JPH05205313A - High-durability optical recording medium - Google Patents

High-durability optical recording medium

Info

Publication number
JPH05205313A
JPH05205313A JP4011725A JP1172592A JPH05205313A JP H05205313 A JPH05205313 A JP H05205313A JP 4011725 A JP4011725 A JP 4011725A JP 1172592 A JP1172592 A JP 1172592A JP H05205313 A JPH05205313 A JP H05205313A
Authority
JP
Japan
Prior art keywords
layer
recording medium
heat
recording
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4011725A
Other languages
Japanese (ja)
Inventor
Jiichi Miyamoto
治一 宮本
Shigenori Okamine
成範 岡峯
Motoyasu Terao
元康 寺尾
Masahiro Oshima
正啓 尾島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP4011725A priority Critical patent/JPH05205313A/en
Publication of JPH05205313A publication Critical patent/JPH05205313A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration by the flow of a recording layer and the relaxation of a structure and to improve the number of rewriting times by alternately laminating heat responsive layers and heat nonsensitive layers changing in physical states. CONSTITUTION:A (ZnS)80(SiO2)20 having about 120nm thickness is formed as a lower protective layer 2 by magnetron sputtering using Ar on a polycarbonate substrate 1 provided with grooves for tracking and pits indicating addresses at the time of injection molding. The heat responsive layers 31 of a phase transition type consisting of Ge-Sb-Te and having about 1nm thickness and the heat nonsensitive layers 32 consisting of the (ZnS)80(SiO2)20 and having about 60nm thickness are alternately superposed about 20 times thereon. The heat responsive layers 31 are nearly in an amorphous state and the single layer thereof constitutes an island of about 15nm diameter. Further, the (ZnS)80(SiO2)20 is superposed as an upper protective layer 4 at about 210nm thereon and a reflection film 5 consisting of Al96Cu4 and having about 100nm thickness is provided, on which a UV curing resin film 6 is superposed. Finally, this disk is stuck by a hot melt adhesive to the similarly formed disk with the resin films 6 positioned on the inner side. The content of the Cu in the Al96Cu4 is selected at 1 to 45 atomic %.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて記録媒体の
温度を上昇させることにより記録を行う光記録媒体に係
り、特に、記録層を結晶状態と非晶質状態の間で相変化
させて記録を行う相変化型光記録媒体あるいは記録層の
磁化の向きに応じて情報を記録する光磁気記録媒体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium for recording by raising the temperature of the recording medium using light, and more particularly to a phase change of a recording layer between a crystalline state and an amorphous state. The present invention relates to a phase-change optical recording medium for performing recording by recording or a magneto-optical recording medium for recording information according to the direction of magnetization of a recording layer.

【0002】[0002]

【従来の技術】従来の相変化型光記録媒体は、例えば図
8に示すように、射出成形時にトラッキング用の溝とア
ドレスを示すピット(いずれも図示せず)を表面に形成
したディスク状ポリカーボネート基板11上に、アルゴ
ンガスを用いたマグネトロンスパッタリングによって、
まず、下部保護層12である厚さ約120nmの(Zn
S)80(SiO2)20膜を形成し、その上に厚さ約30nm
のGe−Sb−Teよりなる相変化型の記録層13を形
成する。次に、マグネトロンスパッタリングによって上
部保護層14である厚さ約210nmの(ZnS)80(S
iO2)20膜を形成し、次いで金属反射層15として、厚
さ約100nmのAl96Cu4 膜を形成する。次に、紫
外線硬化樹脂16を塗布し、紫外線を照射して硬化させ
る。最後に同様にして作製したもう一枚のディスクと、
紫外線硬化樹脂側を内側にしてホットメルト接着剤で貼
り合わせる。Al96Cu4 膜のCu含有量は1〜45原
子%の範囲で良好な特性が得られ、記録膜に凹凸部を形
成しない場合にも有効である。
2. Description of the Related Art A conventional phase change type optical recording medium is, for example, as shown in FIG. 8, a disc-shaped polycarbonate having a tracking groove and an address pit (neither shown) formed on the surface during injection molding. On the substrate 11, by magnetron sputtering using argon gas,
First, the lower protective layer 12 having a thickness of about 120 nm (Zn
S) 80 (SiO 2 ) 20 film is formed and the thickness is about 30 nm.
Forming a phase change recording layer 13 of Ge-Sb-Te. Next, by magnetron sputtering, the upper protective layer 14 having a thickness of about 210 nm (ZnS) 80 (S
An iO 2 ) 20 film is formed, and then an Al 96 Cu 4 film having a thickness of about 100 nm is formed as the metal reflection layer 15. Next, the ultraviolet curable resin 16 is applied and irradiated with ultraviolet rays to be cured. Finally another disk made in the same way,
The UV curable resin side is placed inside and the pieces are attached with a hot melt adhesive. When the Cu content of the Al 96 Cu 4 film is in the range of 1 to 45 atomic%, good characteristics are obtained, and it is also effective when the unevenness is not formed on the recording film.

【0003】このようにして形成したディスクへの情報
の記録・再生は以下のようにして行われる。ディスクを
回転させながら、レーザ光を記録ヘッド中のレンズで集
光して基板を通して記録層に照射し、結晶化が起こる温
度まで記録層の温度を上昇させる低パワーと、融点付近
まで記録層の温度が上昇する高パワーとの間で記録すべ
き情報信号にしたがって変化させることにより記録を行
なう。低パワーのレーザ光を照射したときは記録層の温
度が結晶化の起こる温度に比較的長時間保たれるため記
録層が結晶化する。一方、高パワーのレーザ光を照射し
たときには融点付近まで上昇した記録層の温度は、急激
に低下するため、記録層は結晶化せず非晶質となる。こ
のような記録方法は、すでに記録されている部分に対し
て行なっても記録されていた情報が新たに記録した情報
に書き換えられる。すなわち、重ね書き可能である。一
定パワーの照射で消去した後、パワー変調した照射で記
録してもよい。再生はレーザ光を記録が行なわれないレ
ベル(再生パワー)に保って、反射光の強弱を検出する
ことによって行う。この方法については、例えば、特開
昭62−259229号公報に記載されている。
Recording / reproducing of information on the disk thus formed is performed as follows. While rotating the disk, the laser light is focused by the lens in the recording head and irradiated onto the recording layer through the substrate, and the low power that raises the temperature of the recording layer to the temperature at which crystallization occurs and the recording layer close to the melting point Recording is performed by changing the temperature according to the information signal to be recorded between high power and high temperature. When irradiated with a low-power laser beam, the temperature of the recording layer is kept at a temperature at which crystallization occurs for a relatively long time, so that the recording layer is crystallized. On the other hand, when irradiated with a high-power laser beam, the temperature of the recording layer, which has risen to near the melting point, drops sharply, so that the recording layer does not crystallize but becomes amorphous. In such a recording method, the recorded information is rewritten to the newly recorded information even if the already recorded portion is performed. That is, it is possible to overwrite. After erasing by irradiation with a constant power, recording may be performed by power-modulated irradiation. Reproduction is performed by keeping the laser light at a level (reproduction power) at which recording is not performed and detecting the intensity of reflected light. This method is described, for example, in JP-A-62-259229.

