JPH05206566A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPH05206566A
JPH05206566A JP15070291A JP15070291A JPH05206566A JP H05206566 A JPH05206566 A JP H05206566A JP 15070291 A JP15070291 A JP 15070291A JP 15070291 A JP15070291 A JP 15070291A JP H05206566 A JPH05206566 A JP H05206566A
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor laser
algaas
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15070291A
Other languages
Japanese (ja)
Inventor
Toshiaki Fukunaga
敏明 福永
Kenji Watanabe
賢司 渡邊
Takeshi Takamori
毅 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15070291A priority Critical patent/JPH05206566A/en
Publication of JPH05206566A publication Critical patent/JPH05206566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a semiconductor laser element to be doped with an optimal amount of dopant and formed optimal in profile so as to be of high performance by a method wherein the ratio of As4 molecule to group III atom flux is controlled, and Si is controlled in polarity. CONSTITUTION:A P-GaAS buffer layer 2, a P-AlGaAs clad layer 3, a GRIN- AlGaAs layer 4, a GaAs single quantum well active layer 5, and a GRIN-AlGaAs layer 6 are laminated on a P-GaAs (100) substrate 1. At this point, the ratio of AS4 molecule to group III atom flux is set to 1 or so, and Si is used as dopant, whereby a laminate is of P-type conductivity. Then, the ratio of As4 molecule to group III molecule flux is set to over 2, Si is made to serve as dopant, an N-AlGaAs clad layer 7 and an N-GaAs contact layer 8 are made to grow. By this setup, a semiconductor laser element, which oscillates in a basic transverse mode up to a high output power can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体の光デバ
イスの高性能化に大きく寄与する半導体レーザ素子の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser device which greatly contributes to high performance of a compound semiconductor optical device.

【0002】[0002]

【従来の技術】従来、この種の半導体レーザ素子として
は、例えば、シー・ハーダー外「エレクトロニクス レ
ター 1986年 22巻 20号 1081〜108
2頁「高出力 リッジ 導波路 AlGaAs GRI
N−SCH レーザ ダイオード」〔C.Harder
et al.「Electronics Lette
rs」 25th September 1986 v
ol.22 No.20, page 1081−10
82 「High power ridge−wave
guide AlGaAs GRIN−SCH las
er diode」〕に記載されるものがあった。
2. Description of the Related Art Conventionally, as a semiconductor laser device of this type, for example, See Harder et al., “Electronics Letter 1986, Vol. 22, No. 20, 1081 to 108.
Page 2 “High-power ridge waveguide AlGaAs GRI
N-SCH Laser Diode "[C. Harder
et al. "Electronics Lette
rs "25th September 1986 v
ol. 22 No. 20, page 1081-10
82 "High power ridge-wave
guide AlGaAs GRIN-SCH las
er diode ”].

【0003】図2はかかる従来の半導体レーザ素子の断
面図である。図中、21はGe−Au−Ni層、22は
n−GaAs基板、23はバッファ層、24はn−Al
GaAsクラッド層、25はアルミニウムの組成を連続
的に変化させて屈折率に傾斜をつけたn−AlGaAs
−GRIN層、26は単一量子井戸活性層、27はp−
AlGaAs−GRIN層、28はp−AlGaAsク
ラッド層、29はSiO2 、30はp−GaAsコンタ
クト層、31はTi−Pt−Au層である。
FIG. 2 is a sectional view of such a conventional semiconductor laser device. In the figure, 21 is a Ge-Au-Ni layer, 22 is an n-GaAs substrate, 23 is a buffer layer, and 24 is n-Al.
The GaAs clad layer 25 is n-AlGaAs whose refractive index is graded by continuously changing the composition of aluminum.
-GRIN layer, 26 is a single quantum well active layer, 27 is p-
An AlGaAs-GRIN layer, 28 is a p-AlGaAs cladding layer, 29 is SiO 2 , 30 is a p-GaAs contact layer, and 31 is a Ti-Pt-Au layer.

