JPH05205718A - Button type alkaline battery - Google Patents

Button type alkaline battery

Info

Publication number
JPH05205718A
JPH05205718A JP4032602A JP3260292A JPH05205718A JP H05205718 A JPH05205718 A JP H05205718A JP 4032602 A JP4032602 A JP 4032602A JP 3260292 A JP3260292 A JP 3260292A JP H05205718 A JPH05205718 A JP H05205718A
Authority
JP
Japan
Prior art keywords
polyethylene film
electric resistance
graft
positive electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4032602A
Other languages
Japanese (ja)
Other versions
JP3235161B2 (en
Inventor
Yoshiaki Furukawa
吉昭 古川
Yoshio Oguma
嘉雄 小熊
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03260292A priority Critical patent/JP3235161B2/en
Publication of JPH05205718A publication Critical patent/JPH05205718A/en
Application granted granted Critical
Publication of JP3235161B2 publication Critical patent/JP3235161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve the closed circuit voltage characteristic and the capacity storing property of a button type alkaline battery simultaneously. CONSTITUTION:The negative electrode agent 1 and the positive electrode agent 5 of a button type alkaline battery are separated by a separator 6. As the separator 6 having the laminated structure, a first polyethylene film 7, to which the graft polymerization of acrylic acid or methacrylic acid is performed and which has a relatively small graft ratio and a large electrical resistance, a cellophane film 9, a second polyethylene film 8 having a relatively large graft ratio and a small electrical resistance are laminated to be formed integrally for use. The first graft-polymerized polyethylene film 7 having a large electrical resistance is arranged in the positive electrode agent 5 side. Deterioration of the cellophane film 9 is thereby prevented and the capacity storing ratio can be improved. On the other hand, the second polyethylene film 8 having a small electrical resistance is arranged in the positive electrode agent 1 side to improve the closed circuit voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボタン型アルカリ電池に
関する。より詳しくは、負極剤と正極剤との間に介在す
るセパレータの積層構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a button type alkaline battery. More specifically, it relates to a laminated structure of a separator interposed between a negative electrode agent and a positive electrode agent.

【0002】[0002]

【従来の技術】近年、酸化銀電池、水銀電池、アルカリ
マンガン電池、ニッケル亜鉛電池等のアルカリ電池が、
様々な種類の卓上機器や携帯機器の電源として用いら
れ、一層の小型化及び高性能化が求められている。アル
カリ電池は、基本的に負極剤と正極剤とがセパレータに
より隔絶された構造を有しており、内部は電解液で満た
されている。両極部における電気化学反応の進行に伴な
って電解液のみがセパレータを介して両極間を移動でき
る様になってる。その為、電池特性はセパレータの性能
に大きく依存している。
2. Description of the Related Art In recent years, alkaline batteries such as silver oxide batteries, mercury batteries, alkaline manganese batteries, nickel zinc batteries, etc.
It is used as a power source for various types of desktop devices and portable devices, and is required to be further miniaturized and have higher performance. An alkaline battery basically has a structure in which a negative electrode agent and a positive electrode agent are separated by a separator, and the inside is filled with an electrolytic solution. Only the electrolytic solution can move between both electrodes through the separator as the electrochemical reaction progresses in both electrodes. Therefore, the battery characteristics largely depend on the performance of the separator.

【0003】従来から、セパレータの性能を改善する為
に、積層構造のものが用いられている。これは、セロフ
ァン膜を基本とし表面及び裏面に種々の機能膜を組み合
せた構成となっている。機能膜としては、ポリエチレン
膜、不織布、紙等が用いられている。これらの材料を用
いたセパレータの積層構造としては以下に列挙するもの
が従来用いられている。即ち、ポリエチレン膜とセロフ
ァン膜とポリエチレン膜の3層ラミネート構成や、ポリ
エチレン膜とセロファン膜と不織布の3枚を組み合せた
構成や、ポリエチレン膜と第1のセロファン膜と第2の
セロファン膜と不織布の4枚を組み合せた構成等であ
る。
Hitherto, in order to improve the performance of the separator, a laminated structure has been used. This has a structure in which various functional films are combined on the front surface and the back surface based on the cellophane film. As the functional film, polyethylene film, non-woven fabric, paper or the like is used. As the laminated structure of the separator using these materials, those listed below are conventionally used. That is, a three-layer laminated structure of a polyethylene film, a cellophane film and a polyethylene film, a combination of three films of a polyethylene film, a cellophane film and a non-woven fabric, a polyethylene film, a first cellophane film, a second cellophane film and a non-woven fabric. For example, the structure is a combination of four sheets.