【0004】また、従来の光磁気記録媒体の断面構造
は、例えば、図2に示したような構造であった。トラッ
キングのための案内溝を設けたガラス等の透明基板21
上に、窒化珪素等の誘電体層(下部保護層)22を約9
0nm,TbFeCo等の磁性材料よりなるの記録層2
3を約100nm,窒化珪素等の上部保護層24を約2
00nm順に積層してある。誘電体層22は基板1側か
ら入射したレーザ光をその内部で多重反射させ、磁性層
23で生じる偏光面の回転(カー回転)を増大させる働
きがある。保護層24は磁性層23を酸化等の腐食から
保護する働きがある。
The cross-sectional structure of the conventional magneto-optical recording medium is, for example, the structure shown in FIG. Transparent substrate 21 such as glass provided with a guide groove for tracking
A dielectric layer (lower protective layer) 22 made of silicon nitride or the like is formed on the upper surface of about 9
Recording layer 2 made of magnetic material such as 0 nm and TbFeCo
3 is about 100 nm, and the upper protective layer 24 such as silicon nitride is about 2 nm.
The layers are stacked in the order of 00 nm. The dielectric layer 22 has a function of multiply-reflecting the laser light incident from the substrate 1 side therein and increasing the rotation (Kerr rotation) of the polarization plane generated in the magnetic layer 23. The protective layer 24 has a function of protecting the magnetic layer 23 from corrosion such as oxidation.

【0005】次に、このような記録媒体の記録再生の原
理について説明する。磁性層23の保磁力Hc は、室温
では大きく、キュリー温度付近で小さくなる。そこで記
録媒体に記録磁界Hrec を印加しながら、レーザ光を照
射し記録媒体の温度を上昇させると、記録温度Tw に達
したときに保磁力Hc は記録磁界Hrec と等しくなるた
め、磁性層23の磁化は記録磁界Hrec の方向に向き記
録磁区が形成される。再生時には、記録磁区にレーザ光
(再生光)を照射し、その反射光の偏光面の回転を検出
することにより記録磁区の有無,形状や大きさを検出す
る。消去を行う場合には記録磁界Hrec の向きを反転す
れば良い。この方法については、例えば、特公昭57−34
588 号公報に記述がある。
Next, the principle of recording / reproducing on such a recording medium will be described. The coercive force Hc of the magnetic layer 23 is large at room temperature and small near the Curie temperature. Therefore, when the temperature of the recording medium is raised by irradiating the laser beam while applying the recording magnetic field Hrec to the recording medium, the coercive force Hc becomes equal to the recording magnetic field Hrec when the recording temperature Tw is reached. The magnetization is oriented in the direction of the recording magnetic field Hrec to form a recording magnetic domain. During reproduction, the recording magnetic domain is irradiated with laser light (reproducing light), and the rotation of the polarization plane of the reflected light is detected to detect the presence or absence of the recording magnetic domain, and the shape and size thereof. When erasing, the direction of the recording magnetic field Hrec may be reversed. This method is described, for example, in Japanese Examined Patent Publication No. 57-34.
There is a description in the 588 publication.

【0006】[0006]

【発明が解決しようとする課題】しかし、図8に示した
記録媒体を用いて多数回繰り返して記録(重ね書き)を
行ったところ、図3に示すように次第にC/N比が低下
して来ることがわかった。これは、多数回繰り返して記
録層の温度が融点まで上昇するために溶融した記録層が
徐々に流動して記録層の組成や膜厚に変化を生じ、その
結果として、消え残りが増大してしまうことによる。
However, when recording (overwriting) was repeated many times using the recording medium shown in FIG. 8, the C / N ratio gradually decreased as shown in FIG. I knew I would come. This is because the temperature of the recording layer rises up to the melting point by repeating a large number of times and the molten recording layer gradually flows and changes in the composition and film thickness of the recording layer. It depends.

【0007】また、図2に示した光磁気記録媒体を用い
て多数回繰り返して記録・消去を行ったときにも、繰り
返しとともにC/Nが低下して来る。この原因は、多数
回繰り返して記録層が高温にさらされることによって、
磁性層の原子配列が徐々に変化し磁気特性が劣化して来
ることによる。
Also, when recording / erasing is repeatedly performed many times using the magneto-optical recording medium shown in FIG. 2, the C / N decreases with repetition. The cause is that the recording layer is exposed to high temperature repeatedly many times,
This is because the atomic arrangement of the magnetic layer gradually changes and the magnetic characteristics deteriorate.

【0008】これらの現象については、電気情報通信学
会技術報告CPM90−36,P.49(1990)や
ジャパニーズ ジャーナル オブ アプライド フィジ
クス(Jpn.J.Appl.Phys.)Vol.28(1989)Suppl.
28−3,pp.61−66に詳しく述べられている。
Regarding these phenomena, the Institute of Electrical, Information and Communication Engineers Technical Report CPM 90-36, P. 49 (1990) and Japanese Journal of Applied Physics (Jpn.J.Appl.Phys.) Vol.28 (1989) Suppl.
28-3, pp. 61-66.

【0009】本発明の目的は、繰り返して記録・消去
(重ね書き)を行っても、C/N比が低下することの無
い、高耐久性光記録媒体を提供することにある。
An object of the present invention is to provide a highly durable optical recording medium in which the C / N ratio does not decrease even when recording / erasing (overwriting) is repeated.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では次の手段を用いた。
In order to achieve the above object, the present invention uses the following means.

【0011】光の照射により記録媒体の温度を上昇させ
て、その結果生じる記録媒体上の記録層の物理状態の変
化を利用して情報を記録する光記録媒体において、前記
記録層を、記録媒体の温度上昇により物理状態の変化す
る材料よりなる熱応答層と、物理状態の変化しない材料
よりなる熱不感応層とを少なくとも2層以上交互積層し
て構成した。この時熱応答層として物理状態の変化を生
じ得るためには少なくとも2原子層以上必要であり、ま
た、熱応答層内での原子の拡散(移動)を顕著でないも
のにするためには10原子層以下であるのが良い。した
がって、上記熱応答層1層の厚さは0.5nm 以上3n
m以下であるのがよい。また、前記熱応答層の物理状態
の変化が生じたときにも、前記熱不感応層が物理状態の
変化を生じえないためには前記熱不感応層は少なくとも
2原子層以上必要であるため、前記熱不感応層1層の厚
さは0.5nm 以上必要である。記録感度の著しい低下
を押さえるためには前記熱不感応層1層100nm以下
であるのが良い。
In an optical recording medium in which the temperature of the recording medium is raised by the irradiation of light and the resulting change in the physical state of the recording layer is used to record information, the recording layer is the recording medium. The heat responsive layer made of a material whose physical state changes due to the temperature rise and the heat insensitive layer made of a material whose physical state does not change are alternately laminated at least two layers. At this time, at least 2 atomic layers or more are required for the heat responsive layer to be able to change the physical state, and 10 atoms are required for making the diffusion (movement) of atoms in the thermal responsive layer insignificant. It should be no more than one layer. Therefore, the thickness of the thermal responsive layer 1 is 0.5 nm or more and 3 n or more.
It is preferably m or less. Further, even if the physical state of the heat responsive layer changes, the heat insensitive layer needs at least two atomic layers or more so that the heat insensitive layer cannot change the physical state. The thickness of one layer of the heat insensitive layer needs to be 0.5 nm or more. In order to suppress a marked decrease in recording sensitivity, it is preferable that the heat insensitive layer has a thickness of 100 nm or less.