【0004】この図に示すように、この種の半導体レー
ザ素子としては、分子線エピタキシャル(MBE)法に
よってn型GaAs基板22上に、バッファ層23、n
−AlGaAsクラッド層24、アルミニウムの組成を
連続的に変化させて屈折率に傾斜をつけたn−AlGa
As−GRIN層25、GaAs単一量子井戸活性層2
6、p−AlGaAs−GRIN層27、p−AlGa
Asクラッド層28、p−GaAsコンタクト層30か
らなるレーザ構造を成長させ、化学エッチングあるいは
ドライエッチングによって、p−AlGaAsクラッド
層28の途中まで取り除いたリッジ構造を形成し、リッ
ジ部分とリッジ以外の部分との間に実効屈折率差をつけ
ることによって、光の閉じ込めを行い、リッジ部分以外
の領域を絶縁膜(SiO2 )29で覆って電流狭窄を行
なっていた。
As shown in this figure, in this type of semiconductor laser device, buffer layers 23, n are formed on an n-type GaAs substrate 22 by a molecular beam epitaxial (MBE) method.
-AlGaAs cladding layer 24, n-AlGa having a graded refractive index by continuously changing the composition of aluminum
As-GRIN layer 25, GaAs single quantum well active layer 2
6, p-AlGaAs-GRIN layer 27, p-AlGa
A laser structure composed of the As clad layer 28 and the p-GaAs contact layer 30 is grown, and a ridge structure is formed by removing the p-AlGaAs clad layer 28 partway through chemical etching or dry etching to form a ridge structure and a portion other than the ridge. By confining the effective refractive index between and, the light is confined and the region other than the ridge portion is covered with the insulating film (SiO 2 ) 29 to confine the current.

【0005】[0005]

【課題が解決しようとする課題】しかしながら、上記の
半導体レーザ素子の製造方法では、Beをp型のドーパ
ントとして用いているために、AlGaAsクラッド層
28の最適な成長温度では、成長中でのBeの異常拡散
を制御するのが困難なため、最適なp型のドーピング量
及びプロファイルを形成できず、素子特性や歩留まりの
向上の障害となっていた。
However, since Be is used as the p-type dopant in the above-described method for manufacturing a semiconductor laser device, Be is not grown during growth at the optimum growth temperature of the AlGaAs cladding layer 28. Since it is difficult to control the anomalous diffusion of p, the optimum p-type doping amount and profile cannot be formed, which is an obstacle to improvement of device characteristics and yield.

【0006】本発明は、上記問題点を除去し、MBE法
を用いて高性能の半導体レーザ素子の製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above problems and provide a method of manufacturing a high performance semiconductor laser device using the MBE method.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体レーザ素子の製造方法において、
分子線エピタキシャル成長法において、GaAs(31
1)A面基板を用い成長中での拡散係数の小さいSiを
p及びn型のドーパントとして用い、As4 分子とIII
族原子フラックス比を制御するとともに、Siの極性を
制御し、最適なドーピング量及びプロファイルを形成す
るようにしたものである。
To achieve the above object, the present invention provides a method for manufacturing a semiconductor laser device,
In the molecular beam epitaxial growth method, GaAs (31
1) Using an A-plane substrate, Si having a small diffusion coefficient during growth as a p-type and n-type dopant, and using As 4 molecules and III
In addition to controlling the group atom flux ratio, the polarity of Si is controlled to form the optimum doping amount and profile.

【0008】[0008]

【作用】本発明によれば、上記のように、GaAs(3
11)A基板上に、成長中での拡散係数の小さいSiの
みをドーパントとして用い、SiがAs圧の変化によ
り、p型にもn型にもなるという性質を利用し、最適な
ドーピング量及びプロファイルが形成された半導体レー
ザ素子を得ることができる。
According to the present invention, as described above, GaAs (3
11) On the A substrate, only Si having a small diffusion coefficient during growth is used as a dopant, and by utilizing the property that Si becomes p-type or n-type depending on the change in As pressure, the optimum doping amount and A semiconductor laser device having a profile can be obtained.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。図1は本発明の実施例を示す半導体レ
ーザ素子の製造工程断面図である。まず、図1(a)に
示すように、p−GaAs(100)基板1上、MBE
法により、p−GaAsバッファ層2(0.5μm程
度)、p−AlGaAsクラッド層3(1.5μm程
度)、アンドープのGRIN−AlGaAs層4、アン
ードープのGaAs単一量子井戸活性層5(0.01μ
m程度)、アンドープのGRIN−AlGaAs層6を
積層する。この時、As4 分子としてIII 族原子フラッ
クス比を1程度とし、Siをドーパントとして用いるこ
とにより、p型の導電性を得る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view of a semiconductor laser device manufacturing process showing an embodiment of the present invention. First, as shown in FIG. 1A, MBE is formed on a p-GaAs (100) substrate 1.
P-GaAs buffer layer 2 (about 0.5 μm), p-AlGaAs cladding layer 3 (about 1.5 μm), undoped GRIN-AlGaAs layer 4, and undoped GaAs single quantum well active layer 5 (0. 01μ
m)), and an undoped GRIN-AlGaAs layer 6 is laminated. At this time, a group III atomic flux ratio of As 4 molecules is set to about 1 and Si is used as a dopant to obtain p-type conductivity.

