JPH0520512B2 - - Google Patents

Info

Publication number
JPH0520512B2
JPH0520512B2 JP63203761A JP20376188A JPH0520512B2 JP H0520512 B2 JPH0520512 B2 JP H0520512B2 JP 63203761 A JP63203761 A JP 63203761A JP 20376188 A JP20376188 A JP 20376188A JP H0520512 B2 JPH0520512 B2 JP H0520512B2
Authority
JP
Japan
Prior art keywords
less
coating
organic
cwt
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63203761A
Other languages
Japanese (ja)
Other versions
JPH0254779A (en
Inventor
Kenji Takao
Akira Yasuda
Koji Yamato
Susumu Sato
Hiroshi Tsunekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20376188A priority Critical patent/JPH0254779A/en
Publication of JPH0254779A publication Critical patent/JPH0254779A/en
Publication of JPH0520512B2 publication Critical patent/JPH0520512B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は主として自動車車体にプレス成形して
用いられる高耐食性有機複合めつき鋼板の製造方
法に関するものである。 <従来の技術> 近年、自動車車体に高耐食性が要求されてお
り、従来の冷延鋼板上にZnもしくはZn系合金め
つきを施した表面処理鋼板が適用されつつある。
またさらに腐食環境の厳しい地域においては塗装
の十分行き渡らない内板袋構造部および曲げ加工
部に硬度の裸耐食性が要求され、これに応えるも
のとして、例えば特開昭57−108292号公報や特開
昭58−224174号公報等に開示されているように、
Zn系めつき鋼板上にクロメートおよび有機被覆
を施した有機複合めつき鋼板が開発されている。 一方、自動車用鋼板としては、車体にプレス成
形する前は降伏強度が低く、かつ降伏伸びがな
く、絞り性の優れる材質が要求される。しかしな
がら、前述した方式ではこれら自動車車体に要求
される材質に対して何等考慮されておらず、鋼板
製造時熱処理をうけることにより鋼中固溶Cが可
動転位に固着し、鋼板を硬化させるためプレス成
形性を損なうという問題があつた。 有機複合めつき鋼板の耐食性および材質を両立
させる方法としては、特開昭58−45322号公報、
58−96821号公報および58−96822号公報に開示さ
れている。特開昭58−45322号公報は塗装焼付後
調質圧延を施すことにより、焼付前と同等の材質
を付与するものであるが、有機被覆後の調質圧延
により有機皮膜層が損傷を受け、耐食性を著しく
損なうという欠点があつた。特開昭58−96821号
公報は冷間圧延後再結晶焼鈍を行い、しかる後に
300〜500℃で過時効処理を施すことにより炭化物
を析出せしめ、固溶C量を調整することにより有
機被覆後に調質圧延をすることなく所要材質を確
保することを目的としているが、再結晶焼鈍後に
過時効処理を行うためにライン内に特別な加熱設
備を設置する必要があり、かかる設備を有さない
焼鈍ラインでは実施不可能である。さらに、特開
昭58−96822号公報は箱焼鈍を行つた鋼板につい
て塗装時の熱処理条件を考慮して、同じく有機被
覆後に調質圧延をすることなく所要材質を確保し
ようとするものであるが、箱焼鈍は焼鈍に長時間
を要するために生産性が著しく低下し、ひいては
コスト上昇を招来するという問題があつた。 <発明が解決しようとする課題> 本発明は上述した問題点を解決すべくなされた
もので有機被覆後においても優れたプレス成形性
を保持し、かつ良好な塗装後耐水二次密着性およ
び耐クロム溶出性を有する高耐食性有機複合めつ
き鋼板の製造方法を提供するものである。 <課題を解決するための手段> 本発明は、C:0.008wt%以下含有し、Nb:
Cwt%×2〜(Cwt%×8+0.02wt%)および/
またはTi:0.05wt%以下含有する極低炭素冷延
鋼板又は、これらの成分に加えてB:0.0030wt%
以下を含有する極低炭素冷延鋼板に連続焼鈍を施
した後に亜鉛系合金めつきを施し、その上層にク
ロメート層を塗布し、60〜130℃で焼付け、次い
でシリカゾルを全重量当たり10〜60wt%含有す
る有機皮膜を固形分として0.3〜2.0g/m2被覆し、
150℃超200℃以下で焼付け、かつ連続焼鈍してか
ら有機皮膜を被覆する間に、鋼板の板厚をtmmと
したとき、(t+0.5)〜3%の圧下率で調質圧延
