧(1/2)・N・FB なる関係を有する周波数FLの参照信号で前記ベースバ
ンド信号を検波する位相検波部と、周波数FC−FLで位
相回転する前記ベースバンド信号に対してπ/2間隔で
A/D変換して直交成分データを導出する直交成分導出
部とで構成すると、位相検波部を単一のミキサ回路で構
成しながらも直交成分データを得ることができる。さら
に、前記遅延検波手段を、前記直交成分データを角度成
分データに変換して、その角度成分データと1タイムス
ロット前の角度成分データとから変調デジタル信号を演
算導出するように構成すれば、角度成分データを遅延す
るのに2つの遅延回路を継続接続することで容易に構成
できる。
In the above-mentioned dual differential encoding communication device,
Said phase detection means, the frequency F C of the carrier, the symbol rate F B of the modulated digital signal, for positive integer N, | having ≧ (1/2) · N · F B the relationship | F C -F L a phase detection unit for detecting the baseband signal with the reference signal of frequency F L, the frequency F C -F L quadrature component data in said base band [pi / 2 intervals to the signal to a / D conversion of phase rotation in And a quadrature component deriving unit for deriving the quadrature component, it is possible to obtain quadrature component data while the phase detection unit is composed of a single mixer circuit. Further, if the differential detection means is configured to convert the quadrature component data into angle component data and arithmetically derive a modulated digital signal from the angle component data and the angle component data one time slot before, This can be easily configured by continuously connecting two delay circuits to delay the component data.

【0010】[0010]

【発明の効果】本発明による二重差動符号化通信方式及
びその装置によれば、極めて簡単な回路構成で、外乱に
よる位相変化に対しても、又、1タイムスロットあたり
の位相誤差が変調位相単位(BPSKではπ、QPSK
ではπ/2)の1/2以上になる場合であっても確実に
位相誤差を補償できる通信方式及びその装置を提供でき
るようになった。
According to the dual differential encoding communication system and the apparatus thereof according to the present invention, the phase error per one time slot is modulated even with respect to the phase change due to the disturbance with an extremely simple circuit configuration. Phase unit (π for BPSK, QPSK
Now, it has become possible to provide a communication system and a device thereof that can surely compensate for a phase error even when it becomes 1/2 or more of π / 2).

【0011】[0011]

【実施例】以下に実施例を説明する。データ伝送速度
(シンボルレートFB)1Mbpsの変調デジタル信号
で2相位相変調〔BPSK〕された周波数150MHz
の高周波信号を受信する二重差動符号化通信装置は、送
信装置と受信装置とで構成される。
EXAMPLES Examples will be described below. Data transmission rate (symbol rate F B ) Frequency of 150 MHz which is two-phase phase modulated [BPSK] with a modulated digital signal of 1 Mbps
The dual differential encoding communication device for receiving the high frequency signal of is composed of a transmitting device and a receiving device.

【0012】図1に示すように、送信装置は、伝送すべ
きデジタル信号を1タイムスロット遅延させて加算する
第一差動手段1と、その第一差動手段1により生成され
た第一変調信号を再度1タイムスロット遅延させて加算
する第二差動手段2と、その第二差動手段2により生成
された第二変調信号により搬送波の位相を変調するリン
グ変調器等でなる位相変調手段3と、その位相変調手段
3により生成された信号を送信する送信手段4とから構
成してある。前記第一差動手段1及び第二差動手段2
は、伝送すべきデジタル信号を1タイムスロット遅延す
るシフトレジスタ等のデジタル遅延素子と、現信号と遅
延信号とをmod.2で加算する加算器で構成してあ
る。
As shown in FIG. 1, the transmitter includes a first differential means 1 for delaying and adding a digital signal to be transmitted by one time slot, and a first modulation means generated by the first differential means 1. Phase differential means 2 comprising a second differential means 2 for delaying the signals again by one time slot and adding, and a ring modulator or the like for modulating the phase of the carrier wave by the second modulated signal generated by the second differential means 2. 3 and transmitting means 4 for transmitting the signal generated by the phase modulating means 3. The first differential means 1 and the second differential means 2
Is a digital delay element such as a shift register for delaying a digital signal to be transmitted by one time slot, a current signal and a delayed signal in a mod. It is made up of an adder for adding by 2.