【0010】次いで、As4 分子とIII 族原子フラック
ス比を2以上にし、Siをドーパントとし、n−AlG
aAsクラッド層7(1.5μm程度)、n−GaAs
コンタクト層8(0.5μm程度)を成長する。AlG
aAsクラッド層3、7の最適な成長温度(700〜7
50C°)でもSiは成長中に異常拡散を起こさないの
で、アンドープのGaAs単一量子井戸活性層5を絶縁
層とする良好なpin構造を形成することができ、閾値
電流の低下や効率の向上を実現でき、更に、p型のドー
ピング量も多くできるので、高電流注入時における発熱
を小さくすることができる。
Then, the ratio of the As 4 molecule to the group III atomic flux is set to 2 or more, Si is used as a dopant, and n-AlG is used.
aAs clad layer 7 (about 1.5 μm), n-GaAs
The contact layer 8 (about 0.5 μm) is grown. AlG
Optimum growth temperature of aAs clad layers 3 and 7 (700 to 7
Since Si does not cause abnormal diffusion during growth even at 50 ° C.), it is possible to form a good pin structure using the undoped GaAs single quantum well active layer 5 as an insulating layer, thereby reducing the threshold current and improving efficiency. Furthermore, since the p-type doping amount can be increased, heat generation at the time of high current injection can be reduced.

【0011】次に、図1(b)に示すように、レジスト
層9を塗布した後、通常のリソグラフィー技術を用い、
(0−11)方向に、幅3μm程度のストライプを形成
する。レジスト層9をマスクとし、化学エッチングある
いはドライエッチングによって、n−AlGaAsクラ
ッド層の途中まで取り除いたリッジ構造を形成し、リッ
ジ部分とリッジ以外の部分との間に実効屈折率差をつけ
ることによって、基本横モードでの光の閉じ込めを行な
えるようにする。
Next, as shown in FIG. 1 (b), after applying a resist layer 9, a usual lithographic technique is used,
A stripe having a width of about 3 μm is formed in the (0-11) direction. By using the resist layer 9 as a mask, chemical etching or dry etching is performed to form a ridge structure that is partially removed from the n-AlGaAs cladding layer, and an effective refractive index difference is provided between the ridge portion and the portion other than the ridge. Allow light to be trapped in the basic transverse mode.

【0012】次に、図1(c)に示すように、ポリイミ
ド層10によるリッジ部の埋め込みを行なって電流狭窄
をする。また、n側電極11を形成し、裏面にp側電極
12を形成する。更に、ドライエッチングあるいはへき
開によってレーザ端面を形成する。なお、上記説明で
は、p−GaAs(311)A基板を用いた場合につい
ての説明を行なったが、同様の構造はn−GaAs(3
11)A基板を用いても形成することができる。
Next, as shown in FIG. 1C, the ridge portion is filled with the polyimide layer 10 to confine the current. Further, the n-side electrode 11 is formed and the p-side electrode 12 is formed on the back surface. Further, the laser end face is formed by dry etching or cleavage. In the above description, the case where the p-GaAs (311) A substrate is used has been described, but a similar structure has the same structure as n-GaAs (3).
11) It can also be formed by using the A substrate.

【0013】また、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above-mentioned embodiments, but various modifications can be made within the scope of the present invention, and these modifications are not excluded from the scope of the present invention.

【0014】[0014]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、GaAs(311)A面基板を用い、AlGa
Asの最適な成長温度(700〜750C°)でも、成
長中での拡散係数の小さいSiを用い、As4 分子とII
I 族原子フラックス比を制御し、Si極性を制御し、ド
ーピング領域並びにp型ドーピング量を大きくすること
ができるので、高出力まで基本横モード発振する半導体
レーザ素子を簡単に実現することができる。
As described above in detail, according to the present invention, a GaAs (311) A plane substrate is used and AlGa
Even at the optimum growth temperature of As (700 to 750 ° C), Si with a small diffusion coefficient during growth is used, and As 4 molecules and II
Since the group I atomic flux ratio can be controlled, the Si polarity can be controlled, and the doping region and the p-type doping amount can be increased, it is possible to easily realize a semiconductor laser device that oscillates in the fundamental transverse mode up to a high output.