【0004】中間層に位置するセロファン膜は、親水性
及び保液性に優れ、電気抵抗が小さく且つ銀イオン等の
正極活物質を還元する作用があるので、優れた透過抑制
機能を有するという利点がある。しかしながら、セロフ
ァン膜はセルロース系である為、減極剤等の酸化剤と接
触すると容易に酸化され劣化する。この為、正負極間の
イオンや分子の透過を起し易くなってしまうという欠点
がある。この欠点を補う為、一般に耐酸化性を有するポ
リエチレン膜がセロファン膜と積層され、少なくとも正
極側に対面する様に配置されている。このポリエチレン
膜はイオン交換性及び保水性を付与する為に、表面の改
質された材料を用いている。具体的には、放射線を用い
てアクリル酸又はメタクリル酸の様なカルボキシル基を
有するモノマーをグラフト重合させている。
The cellophane film located in the intermediate layer is excellent in hydrophilicity and liquid retention, has a small electric resistance, and has an action of reducing a positive electrode active material such as silver ion, and thus has an excellent permeation suppressing function. There is. However, since the cellophane film is cellulosic, it is easily oxidized and deteriorates when it comes into contact with an oxidizing agent such as a depolarizer. For this reason, there is a disadvantage that ions and molecules are easily transmitted between the positive and negative electrodes. In order to compensate for this drawback, a polyethylene film having oxidation resistance is generally laminated with a cellophane film and arranged so as to face at least the positive electrode side. This polyethylene membrane uses a material whose surface is modified in order to impart ion exchangeability and water retention. Specifically, a monomer having a carboxyl group such as acrylic acid or methacrylic acid is graft-polymerized by using radiation.

【0005】かかる表面改質ポリエチレン膜の特性はグ
ラフト率に大きく依存している。例えば、グラフト率が
大きくなると親水性が増し電気抵抗が小さくなる一方、
銀イオン等の陽極活物質に対する透過率が増し電池容量
の保存性が低下する。逆に、グラフト率が小さいと容量
保存性は向上するが膜の電気抵抗が大きくなり、閉路電
圧(以下CCVと表わす。Closed Circui
t Voltageの略である。)が低下する。この様
に、ポリエチレン膜のグラフト率、即ち電気抵抗の選定
が電池性能に大きく影響し極めて重要である。
The properties of such surface-modified polyethylene membranes are highly dependent on the graft ratio. For example, when the graft ratio increases, the hydrophilicity increases and the electric resistance decreases,
The transmittance of the anode active material such as silver ions is increased, and the storage capacity of the battery capacity is reduced. On the contrary, when the graft ratio is small, the capacity storage property is improved, but the electric resistance of the film is increased, and the closed circuit voltage (hereinafter referred to as CCV. Closed Circuit).
Abbreviation for t Voltage. ) Is reduced. As described above, the graft ratio of the polyethylene film, that is, the selection of the electric resistance has a great influence on the battery performance and is extremely important.

【0006】[0006]

【発明が解決しようとする課題】セロファン膜の両面に
グラフト重合したポリエチレン膜でラミネートした3層
構造のセパレータを使用する場合、従来正極側に面した
ポリエチレン膜と負極側に面したポリエチレン膜は同一
のグラフト率で表面処理されており同一の電気抵抗を有
していた。従って、グラフト率の比較的小さいポリエチ
レン膜を用いた場合には、電気抵抗が大きくなり容量保
存性が向上する一方、CCV特性が悪くなるという課題
あるいは問題点がある。他方、グラフト率の比較的高い
ポリエチレン膜を表裏両面に共通に用いると、電気抵抗
が小さくなる為CCV特性が向上する一方、容量保存性
が低下するという課題あるいは問題点がある。この様
に、従来CCV特性と容量保存性を両立させともに改善
する事が非常に困難であった。
When a separator having a three-layer structure in which a polyethylene film graft-polymerized is laminated on both sides of a cellophane film is used, the polyethylene film facing the positive electrode side and the polyethylene film facing the negative electrode side are conventionally the same. The surface treatment was performed at a grafting ratio of 1 and had the same electric resistance. Therefore, when a polyethylene film having a relatively small graft ratio is used, there is a problem or a problem that CCV characteristics are deteriorated while electric resistance is increased and capacity storability is improved. On the other hand, when a polyethylene film having a relatively high graft ratio is commonly used on both front and back surfaces, there is a problem or problem that CCV characteristics are improved because electric resistance is reduced, but capacity preservation is deteriorated. As described above, it has been very difficult to improve both the CCV characteristics and the capacity storability together.