【0013】図2に示すように、受信装置は、受信高周
波信号を増幅する増幅手段5と、増幅された高周波信号
から直交するベースバンド信号を検波する位相検波手段
6と、その位相検波手段6により検波されたベースバン
ド信号と1タイムスロット前のベースバンド信号とから
変調デジタル信号を演算導出する遅延検波手段7とで構
成してあり、前記遅延検波手段7を、変調デジタル信号
を導出する第一遅延検波部8と、その第一遅延検波部8
により導出された変調デジタル信号から周波数誤差を除
去する第二遅延検波部9とで構成してある。
As shown in FIG. 2, the receiving apparatus has an amplifying means 5 for amplifying a received high frequency signal, a phase detecting means 6 for detecting an orthogonal base band signal from the amplified high frequency signal, and a phase detecting means 6 thereof. A delay detection means 7 for calculating and deriving a modulated digital signal from the baseband signal detected by the above and the baseband signal one time slot before, and the delay detection means 7 is for deriving the modulated digital signal. One delay detection unit 8 and its first delay detection unit 8
And a second differential detection section 9 for removing a frequency error from the modulated digital signal derived by.

【0014】詳述すると、図3に示すように、前記位相
検波手段2は、前記増幅手段1の出力信号から、搬送波
の周波数FC、変調デジタル信号のシンボルレートFB
正整数Nに対して、 |FC−FL|≧(1/2)・N・FB なる関係を有する周波数FLの参照信号を生成する発振
器61と、その参照信号でベースバンド信号を検波する
ミキサ回路62と、増幅器63等でなる位相検波部6A
と、その出力から直交成分を導出する直交成分導出部6
Bとで構成してあり、本実施例ではFC=150MH
z、FL=148MHz、FB=1MHz、N=1で構成
してある。前記直交成分導出部6Bは、周波数8MHz
のクロック発振器64と、そのクロック発振器64から
のクロック信号に同期して前記ベースバンド信号をデジ
タル信号に変換するA/D変換器65とで構成してあ
り、周波数FC−FL(=2MHz)でビートするベース
バンド信号をπ/2間隔でA/D変換することになる。
More specifically, as shown in FIG. 3, the phase detecting means 2 calculates the carrier frequency F C , the modulated digital signal symbol rate F B from the output signal of the amplifying means 1.
For positive integer N, | F C -F L | and ≧ (1/2) · N · F oscillator 61 that generates a reference signal of frequency F L with B the relationship, the baseband signal at the reference signal Phase detection unit 6A including a mixer circuit 62 for detection and an amplifier 63, etc.
And an orthogonal component deriving unit 6 that derives an orthogonal component from its output.
And B, and in this embodiment, F C = 150 MH
z, F L = 148 MHz, F B = 1 MHz, and N = 1. The orthogonal component deriving unit 6B has a frequency of 8 MHz.
Of the clock oscillator 64 and an A / D converter 65 that converts the baseband signal into a digital signal in synchronization with the clock signal from the clock oscillator 64, and has a frequency F C -F L (= 2 MHz). ), The baseband signal that beats at A) is A / D converted at intervals of π / 2.