【0015】本発明によって得られる半導体レーザ素子
は、超高速な光情報処理及び通信等の広い分野に応用す
ることができる。
The semiconductor laser device obtained by the present invention can be applied to a wide range of fields such as ultra-high-speed optical information processing and communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す半導体レーザ素子の製造
工程断面図である。
FIG. 1 is a sectional view of a manufacturing process of a semiconductor laser device showing an embodiment of the present invention.

【図2】従来の半導体レーザ素子の断面図である。FIG. 2 is a sectional view of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 p−GaAs(100)基板 2 p−GaAsバッファ層 3 p−AlGaAsクラッド層 4 アンドープのGRIN−AlGaAs層 5 アンードープのGaAs単一量子井戸活性層 6 アンドープのGRIN−AlGaAs層 7 n−AlGaAsクラッド層 8 n−GaAsコンタクト層 9 レジスト層 10 ポリイミド層 11 n側電極 12 p側電極 1 p-GaAs (100) substrate 2 p-GaAs buffer layer 3 p-AlGaAs cladding layer 4 undoped GRIN-AlGaAs layer 5 undoped GaAs single quantum well active layer 6 undoped GRIN-AlGaAs layer 7 n-AlGaAs cladding layer 8 n-GaAs contact layer 9 Resist layer 10 Polyimide layer 11 n-side electrode 12 p-side electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)分子線エピタキシャル成長法におい
て、GaAs(311)A面基板を用い成長中での拡散
係数の小さいSiをp及びn型のドーパントとして用
い、 (b)As4 分子とIII 族原子フラックス比を制御する
とともに、Siの極性を制御し、最適なドーピング量及
びプロファイルを形成することを特徴とする半導体レー
ザ素子の製造方法。
1. In (a) a molecular beam epitaxial growth method, a GaAs (311) A-plane substrate is used, and Si having a small diffusion coefficient during growth is used as a p-type and an n-type dopant. (B) As 4 molecules and III A method for manufacturing a semiconductor laser device, which comprises controlling an atomic flux ratio of a group and a polarity of Si to form an optimum doping amount and profile.
JP15070291A 1991-06-24 1991-06-24 Manufacture of semiconductor laser element Pending JPH05206566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15070291A JPH05206566A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15070291A JPH05206566A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH05206566A true JPH05206566A (en) 1993-08-13

Family

ID=15502553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15070291A Pending JPH05206566A (en) 1991-06-24 1991-06-24 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH05206566A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146788A (en) * 1988-11-28 1990-06-05 Fujitsu Ltd Formation of epitaxial crystal layer and manufacture of stripe type semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146788A (en) * 1988-11-28 1990-06-05 Fujitsu Ltd Formation of epitaxial crystal layer and manufacture of stripe type semiconductor laser

Similar Documents

Publication Publication Date Title
JPH05235470A (en) Laser diode
JPH0677587A (en) Semiconductor laser
JPH0856045A (en) Semiconductor laser device
JPH02116187A (en) Semiconductor laser
JPH05211372A (en) Manufacture of semiconductor laser
JPH05206566A (en) Manufacture of semiconductor laser element
JP3084264B2 (en) Semiconductor laser device
JPH0677588A (en) Semiconductor laser and manufacture thereof
JPH06112592A (en) Fabrication of semiconductor laser element
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPH01192184A (en) Manufacture of buried type semiconductor laser
JP2946781B2 (en) Semiconductor laser
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JPH06196807A (en) Semiconductor laser element and manufacture thereof
JP2932709B2 (en) Semiconductor laser
JP2001230490A (en) Manufacturing method for semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH0537070A (en) Manufacture of distributed feedback type semiconductor laser element
JP4024319B2 (en) Semiconductor light emitting device
JPH06112586A (en) Semiconductor laser diode
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPH05267168A (en) Manufacture of semiconductor device
JPH0730188A (en) Semiconductor laser element
JPH05206565A (en) Semiconductor laser element
JPH0563295A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980217