【0007】[0007]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明はCCV特性と容量保存性とをともに
改善する事のできる3層ラミネート構造を有するボタン
型アルカリ電池用セパレータを提供する事を目的とす
る。かかる目的を達成する為に以下の手段を講じた。即
ち、アルカリ電池の負極剤と正極剤との間に介在させる
セパレータとして、アクリル酸又はメタクリル酸をグラ
フト重合したグラフト率が比較的小さく電気抵抗が大き
い第1のポリエチレン膜と、セロファン膜と、グラフト
率が比較的大きく電気抵抗が小さい第2のポリエレン膜
とをラミネートして一体成形したものを用いた。そし
て、第1の電気抵抗が大きいグラフト重合ポリエチレン
膜を正極剤側に配置するという手段を講じた。具体的に
は、セパレータの第1のポリエチレン膜の電気抵抗は1
50〜500mΩ・cm2 の範囲に設定し、第2のポリエ
チレン膜の電気抵抗が100〜200mΩ・cm2 の範囲
に設定する。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a button type alkaline battery separator having a three-layer laminate structure capable of improving both CCV characteristics and capacity storability. The purpose is to do. The following measures have been taken in order to achieve this object. That is, as a separator to be interposed between a negative electrode agent and a positive electrode agent of an alkaline battery, a first polyethylene film having a relatively small graft ratio obtained by graft polymerization of acrylic acid or methacrylic acid and a large electric resistance, a cellophane film, and a graft A second polyethylene film having a relatively high rate and a low electric resistance was laminated and integrally molded. Then, the first means for arranging the graft-polymerized polyethylene film having a large electric resistance on the positive electrode agent side was taken. Specifically, the electrical resistance of the first polyethylene film of the separator is 1
Set in the range of 50~500mΩ · cm 2, the electric resistance of the second polyethylene film is set in the range of 100~200mΩ · cm 2.

【0008】[0008]

【作用】上述した様に、本発明においては正極剤側に面
するポリエチレン膜の電気抵抗を大きくし、且つ負極剤
側に面するポリエチレン膜の電気抵抗を小さく設定し
た。これにより、アルカリ電池のCCV特性を低下させ
る事なく優れた容量保存性を得る事ができる。換言する
と、正極剤側のポリエチレン膜の電気抵抗を大きくし且
つ負極剤側のポリエチレン膜の電気抵抗を小さくする事
により、容量保存性を低下させる事なくCCV特性の優
れた電池を得る事ができる。
As described above, in the present invention, the electrical resistance of the polyethylene film facing the positive electrode agent side is set high, and the electrical resistance of the polyethylene film facing the negative electrode agent side is set low. As a result, it is possible to obtain excellent storage capacity without deteriorating the CCV characteristics of the alkaline battery. In other words, by increasing the electric resistance of the polyethylene film on the side of the positive electrode agent and decreasing the electric resistance of the polyethylene film on the side of the negative electrode agent, a battery having excellent CCV characteristics can be obtained without deteriorating the storage stability of the capacity. ..