を行うことを特徴とするプレス成形性および塗装
後密着性に優れた有機複合めつき鋼板の製造方法
である。 <作用> 以下、本発明における成分および製造条件の限
定理由について詳細に説明する。 Cは0.008wt%超だと降伏強度が高く延性およ
びr値が低下する。従つて0.008wt%以下に限定
される。 Nbは(C×2)wt%未満だと固溶Cが多量に
残留し、冷延後再結晶焼鈍時に絞り性に優れた集
合組織が発達しない。一方、(C×8+0.02)wt
%超だと鋼板の延性を損なう。従つてNb含有量
はCwt%×2〜(Cwt%×8+0.02wt%)に限定
される。ここでCは含有量を表す。 さらに、Tiについては良好な延性を得るため
に添加する。しかし0.05wt%超だと延性が失われ
るので0.05wt%以下に限定される。 また良好な延性を得るために、NbおよびTiを
複合して添加してもかまわない。 さらに好ましくはBを添加する。Bは二次加工
脆性防止のために添加する。しかし0.0030wt%超
だとr値が急激に低下しプレス成形性が劣化する
ので、0.0030wt%以下に限定される。 不純物やその他の元素の含有量については、特
に限定しないが、極力少ない方が好ましい。しか
し特に以下の元素については以下の範囲に制限す
ることが好ましい。 Siは0.5wt%以下が好ましい。0.5wt%超だと焼
鈍時鋼板表面に酸化物が生成してリン酸塩処理性
を損なうからである。 Mnは0.05〜1.20wt%が好ましい。0.05wt%未
満だと脆性が劣化し、1.20wt%超ではr値が劣化
する。 Pは0.1wt%以下が好ましい。0.1wt%超だと鋼
板が脆化するからである。 Alは0.01〜0.08wt%でかつ(N×8)wt%以
上が好ましい。AlはNを固定するため、0.01wt
%以上必要であるが、0.08wt%を超えると介在物
が多発するので好ましくない。またNを固定する
ために(N×8)wt%以上必要である。 NはCと同様に、加工性を損なうのでその鋼中
含有量は可及的に低いことが望ましい。 次に連続焼鈍は冷間圧延鋼板の組織を再結晶す
るために行うが、本発明では鋼中C量が0.001wt
%程度から0.008wt%以下と僅少であるため、焼
鈍時セメンタイトの析出がほとんどみられないの
で、過時効処理のような特別な熱処理は必要とし
ない。 連続焼鈍してから有機皮膜を被覆する間に、少
なくとも一回以上の調質圧延を行うことが必要で
ある。これは鋼板の形状矯正を行うとともに鋼板
中に適度の可動転位を導入することにより降伏伸
びの発生を抑制し、プレス成形時のストレツチヤ
ーストレインを防止するためである。鋼板の板厚
をtmmとした時、圧下率が(t+0.5)%未満で
は鋼板に導入される可動転位密度が少ないためそ
の効果は十分でなく、また圧下率が3.0%超では
加工硬化による材質の劣化が著しい。したがつ
て、圧下率の範囲は(t+0.5)〜3.0%とする。
またこの調質圧延は連続焼鈍後かつ有機被覆前の
工程において1回以上数回にわたつて行つても構
わない。 鋼板に施されるZn系めつきとしては、従来よ
り耐食性を向上させるために用いられているZn
−Ni合金めつき(Ni含有率8〜16wt%)、Zn−
Fe合金めつき(Fe含有率5〜30wt%)等を用い
ることができ、主として電気めつきにより施され
る。これらのめつきは鋼板に耐食性を付与するた
めに施されのであつて、目付量は10〜40g/m2
よい。目付量が10g/m2未満であると耐食性が不
足であり、40g/m2超であるとこれ以上の大幅な
耐食性改善効果がなく、経済的でないためであ
る。 これらZn系合金めつき層の上に、第一には高
耐食性の付与、第二には後述の有機皮膜と結合さ
せることにより上層皮膜を固定し密着性に付与す
ることを目的に、クロメート処理を行う。クロメ
ート処理液としては、水溶性のクロム化合物を主
成分とし、これに適量のリン酸根、フツ素イオン
等のアニオン、Zn,Ni,Co等の金属イオン,デ
ンプン,メタノール等の有機物等を必要に応じて
添加する。さらに、シリカゾルを添加することに
よつて、耐食性はより向上する。クロメート付着
量はクロム換算で10〜150mg/m2が好ましい。付
着量が10mg/m2未満であると、有機皮膜層との密
着力が十分でなく、150mg/m2超であるとクロメ
ート層中の可溶成分量が増大し、脱脂時のクロム
溶出性が劣化するためである。 クロメート層塗布後の焼付は60〜130℃で行う。
60℃未満の温度ではクロメート皮膜の乾燥が十分
でなく、クロムの溶出を生じるためであり、130
℃超の温度では有機皮膜層と結合するクロメート
層中のクロム水和物が脱水するために、有機皮膜
層とクロメート層間の密着力が急激に失われるた
めである。 次にクロメート皮膜の上層にシリカゾルを全量
当たり10〜60wt%含有する複合有機皮膜を固形
分として0.3〜2.0g/m2塗布し、150〜200℃の温
度で焼付け、複合有機皮膜層を形成する。 ここで、複合有機皮膜中の有機樹脂としては、
例えば、アクリル樹脂、エポキシ樹脂、ポリエチ
レン樹脂、アルキツド樹脂、ポリエステル樹脂、
ウレタン樹脂等の樹脂であり、これらの樹脂を単