【0015】前記遅延検波手段7は、π/2間隔でデジ
タルデータにされた直交成分データを角度成分データに
変換する角度変換器71と、角度変換器71による角度
成分データと1タイムスロット前の角度成分データとか
ら変調デジタル信号を演算導出する遅延検波回路8,9
とで構成してある。詳述すると、前記角度変換器71
は、位相角0°から360°に対応して00Hから0F
FHのHEXデータが格納されたROM73と、位相が
π/2異なる前回にA/D変換器65で変換されたデジ
タル信号を確保するシフトレジスタ72と、前記A/D
変換器65で最新に変換されたデジタルデータと前記シ
フトレジスタ72のデータとから前記ベースバンド信号
の角度成分データを前記ROM73から読み出すアクセ
ス回路(図示せず)とで構成してある。前記遅延検波回
路8,9は、それぞれ前記角度成分データを1タイムス
ロット遅延させるシフトレジスタSR0からSR7と、
シフトレジスタSR7の値と最新の角度成分データを減
算する演算器81,91で構成してある。即ち、前記演
算器81が変調デジタル信号を導出する第一遅延検波部
となり、前記演算器91がその第一遅延検波部により導
出された変調デジタル信号から周波数誤差を除去する第
二遅延検波部を構成する。つまり、演算器81,91の
出力が00H、即ち、1タイムスロット前と今回の角度
成分データが等しければ前回と今回のデータが等しく、
演算器81,91の出力が80H、即ち、1タイムスロ
ット前と今回の角度成分データが位相反転していれば前
回と今回のデータは異なると判別される。ここに、演算
器81,91は、0°であれば00H、180°であれ
ば80Hを示す8ビット減算器である。
The differential detection means 7 converts the quadrature component data converted into digital data at π / 2 intervals into angle component data 71, the angle component data obtained by the angle converter 71 and the time component one time slot before. Delay detection circuits 8 and 9 for calculating and deriving a modulated digital signal from angle component data
It consists of and. More specifically, the angle converter 71
Is 00H to 0F corresponding to the phase angle 0 ° to 360 °
ROM 73 in which the HEX data of FH is stored, shift register 72 for securing the digital signal previously converted by A / D converter 65 and having a phase difference of π / 2, and A / D
An access circuit (not shown) for reading the angle component data of the baseband signal from the ROM 73 from the digital data most recently converted by the converter 65 and the data in the shift register 72. The differential detection circuits 8 and 9 respectively include shift registers SR0 to SR7 that delay the angle component data by one time slot,
It is composed of arithmetic units 81 and 91 for subtracting the value of the shift register SR7 and the latest angle component data. That is, the arithmetic unit 81 functions as a first differential detection unit for deriving a modulated digital signal, and the arithmetic unit 91 functions as a second differential detection unit for removing a frequency error from the modulated digital signal derived by the first differential detection unit. Constitute. That is, if the outputs of the arithmetic units 81 and 91 are 00H, that is, if the time component of one time slot before and the angle component data of this time are equal, the data of the previous time and the data of this time are equal,
If the outputs of the arithmetic units 81 and 91 are 80H, that is, if the phase data of the angle component data of one time slot before and this time is inverted, it is determined that the data of the previous time and the data of this time are different. Here, the arithmetic units 81 and 91 are 8-bit subtracters that indicate 00H at 0 ° and 80H at 180 °.

【0016】以下に別実施例を説明する。先の実施例で
は、データ伝送速度(シンボルレートFB)1Mbps
の変調デジタル信号で2相位相変調〔BPSK〕された
周波数150MHzの高周波信号を周波数148MHz
の参照信号で位相検波するシングルミキサー方式の直交
検波回路について説明したが、データ伝送速度、搬送波
周波数はこれらの値に限定するものではなく任意であ
り、参照波周波数は、|FC−FL|≧(1/2)・N・
Bを満たす周波数FLであれば任意である。先の実施例
では、2相位相変調〔BPSK〕について説明したが、
これに限定するものではなく任意の位相変調に適用で
き、例えば4相位相変調〔QPSK〕であってもよい。
この場合は、演算器 の出力は、0,π/2,π,3
π/2に対応して00B,01B,10B,11Bのバ
イナリーデータが得られる。
Another embodiment will be described below. In the above embodiment, the data transmission rate (symbol rate F B ) is 1 Mbps.
A high-frequency signal with a frequency of 150 MHz that has been subjected to two-phase phase modulation [BPSK] with a modulated digital signal of 148 MHz.
Has been described in the reference signal for the orthogonal detection circuit of the single mixer method of phase detection, data transmission speed, the carrier frequency is optional rather than limited to these values, the reference wave frequency, | F C -F L | ≧ (1/2) ・ N ・
Any frequency F L that satisfies F B is arbitrary. In the above embodiment, the two-phase phase modulation [BPSK] has been described.
The present invention is not limited to this and can be applied to arbitrary phase modulation, and may be, for example, quadrature phase modulation [QPSK].
In this case, the output of the calculator is 0, π / 2, π, 3
Binary data of 00B, 01B, 10B, 11B corresponding to π / 2 is obtained.