【0009】[0009]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかるボタン型アルカ
リ電池の一実施例を示す模式的な断面図であって、本発
明を酸化銀電池SR616SW(外径6.8mm、高さ
1.6mm)に適用した例である。図示する様に、酸化銀
電池は負極剤1とこの負極剤1を収納する封口板2とを
備えている。この封口板2は負極端子を兼ねている。封
口板2には封口パッキン3を介して正極ケース4が嵌合
している。この封口パッキン3は例えばナイロン材料か
ら構成されており、封口板2からなる負極端子と正極ケ
ース4からなる正極端子とを電気的に絶縁している。正
極ケース4の内底部には酸化銀を主成分とするペレット
状の正極剤5が配置されている。この様に密封された電
池の内部には電解液が満たされる。本例では電解液とし
て苛性ソーダ水溶液を用いた。しかしながら、本発明は
必ずしもこれに限られるものではなく他のアルカリ水溶
液を用いる事ができる。又、本発明は酸化銀電池に限ら
れるものではなく、様々な種類の負極剤及び正極剤を用
いたアルカリ電池に適用可能である事はいうまでもな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of a button type alkaline battery according to the present invention, in which the present invention is applied to a silver oxide battery SR616SW (outer diameter 6.8 mm, height 1.6 mm). Is. As shown in the figure, the silver oxide battery includes a negative electrode agent 1 and a sealing plate 2 that accommodates the negative electrode agent 1. The sealing plate 2 also serves as a negative electrode terminal. The positive electrode case 4 is fitted to the sealing plate 2 via the sealing packing 3. The sealing packing 3 is made of, for example, a nylon material, and electrically insulates the negative electrode terminal composed of the sealing plate 2 and the positive electrode terminal composed of the positive electrode case 4. On the inner bottom of the positive electrode case 4, a pellet-shaped positive electrode material 5 containing silver oxide as a main component is arranged. The battery thus sealed is filled with the electrolytic solution. In this example, a caustic soda aqueous solution was used as the electrolytic solution. However, the present invention is not necessarily limited to this, and other alkaline aqueous solution can be used. Further, it goes without saying that the present invention is not limited to silver oxide batteries, but can be applied to alkaline batteries using various types of negative electrode agents and positive electrode agents.

【0010】負極剤1と正極剤5を互いに分離する様に
セパレータ6が介在している。このセパレータ6は、負
極剤1に接する第2ポリエチレン膜8と、正極剤5に接
する第1ポリエチレン膜7と両ポリエチレン膜によって
ラミネートされたセロファン膜9とからなる3層構造を
有している。
A separator 6 is interposed so as to separate the negative electrode agent 1 and the positive electrode agent 5 from each other. The separator 6 has a three-layer structure including a second polyethylene film 8 in contact with the negative electrode agent 1, a first polyethylene film 7 in contact with the positive electrode agent 5, and a cellophane film 9 laminated with both polyethylene films.

【0011】第1ポリエチレン膜7は、アクリル酸又は
メタクリル酸をグラフト重合したものであり、グラフト
率が比較的小さな材料を用いている。この為電気抵抗が
比較的大きく、好ましくは150〜500mΩ・cm2
範囲に設定されている。又、第2ポリエチレン膜8もア
クリル酸又はメタクリル酸をグラフト重合した材料を用
いている。この場合、グラフト率の比較的大きな材料を
選択しており電気抵抗が比較的小さい。好ましくは、電
気抵抗は100〜200mΩ・cm2 の範囲に設定されて
いる。これら一対の第1ポリエチレン膜7及び第2ポリ
エチレン膜8をセロファン膜9に両面から重ね合わせ一
体成形する事により積層セパレータ6を得ている。
The first polyethylene film 7 is obtained by graft-polymerizing acrylic acid or methacrylic acid and uses a material having a relatively small graft ratio. For this reason, the electric resistance is relatively large and is preferably set in the range of 150 to 500 mΩ · cm 2 . The second polyethylene film 8 is also made of a material obtained by graft-polymerizing acrylic acid or methacrylic acid. In this case, a material having a relatively large graft ratio is selected and the electric resistance is relatively small. Preferably, the electric resistance is set in the range of 100 to 200 mΩ · cm 2 . The pair of the first polyethylene film 7 and the second polyethylene film 8 is superposed on the cellophane film 9 from both sides and integrally molded to obtain the laminated separator 6.