【0012】この手段は、記録層の物理状態の変化が非
晶質状態と結晶状態の間の可逆的な変化である相変化型
記録媒体や、その変化が磁化の方向或いは大きさの変化
である光磁気記録媒体に適用したときに最も効果が現れ
る。相変化型記録媒体はGe−Sb−Te,Ge−Sb
−Te−Co,In−Sb−Te,In−Te−Ag,
Ge−Teなどが上記熱応答層の候補としてあげられ
る。また光磁気記録媒体は、Tb,Dy,Gd,Nd,
Pr,Smの群のうちから少なくとも1つ以上の元素
と、Fe,Co,Nd,Pr,Smの群のうちから少な
くとも1つ以上の元素を主成分とする希土類非晶質合金
やPt−Co,Pd−Coなどの合金あるいは超格子膜
が挙げられる。
This means is a phase change type recording medium in which the change in the physical state of the recording layer is a reversible change between an amorphous state and a crystalline state, and the change is a change in the direction or magnitude of magnetization. The effect is most remarkable when applied to a certain magneto-optical recording medium. The phase change recording medium is Ge-Sb-Te, Ge-Sb.
-Te-Co, In-Sb-Te, In-Te-Ag,
Ge-Te and the like are given as candidates for the above-mentioned thermoresponsive layer. The magneto-optical recording medium is composed of Tb, Dy, Gd, Nd,
A rare earth amorphous alloy or Pt-Co whose main component is at least one element selected from the group of Pr and Sm and at least one element selected from the group of Fe, Co, Nd, Pr and Sm. , Alloys such as Pd-Co, or superlattice films.

【0013】通常の固体あるいは液体の屈折率が1から
5の範囲であることを考慮すると、反射光に適当な変化
を生じさせるために少なくとも必要な記録層の光学的膜
厚は再生時に照射する光の波長(500〜830nm)
の10%程度である。すなわち、前記記録層の総膜厚は
少なくとも10nm以上は必要である。また記録感度の
低下を防ぐためには記録層の総膜厚200nm以下であ
るのが良い。
Considering that the refractive index of ordinary solids or liquids is in the range of 1 to 5, at least the optical film thickness of the recording layer necessary for producing an appropriate change in the reflected light is irradiated during reproduction. Wavelength of light (500-830nm)
Is about 10%. That is, the total thickness of the recording layer needs to be at least 10 nm or more. Further, in order to prevent a decrease in recording sensitivity, the total film thickness of the recording layer is preferably 200 nm or less.

【0014】また、前記熱不感応層が不必要に再生光の
光量を減少させないためには光学的に透明な材料よりな
るのがよい。
Further, the heat insensitive layer is preferably made of an optically transparent material so as not to unnecessarily reduce the amount of reproducing light.

【0015】また、前記熱不感応層は酸化物,窒化物,
硫化物或いはそれらの混合物で構成するか、あるいは、
高融点金属で構成するのがよい。例示すれば、ZnS,
CdS,In23,ZnSe,CdSe,In2Se3
SiO2,SiO,AlSiN2,TiO2,ZrO2,A
2SiN3,AlSi23,Si−Al−O−N,Y2
3,Si34,Ta25,AlN,Cu2O及びSiC
より成る群より選ばれた少なくとも一種に近い組成の材
料を主成分とするものか、あるいは、Si,Ti,N
i,Cr,Al,Pt,Pd及びそれらの2種以上より
なる合金、あるいはそれらの酸化物,窒化物,硫化物及
びそれらの混合物より構成するのが良い。なかでも、S
34,ZnS−SiO2は光学的な透明性に優れるた
め、特に良好である。高融点金属の中ではTi,Si,
Ptなどが特に良好である。Tiは耐久性に優れ、Pt
は反射率が高いため再生出力が多くとれる利点がある。
The heat-insensitive layer is made of oxide, nitride,
Composed of sulfides or mixtures thereof, or
It is preferably composed of a refractory metal. For example, ZnS,
CdS, In 2 S 3 , ZnSe, CdSe, In 2 Se 3 ,
SiO 2 , SiO, AlSiN 2 , TiO 2 , ZrO 2 , A
l 2 SiN 3 , AlSi 2 N 3 , Si-Al-O-N, Y 2
O 3 , Si 3 N 4 , Ta 2 O 5 , AlN, Cu 2 O and SiC
A material mainly composed of a material having a composition close to at least one selected from the group consisting of Si, Ti, N
It is preferable to be composed of i, Cr, Al, Pt, Pd and an alloy of two or more kinds thereof, or an oxide, a nitride, a sulfide and a mixture thereof. Among them, S
i 3 N 4 and ZnS—SiO 2 are particularly preferable because they have excellent optical transparency. Among refractory metals, Ti, Si,
Pt and the like are particularly good. Ti has excellent durability and Pt
Has an advantage that a large reproduction output can be obtained because of high reflectance.

【0016】TbFeCo,GdTbFeCoなどの光
磁気記録材料を前記熱応答層とする場合には、それら光
磁気記録材料の窒化物をあるいは酸化物を前記熱不感応
層として用いるのが製造上簡便であり、光学定数が前記
熱応答層と前記熱不感応層とで近い値となるため磁気光
学効果も大きくなる。
When a magneto-optical recording material such as TbFeCo or GdTbFeCo is used as the heat responsive layer, it is convenient in manufacturing to use a nitride or an oxide of the magneto-optical recording material as the heat insensitive layer. Since the optical constants of the heat-responsive layer and the heat-insensitive layer are close to each other, the magneto-optical effect is increased.

【0017】前記上部保護層あるいは下部保護層は、Z
nS,CdS,In23,ZnSe,CdSe,In2
Se3,SiO2,SiO,TiO2,ZrO2,Ta
25,Y23,Si34,AlN,Cu2O,AlSi
2,Al2SiN3,AlSi23,Si−Al−O−N
及びSiCより成る群より選ばれた少なくとも一種に近
い組成の材料を主成分とするもの、あるいは、それらの
混合物で構成するのが良い。これらのうちではSi
34,Al23,ZnS及びAl−Si−N系材料が特
に好ましい。また、その熱伝導率は1W/m・K以上6
0W/m・K以下が好ましい。
The upper protective layer or the lower protective layer is Z
nS, CdS, In 2 S 3 , ZnSe, CdSe, In 2
Se 3 , SiO 2 , SiO, TiO 2 , ZrO 2 , Ta
2 O 5 , Y 2 O 3 , Si 3 N 4 , AlN, Cu 2 O, AlSi
N 2, Al 2 SiN 3, AlSi 2 N 3, Si-Al-O-N
It is preferable that the main component is a material having a composition close to at least one selected from the group consisting of SiC and SiC, or a mixture thereof. Of these, Si
3 N 4, Al 2 O 3 , ZnS and Al-Si-N-based material is particularly preferred. Moreover, its thermal conductivity is 1 W / mK or more 6
It is preferably 0 W / m · K or less.