【0017】先の実施例では、遅延検波手段7を、直交
成分データを角度成分データに変換して、その角度成分
データと1タイムスロット前の角度成分データとから変
調デジタル信号を演算導出するように構成してあるもの
を説明したが、遅延検波手段7としては、図4に示すよ
うに、直交成分導出部6Bにて導出された直交成分デー
タを1タイムスロット遅延させるシフトレジスタSR
0’,・・・,SR8’と、以下の演算を行う演算部8
1’とで第一遅延検波部8’を構成して、第一遅延検波
部により導出された一対の直交成分データをそれぞれ1
タイムスロット遅延させる遅延回路SR9’,SR1
0’と演算部91’とで第二遅延検波部9’を構成して
もよい。 I(n)=Si (n)・Si-1 (n)+Si (n−1)・Si-1 (n−1) Q(n)=−Si (n)・Si-1 (n−1)+Si (n−1)・Si-1 (n)
In the previous embodiment, the differential detection means 7 converts the quadrature component data into angle component data, and calculates and derives the modulated digital signal from the angle component data and the angle component data one time slot before. However, as the delay detection means 7, as shown in FIG. 4, the shift register SR for delaying the quadrature component data derived by the quadrature component deriving unit 6B by one time slot is used.
0 ', ..., SR8' and an operation unit 8 for performing the following operations
1'to form a first differential detection unit 8'and a pair of orthogonal component data derived by the first differential detection unit 1
Delay circuits SR9 'and SR1 for delaying time slots
The second differential detection unit 9 ′ may be configured by 0 ′ and the calculation unit 91 ′. I (n) = Si (n) * Si-1 (n) + Si (n-1) * Si-1 (n-1) Q (n) = -Si (n) * Si- 1 (n-1) + S i (n-1) · S i-1 (n)

【0018】先の実施例では、受信高周波信号から直交
するベースバンド信号を検波する位相検波手段を、搬送
波の周波数FC、変調デジタル信号のシンボルレート
B、正整数Nに対して、 |FC−FL|≧(1/2)・N・FB なる関係を有する周波数FLの参照信号で前記ベースバ
ンド信号を検波する位相検波部6Aと、周波数FC−FL
の位相回転する前記ベースバンド信号に対してπ/2間
隔でA/D変換して直交成分データを導出する直交成分
導出部6Bとで構成しているが、位相検波手段として
は、図5に示すように、搬送波の周波数FCと等しい周
波数FLの参照信号を生成する発振器61’と参照信号
とπ/2位相の異なる直交参照信号を生成する位相器6
2’と、π/2位相の異なるベースバンド信号を生成す
る一対のミキサ回路63’,64’と、それらの出力を
デジタルデータに変換するA/D変換器65’,66’
とで構成してもよい。この場合には、 I(n)=Si (n)・Si-1 (n)+Si (n−1)・Si-1 (n−1) Q(n)=−Si (n)・Si-1 (n−1)+Si (n−1)・Si-1 (n) なる演算を行うための、遅延回路80’、90’と演算
部81’、91’とで、第一遅延検波部8’及び第二遅
延検波部9’を構成することになる。本方式は、4/π
シフトQPSKなどの狭帯域型の変調方式にも容易に適
応できる。
In the above embodiment, the phase detection means for detecting a baseband signal orthogonal to the received high frequency signal is used as | F for the frequency F C of the carrier, the symbol rate F B of the modulated digital signal, and a positive integer N. A phase detector 6A for detecting the baseband signal with a reference signal having a frequency F L having a relationship of C −F L | ≧ (1/2) · N · F B, and a frequency F C −F L
The quadrature component deriving unit 6B for deriving the quadrature component data by A / D converting the baseband signal whose phase is rotated at π / 2 intervals is shown in FIG. As shown, an oscillator 61 ′ that generates a reference signal having a frequency F L equal to the frequency F C of the carrier wave and a phase shifter 6 that generates an orthogonal reference signal having a π / 2 phase different from that of the reference signal.
2 ', a pair of mixer circuits 63' and 64 'that generate baseband signals having different π / 2 phases, and A / D converters 65' and 66 'that convert their outputs into digital data.
You may comprise with. In this case, I (n) = S i (n) · S i−1 (n) + S i (n−1) · S i−1 (n−1) Q (n) = − S i (n ) .S i-1 (n-1) + S i (n-1) .S i-1 (n) by the delay circuits 80 'and 90' and the arithmetic units 81 'and 91'. , The first differential detection section 8'and the second differential detection section 9 '. This method is 4 / π
It can be easily applied to a narrow band type modulation system such as shift QPSK.