【0012】本実施例では、第1ポリエチレン膜7の電
気抵抗値の下限を150mΩ・cm2に設定している。仮
に、第1ポリエチレン膜7の電気抵抗をこの下限値以下
に設定すると、銀イオンの透過量が著しく増してしまい
所望の容量保存性が得られにくい。又、本実施例では第
1ポリエチレン膜の電気抵抗の上限値を500mΩ・cm
2 に設定している。仮に、第1ポリエチレン膜の電気抵
抗をこの上限値を越えて設定すると、内部抵抗の増大に
より所望のCCV特性が得られない。
In this embodiment, the lower limit of the electric resistance of the first polyethylene film 7 is set to 150 mΩ · cm 2 . If the electrical resistance of the first polyethylene film 7 is set below this lower limit value, the amount of silver ions permeated significantly increases, making it difficult to obtain the desired capacity preservation property. In this embodiment, the upper limit of the electric resistance of the first polyethylene film is 500 mΩ · cm.
It is set to 2 . If the electric resistance of the first polyethylene film is set to exceed this upper limit value, the desired CCV characteristics cannot be obtained due to the increase of the internal resistance.

【0013】一方、本実施例では第2ポリエチレン膜の
電気抵抗を100〜200mΩ・cm2 の範囲に設定して
いる。第2ポリエチレン膜の電気抵抗が低い程CCV特
性が向上する。しかしながら、アクリル酸又はメタクリ
ル酸を用いたグラフト重合により表面改質を行なった場
合、製造技術上電気抵抗を100mΩ・cm2 以下にする
のは困難である。この為、100mΩ・cm2 を第2ポリ
エチレン膜の電気抵抗の下限値とした。一方、上限値2
00mΩ・cm2 については一応の目安であり、内部抵抗
をできるだけ下げる事によりCCV特性が改善される。
On the other hand, in this embodiment, the electric resistance of the second polyethylene film is set in the range of 100 to 200 mΩ · cm 2 . The lower the electric resistance of the second polyethylene film is, the more the CCV characteristics are improved. However, when the surface is modified by graft polymerization using acrylic acid or methacrylic acid, it is difficult to reduce the electric resistance to 100 mΩ · cm 2 or less in terms of manufacturing technology. Therefore, 100 mΩ · cm 2 was set as the lower limit of the electric resistance of the second polyethylene film. On the other hand, the upper limit 2
00mΩ · cm 2 is a tentative guideline, and CCV characteristics are improved by reducing the internal resistance as much as possible.

【0014】なお、グラフト重合されたポリエチレン膜
の電気抵抗は、交流式電圧降下法(1kHz)により測定し
た。測定雰囲気温度は20±1℃に設定され、グラフト
重合ポリエチレン試料を40%KOH(比重1.400
±0.005)水溶液中に12時間以上浸漬した後取り
出して電気抵抗を測定した。
The electrical resistance of the graft-polymerized polyethylene film was measured by the AC voltage drop method (1 kHz). The measurement atmosphere temperature was set to 20 ± 1 ° C., and the graft-polymerized polyethylene sample was treated with 40% KOH (specific gravity 1.400).
(± 0.005) It was immersed in an aqueous solution for 12 hours or more and then taken out to measure the electric resistance.

【0015】[0015]

【発明の効果】本発明の効果を確認する為サンプルを作
製して容量保存性及びCCV特性について評価を行なっ
た。なお比較の為、サンプルは発明品1種類と従来品2
種類について作製した。測定結果を説明する前に各サン
プルの内容を以下に説明する。
In order to confirm the effects of the present invention, samples were prepared and evaluated for capacity preservation and CCV characteristics. For comparison, the sample is one invention product and two conventional products.
It produced about the kind. Before explaining the measurement results, the contents of each sample will be described below.

【0016】発明品サンプルについては、電気抵抗20
0mΩ・cm2 で厚み27μmのグラフト重合された第1
ポリエチレン膜と、厚み21μmのセロファン膜と、電
気抵抗100mΩ・cm2 で厚み27μmを有するグラフ
ト重合された第2ポリエチレン膜とをこの順にラミネー
トして一体成形したものをセパレータとして用い、図1
に示すボタン型アルカリ電池を作製した。なお、電気抵
抗が大きい第1のポリエチレン膜を正極側に配置してい
る。
For the invention sample, the electric resistance 20
Graft-polymerized first with a thickness of 0 μm · cm 2 and a thickness of 27 μm
A polyethylene film, a cellophane film having a thickness of 21 μm, and a graft-polymerized second polyethylene film having an electric resistance of 100 mΩ · cm 2 and a thickness of 27 μm are laminated in this order and integrally molded, and used as a separator.
A button type alkaline battery shown in was prepared. The first polyethylene film having a large electric resistance is arranged on the positive electrode side.