【0018】[0018]

【作用】以下、本発明の原理を図4,図5を用いて説明
する。一般に、スパッタなどの方法により製膜を行う場
合、製膜の初期の段階では島状の膜が形成される。こ
の、初期の段階とは膜厚にして約0.5nm 以上3nm
以下の範囲である。このことを利用して、熱応答層31
を形成すると図4に示したように、記録膜(熱応答層)
の形成される部分と形成されない部分が生じる。この
後、熱不感応層32を積層すると図5に示したように、
記録膜(熱応答層)が熱不感応層に囲まれた形となる。
従って、その部分の熱応答層は、たとえ融解を繰り返し
たとしても、他の場所へ流動して行くことができない。
したがって、繰り返し書き換えをおこなっても、従来の
媒体のように記録層の組成や膜厚が変わる心配がないた
め、消え残りなどの生じることがない。そのため、多数
回の繰り返し記録を行ってもC/Nの変化することの無
い、高耐久性光記録媒体が得られる。
The principle of the present invention will be described below with reference to FIGS. Generally, when a film is formed by a method such as sputtering, an island-shaped film is formed in the initial stage of film formation. The film thickness at the initial stage is about 0.5 nm or more and 3 nm or more.
The range is as follows. Utilizing this fact, the thermal response layer 31
When a film is formed, as shown in FIG. 4, a recording film (thermal response layer) is formed.
There is a portion where is formed and a portion where is not formed. After that, when the heat insensitive layer 32 is laminated, as shown in FIG.
The recording film (heat-responsive layer) is surrounded by the heat-insensitive layer.
Therefore, the heat responsive layer in that portion cannot flow to another place even if melting is repeated.
Therefore, even if rewriting is repeated, there is no concern that the composition or film thickness of the recording layer will change, unlike in the conventional medium, and therefore no erasure will occur. Therefore, it is possible to obtain a highly durable optical recording medium in which the C / N does not change even when the recording is repeated many times.

【0019】光磁気記録媒体の場合は前述のように記録
層(熱応答層)を融解させることがないが、熱応答層が
熱不感応層に囲まれているため、熱応答層内での原子の
移動が生じにくくなり、その結果、多数回の繰り返し書
き換えにたいしてもC/N比が低下する恐れがない。
In the case of a magneto-optical recording medium, the recording layer (heat responsive layer) is not melted as described above, but since the heat responsive layer is surrounded by the heat insensitive layer, it is Atoms are less likely to move, and as a result, there is no fear that the C / N ratio will decrease even if rewriting is repeated many times.

【0020】この際、熱不感応層としては、レーザ光
(記録光)照射時の熱によりその特性が変化しない高融
点金属やセラミックスが良い。特にこの熱不感応層が光
学的に透明である場合は、この熱不感応層による不必要
な光の吸収が起きないため再生光量が大きくなり有利で
ある。また、高融点金属の方がスパッタ時に島状になり
やすく、有利である。
At this time, the heat insensitive layer is preferably made of a refractory metal or ceramics whose characteristics do not change due to the heat of laser light (recording light) irradiation. Particularly, when the heat-insensitive layer is optically transparent, unnecessary light absorption by the heat-insensitive layer does not occur, which is advantageous because the amount of reproduction light is large. Further, refractory metal is more advantageous because it tends to form islands during sputtering.

【0021】[0021]

【実施例】【Example】

<実施例1>図1に示すように、射出成形時にトラッキ
ング用の溝とアドレスを示すピット(いずれも図示せ
ず)を表面に形成したディスク状ポリカーボネート基板
1上に、アルゴンガスを用いたマグネトロンスパッタリ
ングによって、まず下部保護層2である厚さ約120n
mの(ZnS)80(SiO2)20膜を形成した。その上に厚
さ約1nmのGe−Sb−Teよりなる相変化型の熱応
答層31と、厚さ約2nmの(ZnS)80(SiO2)20
りなる熱不感応層32を交互に約20回積層し、総膜厚
約60nmの記録層3を形成した。この熱応答層31は
ほぼ非晶質状態にあり、また、単層では、平均直径約1
5nmの島状になっている。
<Embodiment 1> As shown in FIG. 1, a magnetron using an argon gas was formed on a disc-shaped polycarbonate substrate 1 on the surface of which grooves for tracking and pits (not shown) for indicating addresses were formed during injection molding. First, the lower protective layer 2 having a thickness of about 120 n is formed by sputtering.
m (ZnS) 80 (SiO 2 ) 20 film was formed. On top of that, a phase change type thermal response layer 31 made of Ge-Sb-Te having a thickness of about 1 nm and a heat insensitive layer 32 made of (ZnS) 80 (SiO 2 ) 20 having a thickness of about 2 nm are alternately provided. By stacking 20 times, a recording layer 3 having a total film thickness of about 60 nm was formed. The heat responsive layer 31 is in a substantially amorphous state, and a single layer has an average diameter of about 1
It has an island shape of 5 nm.

【0022】この後、図1に示すように、さらにマグネ
トロンスパッタリングによって上部保護層4である厚さ
約210nmの(ZnS)80(SiO2)20膜を形成し、次
いで金属反射層5として、厚さ約100nmのAl96
4 膜を形成した。次に紫外線硬化樹脂6を塗布し、紫
外線を照射して硬化させた。最後に同様にして作製した
もう一枚のディスクと、紫外線硬化樹脂側を内側にして
ホットメルト接着剤で貼り合わせた。Al96Cu4 膜の
Cu含有量は1〜45原子%の範囲で良好な特性が得ら
れる。この記録媒体の断面を透過型電子顕微鏡によって
観察したところ、この熱応答層はほぼ非晶質状態にあ
り、また、平均直径約15nmの島状になっている。こ
のため、図5に示したように、熱応答層31が、熱不感
応層32によって囲まれた構造をしていることがわかっ
た。このため、融解した熱応答層31が流動するのを阻
止する効果を期待できることが分かった。
After that, as shown in FIG. 1, a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 210 nm, which is the upper protective layer 4, is further formed by magnetron sputtering, and then a metal reflective layer 5 is formed. Al 96 C of about 100 nm
A u 4 film was formed. Next, the ultraviolet curable resin 6 was applied and irradiated with ultraviolet rays to be cured. Finally, another disk prepared in the same manner was pasted with a hot-melt adhesive with the UV-curable resin side inside. Good characteristics are obtained when the Cu content of the Al 96 Cu 4 film is in the range of 1 to 45 atom%. When the cross section of this recording medium is observed by a transmission electron microscope, this heat responsive layer is in a substantially amorphous state and has an island shape with an average diameter of about 15 nm. Therefore, as shown in FIG. 5, it was found that the heat responsive layer 31 had a structure surrounded by the heat insensitive layer 32. Therefore, it has been found that an effect of preventing the melted thermoresponsive layer 31 from flowing can be expected.

【0023】このようにして形成したディスクへの情報
の記録・再生は次のようにして行なった。ディスクを1
800rpmで回転させ、半導体レーザ(波長780n
m)の光を記録が行なわれないレベル(1mW)に保っ
て、記録ヘッド中のレンズで集光して基板を通して一方
の記録層3に照射した。反射光を検出することによっ
て、記録層3上に焦点が来るように自動焦点合わせを行
ない、さらにトラッキング用の溝の中心に光スポットの
中心が常に一致するようにトラッキングを行なった。
Recording / reproduction of information on the disk thus formed was performed as follows. One disc
The semiconductor laser (wavelength 780n is rotated at 800 rpm.
The light of m) was kept at a level (1 mW) at which recording was not performed, was condensed by the lens in the recording head, and was irradiated to one recording layer 3 through the substrate. By detecting the reflected light, automatic focusing was performed so that the focus was on the recording layer 3, and tracking was performed so that the center of the light spot was always aligned with the center of the tracking groove.