独または複合して用いる。またシリカゾルは有機
皮膜による耐食性を高めるために添加するがその
形態としては水分散型コロイダルシリカゾル、有
機溶剤置換型コロイダルシリカゾルおよびヒユー
ムドシリカ等であり、いずれも一次粒径が数〜数
十nmのものであつて、上述の有機樹脂とともに
水もしくは有機溶剤中に分散させて用いる。シリ
カゾル含有量としては10〜60wt%とする。10wt
%未満であると耐食性が十分でないからであり、
60wt%超であると、塗料の粘度が上昇しゲル化
しやすくなるためである。 有機複合皮膜の付着量としては、0.3〜2.0g/
m2とする。皮膜の付着量が0.3g/m2未満では耐食
性が劣り、2.0g/m2超では皮膜抵抗が高まるた
め、スポツト溶接性および電着塗装性が劣化す
る。 有機複合皮膜は150℃超200℃以下で焼き付け
る。以下に焼付温度の限定理由を説明する。 前述したように、有機複合皮膜とクロメート層
との間の密着性は有機複合皮膜中の樹脂中水酸基
とクロメート層中クロム水和酸化物との結合によ
り付与される。一方有機複合皮膜中にシリカゾル
が存在すると、樹脂中水酸基とシリカゾルのシラ
ノール基が反応するため、クロメート層と反応す
べき有機皮膜中水酸基数が減少し、密着性は低下
する。そこで樹脂中にシリカゾルが存在してもク
ロメート層と有機複合皮膜との間に良好な密着性
を付与するためには、クロメート層上に塗料を塗
布した後の焼付温度を高くする必要があることを
本発明者らは鋭意研究した結果見出した。有機複
合皮膜の焼付温度が150℃以下の場合、クロメー
ト層と有機複合皮膜とが十分結合せず、塗装後耐
水二次密着性が劣るので、焼付温度は150℃超と
する必要がある。一方、焼付温度が200℃を超え
た場合には、塗装前に調質圧延により導入された
可動転位に固溶Cが拡散固着するため、鋼板に降
伏伸びが生じてプレス加工時にストレツチヤース
トレインが発生する。したがつて、有機複合皮膜
焼付温度の上限値は、プレス成形性の観点から
200℃とする。 <実施例> 以下、本発明の効果を実施例に基づいて具体的
に説明する。 第1表に示した化学成分の鋼を板厚0.7mmに冷
間圧延後830℃×1分の連続焼鈍を施し、調質圧
延後Zn−Ni合金めつき(Ni含有率11.6wt%、付
着量20.6g/m2)を施し、塗布型クロメート処理
をロールコーターで行い、焼付後有機複合皮膜を
ロールコーターで塗布し焼き付けた。各々の製造
条件は第2表に示した。 なお塗布型クロメート処理液はCr3+/Cr6+
50/50、固形分100g/,PH2.5である。 複合有機シリケート処理液はコロイダルシリカ
ゾル:エポキシ樹脂=60/40、固形分15%の有機
溶剤系塗料である。 第3表に前記各鋼板の耐食性、耐水二次密着
性、耐クロム溶出性、および材質の結果を示し
た。 なお、各性能の評価法の詳細は次の通りであ
る。 ◎ 耐食性 塩水噴霧 4時間 5%NaCl溶液 35℃ 乾 燥 2時間 60℃ 湿 潤 2時間 95%RH 50℃ を1サイクルとしてサイクル腐食試験を行い、赤
錆の発生するサイクル数で評価した。 ◎ 塗装後耐水二次密着性 試料をリン酸塩処理(PB L3020、日本パーカ
ー(株)製)後、カチオン電着塗装(パワートツプ
U100、日本ペイント(株)製)を20μm施し、170℃
×20分焼付、さらにその上に上塗り塗装(オルガ
G65 B326、日本ペイント(株)製)35μm施し、140
℃×30分焼付けた後、40℃純温水浸漬を10日間行
い、カツターナイフを用いて2mm10×10のゴバン
目テープ剥離を行い、塗膜残存率を測定すること
により耐水二次密着性を評価した。 ◎ 耐クロム溶出性 リン酸塩処理液(PB L3020、日本パーカー(株)
製)を用いて脱脂、水洗表調、化成4工程を通じ
て処理を行い、処理前後のCr付着量を蛍光X線
分析で測定し溶出量を算出した。 第3表に示すように、本発明方法によつて製造
した有機複合めつき鋼板(No.3,4,7,8,
9,13,14および16)はいずれも、比較例の鋼板
(No.1,2,5,6,10,11,12および15)に比
較して、耐水二次密着性、耐Cr溶出性、降伏伸
びが優れたものが得られている。
<Industrial Field of Application> The present invention relates to a method for producing a highly corrosion-resistant organic composite plated steel sheet that is mainly press-formed and used for automobile bodies. <Prior Art> In recent years, high corrosion resistance has been required for automobile bodies, and surface-treated steel sheets in which conventional cold-rolled steel sheets are plated with Zn or Zn-based alloys are being used.