【0017】従来品1のサンプルについては、電気抵抗
150mΩ・cm2 で厚み27μmを有するグラフト重合
された第1ポリエチレン膜と、厚み21μmのセロファ
ン膜と、電気抵抗150mΩ・cm2 で厚み27μmを有
するグラフト重合された第2ポリエチレン膜とをこの順
にラミネートして一体成形したものをセパレータとして
用い、図1に示すボタン型アルカリ電池を作製した。こ
の従来品1は発明品に比較すると第1ポリエチレン膜が
低い電気抵抗を有しており、第2ポリエチレン膜が高い
電気抵抗を有している。従って、セパレータトータルと
しての電気抵抗は発明品と等しい。
The sample of the conventional product 1 has a graft-polymerized first polyethylene film having an electric resistance of 150 mΩ · cm 2 and a thickness of 27 μm, a cellophane film having a thickness of 21 μm, and an electric resistance of 150 mΩ · cm 2 and a thickness of 27 μm. A button-type alkaline battery shown in FIG. 1 was prepared by using as a separator an integrally molded product obtained by laminating a graft-polymerized second polyethylene film in this order. In this conventional product 1, the first polyethylene film has a lower electric resistance and the second polyethylene film has a higher electric resistance as compared with the invention product. Therefore, the electric resistance of the separator as a whole is equal to that of the invention product.

【0018】従来品2のサンプルについては、電気抵抗
200mΩ・cm2 で厚み27μmを有するグラフト重合
された第1ポリエチレン膜と、厚み21μmのセロファ
ン膜と、電気抵抗200mΩ・cm2 で厚み27μmを有
するグラフト重合された第2ポリエチレン膜とをこの順
にラミネートして一体成形したものをセパレータとして
用い、図1に示すボタン型アルカリ電池を作製した。こ
の従来品2は第2ポリエチレン膜が発明品サンプルより
高い電気抵抗を有しているとともに、第1ポリエチレン
膜の電気抵抗は発明品と等しい。従ってセパレータトー
タルとしては発明品より電気抵抗は高い。
The sample of Conventional Product 2 has a graft-polymerized first polyethylene film having an electric resistance of 200 mΩ · cm 2 and a thickness of 27 μm, a cellophane film having a thickness of 21 μm, and an electric resistance of 200 mΩ · cm 2 and a thickness of 27 μm. A button-type alkaline battery shown in FIG. 1 was prepared by using as a separator an integrally molded product obtained by laminating a graft-polymerized second polyethylene film in this order. In this conventional product 2, the second polyethylene film has higher electric resistance than the invention sample, and the electric resistance of the first polyethylene film is equal to that of the invention product. Therefore, the electric resistance of the separator as a whole is higher than that of the invention product.

【0019】図2は上述した各サンプルについて容量保
存率を測定した結果を示すグラフである。横軸に保存日
数を取り縦軸に容量保存率を取っている。加速をかける
為サンプルを60℃の温度で保存した。又、終止電圧は
1.4Vとした。なお、放電負荷抵抗は68kΩのもの
を用いた。各測定値は10個のサンプルの平均値であ
る。グラフ中、カーブAが本発明品の測定結果を表わ
し、カーブBが従来品1の測定結果を表わし、カーブC
が従来品2の測定結果を表わしている。このグラフから
明らかな様に、低い電気抵抗の第1ポリエチレン膜から
なるセパレータを用いた従来品1は40日経過後容量保
存率が急激に低下している。これに対して、本発明品及
び従来品2は保存日数100日を越えても90%以上の
容量保存率を維持している。
FIG. 2 is a graph showing the results of measuring the capacity preservation ratios of the above-mentioned samples. The horizontal axis shows the number of storage days and the vertical axis shows the capacity storage rate. The sample was stored at a temperature of 60 ° C. for acceleration. The final voltage was 1.4V. The discharge load resistance used was 68 kΩ. Each measurement is the average of 10 samples. In the graph, a curve A represents the measurement result of the product of the present invention, a curve B represents the measurement result of the conventional product 1, and a curve C.
Represents the measurement result of the conventional product 2. As is apparent from this graph, the conventional product 1 using the separator made of the first polyethylene film having a low electric resistance has a sharp decrease in the capacity retention rate after 40 days. On the other hand, the product of the present invention and the conventional product 2 maintain the capacity preservation ratio of 90% or more even after the preservation days of 100 days.