【0024】次に、レーザパワーを結晶化が起こる6m
Wと、非晶質に近い状態への変化が起こる15mWとの
間で記録すべき情報信号にしたがって変化させることに
より記録を行なった。記録信号として、ここでは一定周
波数の信号またはディジタルデータ信号を用いた。記録
された部分の、非晶質に近い状態のところを記録点と考
える。このような記録方法は、すでに記録されている部
分に対して行なっても記録されていた情報が新たに記録
した情報に書き換えられる。もちろん、一定パワーの照
射で消去した後、パワー変調した照射で記録してもよ
い。
Next, the laser power is changed to 6 m for crystallization.
Recording was performed by changing between W and 15 mW at which a change into a state close to an amorphous state occurs according to an information signal to be recorded. As the recording signal, a signal having a constant frequency or a digital data signal is used here. It is considered that the recorded portion is near the amorphous state as the recording point. In such a recording method, the recorded information is rewritten to the newly recorded information even if the already recorded portion is performed. Of course, after erasing by irradiation with constant power, recording may be performed by irradiation with power modulation.

【0025】読み出しは次のようにして行なった。ディ
スクを1800rpmで回転させ、記録時と同じように
トラッキングと自動焦点合わせを行ないながら、1mW
のレーザ光で反射光の強弱を検出し、再生信号を得た。
この再生信号をスペクトラムアナライザに入れ、記録し
た一定周波数の情報信号(搬送波)とノイズとの比を求
めた。
The reading was performed as follows. Rotate the disc at 1800 rpm and perform 1mW while tracking and auto-focusing the same as during recording.
The intensity of the reflected light was detected with the laser light of, and a reproduction signal was obtained.
This reproduced signal was put into a spectrum analyzer, and the ratio between the recorded constant frequency information signal (carrier wave) and noise was determined.

【0026】記録層13の膜厚を30nmとした従来デ
ィスク(図8)と、本実施例のディスク(図1)との、
多数回オーバーライト(重ね書きによる記録書き換え)
時の再生信号ノイズの増加は表1の通りであった。
A conventional disc (FIG. 8) in which the recording layer 13 has a film thickness of 30 nm and a disc of this embodiment (FIG. 1) are prepared.
Overwrite many times (record rewriting by overwriting)
The increase in the reproduced signal noise at that time was as shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】記録層3を熱応答層31と熱不感応層32
交互積層によって形成することで多数回書き換え特性が
大幅に向上したことが分かる。
The recording layer 3 comprises a heat responsive layer 31 and a heat insensitive layer 32.
It can be seen that the characteristics of rewriting many times were significantly improved by forming the layers by the alternate stacking.

【0029】熱応答層31の形成条件を変えて、熱応答
層31の島状領域の直径を変えて形成した記録層3をも
つ記録媒体を評価した結果。その島状領域の平均直径が
2nm以上100nm以下であり、島状領域と島状領域
の間隔(隣接する二つの島状領域の中心の距離の平均
値、以下同じ)が4nm以上200nm以下の範囲では
百万回書き換え後のビットエラーレートは105 ビット
に1個以下であった。また、島状領域の平均直径が3n
m以上50nm以下、島状領域と島状領域の間隔の平均
値が5nm以上100nm以下の範囲では、百万回書き
換え後のビットエラーレートは2×105 ビットに1個
以下であった。オーバーライトした時の消去比(前に書
かれていた信号の信号レベルの減少率)も従来ディスク
の30dBから本実施例では33dB以上に改善され
た。
Results of evaluation of the recording medium having the recording layer 3 formed by changing the diameter of the island region of the heat responsive layer 31 by changing the forming condition of the heat responsive layer 31. A range in which the average diameter of the island-shaped region is 2 nm or more and 100 nm or less, and the distance between the island-shaped regions and the island-shaped regions (the average value of the distance between the centers of two adjacent island-shaped regions, the same applies hereinafter) is 4 nm or more and 200 nm or less. However, the bit error rate after rewriting a million times was less than 1 per 10 5 bits. Moreover, the average diameter of the island region is 3n.
In the range of m or more and 50 nm or less and the average value of the interval between island-like regions of 5 nm or more and 100 nm or less, the bit error rate after rewriting 1 million times was 1 or less per 2 × 10 5 bits. The erasing ratio upon overwriting (reduction rate of the signal level of the previously written signal) was also improved from 30 dB in the conventional disk to 33 dB or more in this embodiment.

【0030】熱応答層31一層あたりの厚さを8nmと
して、島状ではなくほぼ層状の積層膜とし熱不感応層3
2の厚さを16nmとして交互積層を3回としても百万
回書き換え後のノイズレベルの変化がほとんどなかっ
た。これは、膜厚が薄い場合、連続膜でも熱不感応層3
2との界面付近では流動が困難なことから全体としても
流動しにくいことによるものである。
The heat-responsive layer 31 has a thickness of 8 nm per layer and is a layered film having a substantially layered structure rather than an island-shaped structure.
Even if the thickness of 2 was set to 16 nm and the alternating lamination was performed 3 times, there was almost no change in the noise level after rewriting 1 million times. This is because when the film thickness is small, the heat insensitive layer 3 is a continuous film.
This is because it is difficult to flow near the interface with 2 and it is difficult to flow as a whole.

【0031】また、熱不感応層32の(ZnS)80(Si
2)20の一部又は全部をZnS,CdS,In23,Z
nSe,CdSe,In2Se3,SiO2,SiO,TiO
2,ZrO2,Ta25,Y23,Si34,AlN,C
2O,AlSiN2,Al2SiN3,AlSi23,S
i−Al−O−N及びSiCより成る群より選ばれた少
なくとも一種に近い組成の材料を主成分とするもので置
き換えても同様の結果が得られる。これらのうちではA
23及びAl−Si−N系材料が特に好ましい。
Further, the (ZnS) 80 (Si
Some or all of O 2 ) 20 is ZnS, CdS, In 2 S 3 , Z
nSe, CdSe, In 2 Se 3 , SiO 2 , SiO, TiO
2 , ZrO 2 , Ta 2 O 5 , Y 2 O 3 , Si 3 N 4 , AlN, C
u 2 O, AlSiN 2 , Al 2 SiN 3 , AlSi 2 N 3 , S
Similar results can be obtained by substituting a material having a composition close to at least one selected from the group consisting of i-Al-O-N and SiC as a main component. Of these, A
l 2 O 3 and Al-Si-N-based material is particularly preferred.

【0032】本実施例の下部保護層2の酸化物、あるい
は硫化物を主成分とする薄膜の熱伝導率は1W/m・K
以上60W/m・K以下が好ましい。
The thermal conductivity of the thin film containing oxide or sulfide as the main component of the lower protective layer 2 in this embodiment is 1 W / m · K.
It is preferably 60 W / m · K or less.