【0019】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】送信側の二重差動符号化通信装置の回路ブロッ
ク構成図
FIG. 1 is a circuit block configuration diagram of a dual differential encoding communication device on a transmission side.

【図2】受信側の二重差動符号化通信装置の回路ブロッ
ク構成図
FIG. 2 is a circuit block configuration diagram of a receiving side dual differential encoding communication device.

【図3】別実施例を示す受信側の二重差動符号化通信装
置の回路ブロック構成図
FIG. 3 is a circuit block configuration diagram of a receiving-side dual differential encoding communication device according to another embodiment.

【図4】別実施例を示す受信側の二重差動符号化通信装
置の回路ブロック構成図
FIG. 4 is a circuit block configuration diagram of a receiving side dual differential encoding communication device according to another embodiment.

【図5】別実施例を示す受信側の二重差動符号化通信装
置の回路ブロック構成図
FIG. 5 is a circuit block configuration diagram of a receiving side dual differential encoding communication device showing another embodiment.

【符号の説明】[Explanation of symbols]

6 位相検波手段 7 遅延検波手段 6 第一遅延検波部 7 第二遅延検波部 6 Phase Detector 7 Delay Detector 6 First Delay Detector 7 Second Delay Detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 伝送すべきデジタル信号を1タイムスロ
ット遅延させて加算した第一変調信号を、再度1タイム
スロット遅延させて加算して生成した第二変調信号によ
り搬送波の位相を変調して送信する二重差動変調方式
と、 受信高周波信号から直交するベースバンド信号を位相検
波して、そのベースバンド信号と1タイムスロット前の
ベースバンド信号とから遅延検波して得られた前記第一
変調信号を、再度1タイムスロット遅延検波して前記伝
送すべきデジタル信号に復調する二重遅延検波方式とか
らなる二重差動符号化通信方式。
1. A first modulated signal obtained by delaying and adding a digital signal to be transmitted by one time slot and again being delayed by one time slot and added to generate a second modulated signal, the phase of a carrier wave is modulated and transmitted. And the first modulation obtained by phase-detecting a quadrature baseband signal from the received high-frequency signal and performing delay detection from the baseband signal and the baseband signal one time slot before. A double differential encoding communication system comprising a double delay detection system in which a signal is again subjected to one time slot delay detection and demodulated into the digital signal to be transmitted.
【請求項2】 位相変調された受信高周波信号からベー
スバンド信号を検波する位相検波手段(6)と、その位
相検波手段(6)により検波されたベースバンド信号と
1タイムスロット前のベースバンド信号とから変調デジ
タル信号を演算導出する遅延検波手段(7)とで構成
し、 前記遅延検波手段(7)を、変調デジタル信号を導出す
る第一遅延検波部(8)と、その第一遅延検波部(8)
により導出された変調デジタル信号から周波数誤差を除
去する第二遅延検波部(9)とで構成してある二重差動
符号化通信装置。
2. A phase detection means (6) for detecting a baseband signal from a phase-modulated received high frequency signal, a baseband signal detected by the phase detection means (6) and a baseband signal one time slot before. And a delay detection means (7) for calculating and deriving a modulated digital signal from the above. The delay detection means (7) is a first delay detection section (8) for deriving a modulated digital signal, and its first delay detection. Division (8)
And a second differential detection section (9) that removes a frequency error from the modulated digital signal derived by.
【請求項3】 前記位相検波手段(6)を、搬送波の周
波数FC、変調デジタル信号のシンボルレートFB、正整
数Nに対して、 |FC−FL|≧(1/2)・N・FB なる関係を有する周波数FLの参照信号で前記ベースバ
ンド信号を検波する位相検波部(6A)と、前記位相検
波部で抽出され周波数FC−FLで位相回転する前記ベー
スバンド信号に対してπ/2間隔でA/D変換して直交
成分データを導出する直交成分導出部(6B)とで構成
して、 前記遅延検波手段(7)を、前記直交成分データを角度
成分データに変換して、その角度成分データと1タイム
スロット前の角度成分データとから変調デジタル信号を
演算導出するように構成してある請求項2記載の二重差
動符号化通信装置。
3. The phase detection means (6) is adapted to: | F C −F L | ≧ (1/2) · for the frequency F C of the carrier wave, the symbol rate F B of the modulated digital signal, and the positive integer N. A phase detection unit (6A) for detecting the baseband signal with a reference signal of frequency F L having a relationship of N · F B, and the baseband extracted by the phase detection unit and rotating in phase at frequency F C −F L And a quadrature component derivation unit (6B) for deriving quadrature component data by A / D converting the signal at π / 2 intervals. 3. The dual differential encoding communication device according to claim 2, wherein the dual differential encoding communication device is configured so as to be converted into data, and a modulated digital signal is calculated and derived from the angle component data and the angle component data one time slot before.
【請求項4】 請求項2又は3記載の受信高周波信号を
生成する二重差動符号化通信装置であって、伝送すべき
デジタル信号を1タイムスロット遅延させて加算する第
一差動手段(1)と、その第一差動手段(1)により生
成された第一変調信号を再度1タイムスロット遅延させ
て加算する第二差動手段(2)と、その第二差動手段
(2)により生成された第二変調信号により搬送波の位
相を変調する位相変調手段(3)と、その位相変調手段
(3)により生成された信号を送信する送信手段(4)
とから構成してある二重差動符号化通信装置。
4. A dual differential encoding communication device for generating a received high frequency signal according to claim 2 or 3, wherein first differential means (1) delays digital signals to be transmitted by one time slot and adds the digital signals. 1), a second differential means (2) for delaying the first modulated signal generated by the first differential means (1) again by one time slot, and adding the second differential means (2). Phase modulation means (3) for modulating the phase of the carrier wave by the second modulation signal generated by the, and transmission means (4) for transmitting the signal generated by the phase modulation means (3).
A dual differential encoding communication device comprising:
JP4010694A 1992-01-24 1992-01-24 Double differential coded communication device Expired - Lifetime JP2744541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4010694A JP2744541B2 (en) 1992-01-24 1992-01-24 Double differential coded communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010694A JP2744541B2 (en) 1992-01-24 1992-01-24 Double differential coded communication device