【0020】図3はCCV特性の測定結果を表わすグラ
フである。横軸に放電深度を取り縦軸にCCVを取って
いる。CCVの測定条件は23℃で2kΩの負荷抵抗を
用い5秒間とした。測定値は10個のサンプルの平均を
表わしている。図2のグラフと同様に、カーブAが発明
品を表わし、カーブBが従来品1を表わしカーブCが従
来品2を表わしている。このグラフから明らかな様に、
高い電気抵抗を有する第2ポリエチレン膜からなるセパ
レータを用いた従来品2はCCVが1.3V以下である
のに対して、発明品及び従来品1はCCVが1.3V以
上であった。
FIG. 3 is a graph showing the measurement results of CCV characteristics. The horizontal axis represents the depth of discharge and the vertical axis represents CCV. The CCV measurement conditions were 23 ° C. and a load resistance of 2 kΩ for 5 seconds. The measured value represents the average of 10 samples. Similar to the graph of FIG. 2, the curve A represents the invention product, the curve B represents the conventional product 1, and the curve C represents the conventional product 2. As you can see from this graph,
The conventional product 2 using the separator made of the second polyethylene film having a high electric resistance has a CCV of 1.3 V or less, whereas the invention product and the conventional product 1 have a CCV of 1.3 V or more.

【0021】以上の測定結果から明らかな様に、従来品
1と比較して、発明品は容量保存性において明らかに優
れ且つCCV特性は劣らない事が解る。又、従来品2に
比較すると、本発明品はCCV特性が優れているにもか
かわらず容量保存性が劣らない事が解る。この結果か
ら、CCV特性はセパレータの積層膜トータルの電気抵
抗に依存するとともに、容量保存性は正極剤側に配置さ
れた第1ポリエチレン膜の電気抵抗に依存する事が判明
した。この原因は、電気抵抗が大きいポリエチレン膜を
正極剤側に配置する事により銀イオンの透過量を少なく
でき、セロファン膜が銀イオンで破壊され難くなる為で
ある。即ち、正極剤側のポリエチレン膜の電気抵抗を大
きくし且つ負極剤側のポリエチレン膜の電気抵抗を小さ
くする事により、CCV特性を低下させる事なく容量保
存性に優れたアルカリ電池を提供する事ができる。又、
負極剤側のポリエチレン膜の電気抵抗を小さくする事に
より、容量保存性を低下させる事なくCCV特性の優れ
たアルカリ電池を提供する事ができる。
As is clear from the above measurement results, the invention product is clearly superior in the capacity preservation property and the CCV characteristic is not inferior to the conventional product 1 as compared with the conventional product 1. Further, as compared with the conventional product 2, it can be seen that the product of the present invention is excellent in CCV characteristics, but is not inferior in capacity preservation. From this result, it was found that the CCV characteristics depend on the total electric resistance of the laminated film of the separator, and the capacity preservation property depends on the electric resistance of the first polyethylene film arranged on the positive electrode agent side. The reason for this is that by arranging a polyethylene film having high electric resistance on the positive electrode side, the amount of silver ions permeated can be reduced, and the cellophane film is less likely to be broken by silver ions. That is, by increasing the electric resistance of the polyethylene film on the side of the positive electrode agent and decreasing the electric resistance of the polyethylene film on the side of the negative electrode agent, it is possible to provide an alkaline battery excellent in capacity preservation without lowering CCV characteristics. it can. or,
By reducing the electric resistance of the polyethylene film on the negative electrode agent side, it is possible to provide an alkaline battery having excellent CCV characteristics without deteriorating the capacity storage property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるボタン型アルカリ電池の基本的
な構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the basic configuration of a button type alkaline battery according to the present invention.

【図2】ボタン型アルカリ電池の容量保存率を測定した
結果を示すグラフである。
FIG. 2 is a graph showing the results of measuring the capacity retention of button-type alkaline batteries.

【図3】ボタン型アルカリ電池のCCV特性を測定した
結果を表わすグラフである。
FIG. 3 is a graph showing a result of measuring CCV characteristics of a button type alkaline battery.