【0033】また、記録層3の非晶質に近い状態の部分
の屈折率と平均膜厚の積(記録膜の存在する部分の屈折
率5.1)が100nm以上,600nm以下,上部保護
層4の屈折率と膜厚の積が50nm以上,600nm以
下の範囲で再生信号の搬送波対雑音比46dB以上が得
られた。上部保護層4の膜厚が150nm以上300n
m以下の範囲でC/N比が48dB以上であった。下部
保護層に使用可能な材料は上部保護層にも使用可能であ
る。記録層3の結晶状態の部分の屈折率と平均膜厚の積
が上述の範囲内に有るようにしても差し支えない。上部
保護層を形成しない場合は、記録感度が約50%低下す
るが、他の特性に大きな変化は無く、使用可能であっ
た。また下部保護層および反射層の少なくとも一方を形
成しない場合も、書き換え可能回数が約1桁減少するが
使用可能であった。
The product of the refractive index and the average film thickness (refractive index 5.1 of the portion where the recording film exists) of the recording layer 3 in a state close to amorphous is 100 nm or more and 600 nm or less, and the upper protective layer. The carrier-to-noise ratio of the reproduced signal was 46 dB or more in the range where the product of the refractive index and the film thickness of No. 4 was 50 nm or more and 600 nm or less. The thickness of the upper protective layer 4 is 150 nm or more and 300 n
The C / N ratio was 48 dB or more in the range of m or less. The materials that can be used for the lower protective layer can also be used for the upper protective layer. The product of the refractive index and the average film thickness of the crystalline portion of the recording layer 3 may be within the above range. When the upper protective layer was not formed, the recording sensitivity was reduced by about 50%, but there was no significant change in other characteristics and it was usable. Further, even when at least one of the lower protective layer and the reflective layer is not formed, the number of rewritable times was reduced by about one digit, but it was usable.

【0034】図6に示したように、ガラス基板7上に形
成した紫外線硬化樹脂層8の表面に案内溝を形成し、そ
の上に図1のディスクと同様な記録層を順序を逆に(金
属反射層のAl−Cu膜から)構成し、もう一枚のディ
スクと貼り合せずに使用しても、ほぼ同様な効果が得ら
れた。この場合、最上部にさらに有機物保護膜9を形成
するのが好ましい。ただし、これらの場合はレーザ光は
基板とは反対の側から入射させた。
As shown in FIG. 6, a guide groove is formed on the surface of the ultraviolet curable resin layer 8 formed on the glass substrate 7, and a recording layer similar to the disc of FIG. A similar effect was obtained even if the metal reflective layer was composed of an Al-Cu film) and was used without being bonded to another disk. In this case, it is preferable to further form the organic protective film 9 on the uppermost part. However, in these cases, the laser light was made incident from the side opposite to the substrate.

【0035】<実施例2>実施例1と同様にしてディス
クを形成したが、熱応答層31には、膜厚約1.5nmの
Tb−Fe−Co光磁気記録膜を用い、熱不感応層32
には、膜厚約1.5nmのPt膜を用いた。図7に示すよ
うに、ポリカーボネート基板1上に下部保護層2として
60nmSiN膜を形成し、その上に熱応答層31のT
b−Fe−Co光磁気記録膜3nmと熱不感応層32の
Pt膜3nmとの交互積層による記録膜3を計30nm
アルゴンガスを用いたスパッタ法により形成した。次
に、上部保護層4として20nmのSiN膜,金属反射
層5として50nmのAlTi合金を積層した。
Example 2 A disk was formed in the same manner as in Example 1, except that a Tb-Fe-Co magneto-optical recording film having a film thickness of about 1.5 nm was used as the heat responsive layer 31, and the heat insensitive layer was used. 32
For this, a Pt film with a thickness of about 1.5 nm was used. As shown in FIG. 7, a 60 nm SiN film is formed as the lower protective layer 2 on the polycarbonate substrate 1, and the T of the heat responsive layer 31 is formed thereon.
The total thickness of the recording film 3 is 30 nm by alternately laminating the b-Fe-Co magneto-optical recording film 3 nm and the Pt film 3 nm of the heat insensitive layer 32.
It was formed by a sputtering method using argon gas. Next, a 20 nm SiN film was laminated as the upper protective layer 4, and a 50 nm AlTi alloy was laminated as the metal reflective layer 5.

【0036】本実施例では、光磁気ヘッドとディスクを
はさんで光磁気ヘッドの反対側に設置した磁場用コイル
を用い、レーザパワーを1mWと8mWの間で情報信号
にしたがって変調して、記録点の両端にディジタル情報
の1を対応させるピットエッジ方式の記録を行なった。
読み出しはカー効果による偏光面の回転を利用して行な
った。このディスクでは、横方向の熱伝導が防止できる
ので記録感度の向上,隣接トラック消去の防止,記録点
の形状改善等の効果があった。また、熱による非晶質状
態の構造緩和が抑制されるため、一千万回書き換え後の
C/Nは書き換え前と変化が無かった。
In this embodiment, a magnetic field coil placed between the magneto-optical head and the disk on the opposite side of the magneto-optical head is used to modulate the laser power between 1 mW and 8 mW in accordance with the information signal for recording. Recording was performed by a pit edge method in which 1s of digital information corresponded to both ends of a point.
The reading was performed by utilizing the rotation of the polarization plane due to the Kerr effect. In this disc, since heat conduction in the lateral direction can be prevented, there are effects such as improvement of recording sensitivity, prevention of erasure of adjacent tracks, and improvement of shape of recording point. Further, since the structural relaxation of the amorphous state due to heat is suppressed, the C / N after rewriting 10 million times did not change from that before rewriting.

【0037】この実施例で、熱応答層31には、本実施
例のもののほかGd−Tb−Fe−Co,Gd−Dy−
Fe−Co,TbーDy−Fe−Co,Nd−Dy−F
e−Co,Nd−Tb−Fe−Coなどを用いても同様
の効果が得られる。このうち前二者はカー回転角が比較
的大きく、大きな再生出力が得られる特徴がある。ま
た、最後の二者は短波長域での再生特性に優れている。
垂直磁気異方性は本実施例のTb−Fe−Coが最も優
れる。また、耐食性を向上させるために、上記の組成の
ものにNb,Ti,Al,Cr,Ni,Vなどの元素を
10原子%以下の範囲で添加しても良い。
In this embodiment, the heat responsive layer 31 includes Gd-Tb-Fe-Co and Gd-Dy- in addition to those of this embodiment.
Fe-Co, Tb-Dy-Fe-Co, Nd-Dy-F
The same effect can be obtained by using e-Co or Nd-Tb-Fe-Co. Of these, the former two are characterized by a relatively large car rotation angle and a large reproduction output. The last two have excellent reproduction characteristics in the short wavelength region.
Regarding the perpendicular magnetic anisotropy, Tb-Fe-Co of this example is the most excellent. Further, in order to improve the corrosion resistance, elements such as Nb, Ti, Al, Cr, Ni and V may be added to the above composition in the range of 10 atomic% or less.