Publications (2)

Publication Number Publication Date
JPH05207086A true JPH05207086A (en) 1993-08-13
JP2744541B2 JP2744541B2 (en) 1998-04-28

Family

ID=11757394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010694A Expired - Lifetime JP2744541B2 (en) 1992-01-24 1992-01-24 Double differential coded communication device

Country Status (1)

Country Link
JP (1) JP2744541B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871514A (en) * 1971-12-25 1973-09-27
JPS51117861A (en) * 1975-04-09 1976-10-16 Nec Corp Differential phase demodulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871514A (en) * 1971-12-25 1973-09-27
JPS51117861A (en) * 1975-04-09 1976-10-16 Nec Corp Differential phase demodulator

Also Published As

Publication number Publication date
JP2744541B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
JP2643792B2 (en) Demodulator
EP0464814B1 (en) Demodulator circuit for demodulating PSK modulated signals
CA2025232C (en) Carrier recovery system
FI80175C (en) Digital telecommunication system where quadrature modulated carrier signals are used
JP3144457B2 (en) Automatic frequency adjustment method and device
JP3601713B2 (en) Communication system and receiver used therefor
US7245672B2 (en) Method and apparatus for phase-domain semi-coherent demodulation
JP2003018230A (en) Demodulator, broadcasting system and semiconductor device
JPH0621992A (en) Demodulator
US5588026A (en) Method of compensating phase shift keying frequency offset
US5261120A (en) Method and apparatus for transmitting a signal with an offset which follows a received signal
JPS6347313B2 (en)
JP3489493B2 (en) Symbol synchronizer and frequency hopping receiver
JP4312705B2 (en) Quadrature demodulation error compensation method and quadrature demodulation error compensation circuit
JPH05207086A (en) System and equipment for duplex differential coding communication
JP2004241886A (en) Frequency control circuit, radio transmission and reception device using same, and its frequency control method
JP2910695B2 (en) Costas loop carrier recovery circuit
JP2000151732A (en) Carrier phase estimation device and demodulator using the estimation device
US6246730B1 (en) Method and arrangement for differentially detecting an MPSK signal using a plurality of past symbol data
JPH07221805A (en) Automatic frequency controller
JPH06237277A (en) Psk carrier signal regenerating device
JP3089835B2 (en) Frequency offset compensation method
JPH05207087A (en) Digital signal reception equipment
JP3394276B2 (en) AFC circuit