【符号の説明】[Explanation of symbols]

1 負極剤 2 封口板 3 封口パッキン 4 正極ケース 5 正極剤 6 セパレータ 7 第1ポリエチレン膜 8 第2ポリエチレン膜 9 セロファン膜 1 Negative agent 2 Sealing plate 3 Sealing packing 4 Positive electrode case 5 Positive electrode agent 6 Separator 7 First polyethylene film 8 Second polyethylene film 9 Cellophane film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極剤と正極剤との間に介在させるセパ
レータとして、アクリル酸又はメタクリル酸をグラフト
重合したグラフト率が比較的小さく電気抵抗が大きい第
1のポリエチレン膜と、セロファン膜と、グラフト率が
比較的大きく電気抵抗が小さい第2のポリエチレン膜と
をラミネートして一体成形したものを用い、第1の電気
抵抗が大きいグラフト重合ポリエチレン膜を正極剤側に
配置した事を特徴とするアルカリ電池。
1. A first polyethylene film obtained by graft polymerization of acrylic acid or methacrylic acid, which has a relatively small graft ratio and a large electric resistance, and a cellophane film, as a separator interposed between the negative electrode agent and the positive electrode agent. Alkali characterized in that it is formed by laminating and integrally molding a second polyethylene film having a relatively large electric resistance and a small electric resistance, and a graft-polymerized polyethylene film having a large first electric resistance is arranged on the positive electrode side. battery.
【請求項2】 上記セパレータの第1のポリエチレン膜
の電気抵抗が150〜500mΩ・cm2 の範囲にあり、
第2のポリエチレン膜の電気抵抗が100〜200mΩ
・cm2 の範囲とした事を特徴とする請求項1記載のアル
カリ電池。
2. The electrical resistance of the first polyethylene film of the separator is in the range of 150 to 500 mΩ · cm 2 ,
The electrical resistance of the second polyethylene film is 100 to 200 mΩ
The alkaline battery according to claim 1, wherein the alkaline battery has a range of cm 2 .
JP03260292A 1992-01-22 1992-01-22 Button type alkaline battery Expired - Lifetime JP3235161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03260292A JP3235161B2 (en) 1992-01-22 1992-01-22 Button type alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03260292A JP3235161B2 (en) 1992-01-22 1992-01-22 Button type alkaline battery

Publications (2)

Publication Number Publication Date
JPH05205718A true JPH05205718A (en) 1993-08-13
JP3235161B2 JP3235161B2 (en) 2001-12-04

Family

ID=12363412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03260292A Expired - Lifetime JP3235161B2 (en) 1992-01-22 1992-01-22 Button type alkaline battery

Country Status (1)

Country Link
JP (1) JP3235161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120549A (en) * 2004-10-25 2006-05-11 Hitachi Maxell Ltd Silver oxide battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120549A (en) * 2004-10-25 2006-05-11 Hitachi Maxell Ltd Silver oxide battery

Also Published As

Publication number Publication date
JP3235161B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US4390603A (en) Methanol fuel cell
JPH04366547A (en) Gas depolarizing assembling battery
US3484295A (en) Battery having a positive electrode in which the principal active material is isolated from the electrolyte by a secondary active material
JP2004281220A (en) Nickel-hydrogen storage battery
JPH05205718A (en) Button type alkaline battery
US3485672A (en) Electric current producing cell
US4743520A (en) Self-limiting electrochemical cell
JP2005158383A (en) Redox cell
US4041219A (en) Silver peroxide-zinc battery
KR20020043602A (en) Improvements To Ni-Zn Battery
JPS62226580A (en) Redox flow battery
US20040005503A1 (en) Nickel-hydrogen storage battery and method for manufacture thereof
JPS6112341B2 (en)
JPS6226915Y2 (en)
JPS6337943B2 (en)
JPS6051505A (en) Gas selective composite membrane
JP2547816B2 (en) Solid electrolyte secondary battery
JPH06275250A (en) Button type silver oxide battery
US696489A (en) Separator for battery-plates.
JPH07326382A (en) Hermetically sealed button-type alkali battery
JPS5931566A (en) Battery
JPH1021936A (en) Button type silver oxide battery and manufacture thereof
JPS6077353A (en) Silver oxide secondary battery
JPH0294251A (en) Separator for alkaline battery
EP0345465A1 (en) Primary alkaline electrochemical cells and batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 11