【0038】また、熱不感応層32として、本実施例の
Ptの代わりに熱応答層31と同じ組成のものに酸素あ
るいは窒素を混入した窒化膜あるいは酸化膜を用いても
良い。これらは、スパッタガス中に窒素ガスをあるいは
酸素ガスを混入して作る。この場合はPtと比べて熱伝
導率が小さいため、感度の向上,隣接トラックへの熱の
広がりの抑制などに特に優れる。また、ZnS,Cd
S,In23,ZnSe,CdSe,In2Se3,Si
2,SiO,TiO2,ZrO2,Ta25,Y23
Si34,AlN,Cu2O,AlSiN2,Al2SiN
3,AlSi23,Si−Al−O−N及びSiCより成
る群より選ばれた少なくとも一種に近い組成の材料を主
成分とするもので置き換えても同様の結果が得られる。
これらは、光学的に透明であるため、再生特性に優れ
る。これらのうちではSi34及びAlN系材料が特に
好ましい。本実施例のPtは磁性層と交換結合すること
により、短波長の領域での再生特性を向上させる効果が
ある。また、このPtを高融点金属であるTiやVなど
で置き換えても良い。
As the heat insensitive layer 32, a nitride film or an oxide film in which oxygen or nitrogen is mixed in the same composition as the heat responsive layer 31 may be used instead of Pt in this embodiment. These are produced by mixing nitrogen gas or oxygen gas in the sputtering gas. In this case, since the thermal conductivity is smaller than that of Pt, it is particularly excellent in improving the sensitivity and suppressing the spread of heat to the adjacent tracks. In addition, ZnS, Cd
S, In 2 S 3 , ZnSe, CdSe, In 2 Se 3 , Si
O 2 , SiO, TiO 2 , ZrO 2 , Ta 2 O 5 , Y 2 O 3 ,
Si 3 N 4 , AlN, Cu 2 O, AlSiN 2 , Al 2 SiN
Similar results can be obtained by substituting a material having a composition close to at least one selected from the group consisting of 3 , AlSi 2 N 3 , Si-Al-O-N, and SiC as the main component.
Since these are optically transparent, they have excellent reproduction characteristics. Of these, Si 3 N 4 and AlN-based materials are particularly preferable. The Pt of this embodiment has the effect of improving the reproduction characteristics in the short wavelength region by exchange coupling with the magnetic layer. Further, this Pt may be replaced with a refractory metal such as Ti or V.

【0039】これらの熱不感応層には酸化防止効果があ
るため、上部保護層4や下部保護層3を省略することも
可能になる。
Since these heat-insensitive layers have an antioxidant effect, the upper protective layer 4 and the lower protective layer 3 can be omitted.

【0040】また、この熱応答層31と熱不感応層32
との界面付近で2層が互いに混じりあった組成変調膜と
なっていても同様の効果が得られる。この場合、記録層
の積層方法は回転型スパッタ装置を用いて基板をターゲ
ットから遠ざけたり近付けたりしながら作製すると、記
録層はターゲット組成に近い部分と、窒素などの残留ガ
スの多く混入した部分が交互に積層されることになる。
The heat responsive layer 31 and the heat insensitive layer 32 are also provided.
The same effect can be obtained even if the composition modulation film is formed by mixing two layers in the vicinity of the interface with and. In this case, the method for laminating the recording layer is such that when the substrate is manufactured by using a rotary sputtering apparatus while moving the substrate away from or near the target, the recording layer has a portion close to the target composition and a portion mixed with a large amount of residual gas such as nitrogen. It will be laminated alternately.

【0041】本発明の方法は記録層が2層以上からなる
光磁気オーバライト膜や超解像再生膜にも適用できる。
この場合、2層の記録層のうち少なくとも、最も熱安定
性を必要とする1層に本発明の方法を適用して熱応答層
と熱不感応層の交互積層膜とすれば効果が得られる。も
ちろんすべての層に本発明の方法を適用しても良い。
The method of the present invention can also be applied to a magneto-optical overwrite film or a super-resolution reproducing film having two or more recording layers.
In this case, the effect can be obtained by applying the method of the present invention to at least one of the two recording layers, which requires the most thermal stability, to form an alternating laminated film of a heat responsive layer and a heat insensitive layer. .. Of course, the method of the present invention may be applied to all layers.

【0042】以上の実施例ではディスク状の情報記録部
材について述べたが、本発明はテープ状,カード状等の
他の形状の情報記録部材にも適用できる。
Although the disk-shaped information recording member has been described in the above embodiments, the present invention can be applied to other-shaped information recording members such as a tape and a card.

【0043】[0043]

【発明の効果】本発明は、相変化光ディスクに対しては
記録層の流動をほぼ完全に防止できるので書き換え可能
回数を大幅に向上させる効果が有る。また、結晶粒の大
きさが制限されるので結晶粒の大きさが各部分で違うこ
とによる消え残りも低減できる。さらに、記録層の表面
に凹凸を形成する際に少なくとも部分的に結晶化が起こ
るので、従来は必要だったディスク作製後の記録層の初
期結晶化が不要になるか、簡単になるという効果も有
る。また、光磁気ディスクに対しては、記録層の非晶質
状態の構造緩和を抑制するので書き換え可能回数を大幅
に向上させる効果が有る。また、面内の熱伝導を防止す
るので再生信号の忠実度を向上させ、記録感度を向上さ
せる効果が有る。また、記録層の耐食性が向上する。
The present invention has an effect of significantly improving the number of rewritable times because the flow of the recording layer can be almost completely prevented for the phase change optical disk. In addition, since the size of the crystal grain is limited, it is possible to reduce the remaining unerased due to the difference in the size of the crystal grain in each part. Furthermore, since crystallization occurs at least partially when unevenness is formed on the surface of the recording layer, there is an effect that the initial crystallization of the recording layer, which is conventionally required after the disc is manufactured, is not necessary or is simplified. There is. Further, for a magneto-optical disk, since the structural relaxation of the recording layer in the amorphous state is suppressed, it has an effect of significantly improving the number of rewritable times. Further, since in-plane heat conduction is prevented, there is an effect that the fidelity of the reproduced signal is improved and the recording sensitivity is improved. In addition, the corrosion resistance of the recording layer is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の記録媒体の積層構造を示す
断面図。
FIG. 1 is a cross-sectional view showing a laminated structure of a recording medium according to an embodiment of the present invention.

【図2】従来の光記録媒体の積層構造の一例を示す断面
図。
FIG. 2 is a sectional view showing an example of a laminated structure of a conventional optical recording medium.

【図3】従来の光記録媒体の特性図。FIG. 3 is a characteristic diagram of a conventional optical recording medium.

【図4】本発明の光記録媒体の製造原理を示す斜視図。FIG. 4 is a perspective view showing the manufacturing principle of the optical recording medium of the present invention.

【図5】本発明の光記録媒体の製造原理を示す斜視図。FIG. 5 is a perspective view showing the manufacturing principle of the optical recording medium of the present invention.

【図6】本発明の他の実施例の記録媒体の積層構造を示
す断面図。
FIG. 6 is a sectional view showing a laminated structure of a recording medium according to another embodiment of the invention.

【図7】本発明の他の実施例の記録媒体の積層構造を示
す断面図。
FIG. 7 is a sectional view showing a laminated structure of a recording medium according to another embodiment of the present invention.

【図8】従来の光記録媒体の積層構造の一例を示す断面
図。
FIG. 8 is a sectional view showing an example of a laminated structure of a conventional optical recording medium.

【符号の説明】[Explanation of symbols]

1…基板、2…下部保護層、3…記録層、31…熱応答
層、32…熱不感応層、4…上部保護層、5…金属反射
層、6…紫外線硬化樹脂層。
1 ... Substrate, 2 ... Lower protective layer, 3 ... Recording layer, 31 ... Thermally responsive layer, 32 ... Heat insensitive layer, 4 ... Upper protective layer, 5 ... Metal reflective layer, 6 ... UV curable resin layer.

フロントページの続き (72)発明者 寺尾 元康 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 尾島 正啓 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Motoyasu Terao, 1-280 Higashi Koigokubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Masahiro Ojima, 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory, Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】光の照射により記録媒体の温度を上昇させ
て、その結果生じる記録媒体上の記録層の物理状態の変
化を利用して情報を記録する光記録媒体において、前記
記録層が、物理状態の変化する材料よりなる熱応答層
と、物理状態の変化しない材料よりなる熱不感応層とを
少なくとも2層以上交互積層してなることを特徴とする
光記録媒体。
1. An optical recording medium for recording information by raising the temperature of a recording medium by irradiation of light and utilizing the resulting change in the physical state of the recording layer on the recording medium, wherein the recording layer comprises: An optical recording medium, wherein at least two layers of a heat responsive layer made of a material whose physical state changes and a heat insensitive layer made of a material whose physical state does not change are alternately laminated.
【請求項2】請求項1において、前記熱応答層1層の厚
さが0.5nm 以上3nm以下である光記録媒体。
2. The optical recording medium according to claim 1, wherein the thickness of the heat-responsive layer 1 layer is 0.5 nm or more and 3 nm or less.
【請求項3】請求項1または2において、前記熱不感応
層1層の厚さが0.5nm 以上100nm以下である光記
録媒体。
3. The optical recording medium according to claim 1, wherein the thickness of the heat-insensitive layer is 0.5 nm or more and 100 nm or less.
【請求項4】請求項1,2または3において、前記記録
層の物理状態の変化が、可逆的である光記録媒体。
4. The optical recording medium according to claim 1, wherein the change in the physical state of the recording layer is reversible.
【請求項5】請求項1,2,3または4において、前記
記録層の総膜厚が10nm以上200nm以上である光記
録媒体。
5. The optical recording medium according to claim 1, 2, 3 or 4, wherein the total film thickness of the recording layer is 10 nm or more and 200 nm or more.
【請求項6】請求項1,2,3,4または5において、
前記熱不感応層が光学的に透明な材料よりなる光記録媒
体。
6. The method according to claim 1, 2, 3, 4 or 5.
An optical recording medium, wherein the heat-insensitive layer is made of an optically transparent material.
【請求項7】請求項1,2,3,4,5または6におい
て、前記記録層の物理状態の変化とは、非晶質状態と結
晶状態の間の相変化である光記録媒体。
7. The optical recording medium according to claim 1, 2, 3, 4, 5 or 6, wherein the change in the physical state of the recording layer is a phase change between an amorphous state and a crystalline state.
【請求項8】請求項1,2,3,4,5または6におい
て、前記記録層の物理状態の変化とは、記録層の磁化の
方向或いは大きさの変化である光記録媒体。
8. The optical recording medium according to claim 1, 2, 3, 4, 5 or 6, wherein the change in the physical state of the recording layer is a change in the direction or magnitude of the magnetization of the recording layer.
【請求項9】請求項7において、前記相変化とは非晶質
状態と結晶状態の間の変化である光記録媒体。
9. The optical recording medium according to claim 7, wherein the phase change is a change between an amorphous state and a crystalline state.
【請求項10】請求項8において、前記記録層が光磁気
記録材料である光記録媒体。
10. The optical recording medium according to claim 8, wherein the recording layer is a magneto-optical recording material.
【請求項11】請求項1ないし10のいずれかにおい
て、前記熱不感応層が酸化物,窒化物,硫化物或いはそ
れらの混合物である光記録媒体。
11. The optical recording medium according to claim 1, wherein the heat insensitive layer is an oxide, a nitride, a sulfide or a mixture thereof.
【請求項12】請求項1ないし10のいずれかにおい
て、前記熱不感応層が高融点金属である光記録媒体。
12. The optical recording medium according to claim 1, wherein the heat insensitive layer is a refractory metal.
【請求項13】請求項1ないし10のいずれかにおい
て、前記記録層の下部,上部あるいはその両方に保護層
を設けた光記録媒体。
13. An optical recording medium according to claim 1, wherein a protective layer is provided on the lower part, the upper part or both of the recording layer.
JP4011725A 1992-01-27 1992-01-27 High-durability optical recording medium Withdrawn JPH05205313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011725A JPH05205313A (en) 1992-01-27 1992-01-27 High-durability optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011725A JPH05205313A (en) 1992-01-27 1992-01-27 High-durability optical recording medium

Publications (1)

Publication Number Publication Date
JPH05205313A true JPH05205313A (en) 1993-08-13

Family

ID=11786015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011725A Withdrawn JPH05205313A (en) 1992-01-27 1992-01-27 High-durability optical recording medium

Country Status (1)

Country Link
JP (1) JPH05205313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500598B2 (en) * 1997-02-26 2002-12-31 Kabushiki Kaisha Toshiba Multilevel phase change optical recording medium
JP2006344348A (en) * 2005-05-11 2006-12-21 Ricoh Co Ltd Optical recording medium
JP2008517415A (en) * 2004-10-19 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing master substrate and high-density concavo-convex structure
US7920458B2 (en) 2005-04-27 2011-04-05 Ricoh Company, Ltd. Optical recording medium, and recording and reproducing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500598B2 (en) * 1997-02-26 2002-12-31 Kabushiki Kaisha Toshiba Multilevel phase change optical recording medium
JP2008517415A (en) * 2004-10-19 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing master substrate and high-density concavo-convex structure
US7920458B2 (en) 2005-04-27 2011-04-05 Ricoh Company, Ltd. Optical recording medium, and recording and reproducing method
JP2006344348A (en) * 2005-05-11 2006-12-21 Ricoh Co Ltd Optical recording medium
JP4662866B2 (en) * 2005-05-11 2011-03-30 株式会社リコー Optical recording medium

Similar Documents

Publication Publication Date Title
JP3506491B2 (en) Optical information media
US6340555B1 (en) Information recording medium and information recording and reproducing apparatus using the same
US6709801B2 (en) Information recording medium
JP2001250274A (en) Optical information medium and its reproducing method
JPH07169094A (en) Optical recording medium
EA005347B1 (en) Optical information medium and its use
JP2960824B2 (en) Magneto-optical recording medium
WO1992015091A1 (en) Optically recording medium
JP2000229479A (en) Optical-recording medium
WO1999014764A1 (en) Optical recording medium and optical memory device
US6200673B1 (en) Magneto-optical recording medium
KR20000053429A (en) Optical information recording medium and methods for recording, reading, and erasing information thereupon
JPH07105574A (en) Optical information recording medium
JPH05205313A (en) High-durability optical recording medium
JP3231685B2 (en) Information recording medium and information recording method
JP2002190139A (en) Optical storage medium
JP3138661B2 (en) Phase change optical disk
JPH06111330A (en) High-density optical recording and reproducing method, and high-density optical recording medium and high-density optical recording and reproducing device used for the same
JP3130847B2 (en) Optical information recording medium
JPH0729206A (en) Optical recording medium
JP3080844B2 (en) Phase change optical disk
JP2006338717A (en) Optical disk
JP3159500B2 (en) Information recording medium
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
JP3067035B2 (en) Optical recording medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408