Furthermore, in regions with severe corrosive environments, bare corrosion resistance in terms of hardness is required for inner plate bag structures and bent parts where coating is not sufficiently applied. As disclosed in Publication No. 58-224174, etc.
Organic composite plated steel sheets have been developed, which are Zn-based plated steel sheets coated with chromate and organic coatings. On the other hand, steel sheets for automobiles are required to have low yield strength, no yield elongation, and excellent drawability before being press-formed into a car body. However, in the above-mentioned method, no consideration is given to the materials required for these automobile bodies, and during heat treatment during steel sheet manufacturing, solid solution C in the steel sticks to movable dislocations and hardens the steel sheet. There was a problem that moldability was impaired. As a method for achieving both corrosion resistance and material quality of organic composite plated steel sheets, Japanese Patent Application Laid-open No. 58-45322,
It is disclosed in 58-96821 and 58-96822. JP-A No. 58-45322 provides the same quality of material as before baking by subjecting it to temper rolling after baking the paint, but the organic coating layer is damaged by temper rolling after organic coating. The drawback was that corrosion resistance was significantly impaired. In JP-A-58-96821, recrystallization annealing is performed after cold rolling, and then
The purpose of this method is to precipitate carbides by performing an over-aging treatment at 300 to 500℃ and adjust the amount of solute C to obtain the required material quality without skin-pass rolling after organic coating. In order to carry out overaging treatment after annealing, it is necessary to install special heating equipment in the line, and this cannot be carried out in an annealing line that does not have such equipment. Furthermore, Japanese Patent Application Laid-Open No. 58-96822 attempts to secure the required material quality without skin-pass rolling after organic coating, taking into account the heat treatment conditions during coating for box-annealed steel sheets. However, since box annealing requires a long time for annealing, there is a problem in that productivity is significantly reduced and costs are increased. <Problems to be Solved by the Invention> The present invention was made to solve the above-mentioned problems, and it maintains excellent press formability even after being coated with an organic coating, and has good post-coating water resistance and secondary adhesion and resistance. The present invention provides a method for producing a highly corrosion-resistant organic composite plated steel sheet having chromium leaching properties. <Means for solving the problem> The present invention contains C: 0.008wt% or less and Nb:
Cwt%×2~(Cwt%×8+0.02wt%) and/
Or ultra-low carbon cold rolled steel sheet containing Ti: 0.05wt% or less, or B: 0.0030wt% in addition to these components
An ultra-low carbon cold-rolled steel sheet containing the following is subjected to continuous annealing, then zinc-based alloy plating is applied, a chromate layer is applied on the top layer, baked at 60-130℃, and then 10-60wt of silica sol is applied per total weight. % of organic film is coated as a solid content of 0.3 to 2.0 g/ m2 ,
Temper rolling is performed at a reduction rate of (t+0.5) to 3%, where the thickness of the steel plate is tmm, after baking at a temperature above 150℃ and below 200℃, and after continuous annealing and coating with an organic film. This is a method for producing an organic composite plated steel sheet having excellent press formability and adhesion after coating. <Function> The reasons for limiting the components and manufacturing conditions in the present invention will be explained in detail below. If C exceeds 0.008 wt%, the yield strength will be high and the ductility and r value will be reduced. Therefore, it is limited to 0.008wt% or less. If Nb is less than (C x 2) wt%, a large amount of solid solution C remains, and a texture with excellent drawability does not develop during recrystallization annealing after cold rolling. On the other hand, (C×8+0.02)wt
If it exceeds %, the ductility of the steel plate will be impaired. Therefore, the Nb content is limited to Cwt%×2 to (Cwt%×8+0.02wt%). Here, C represents the content. Furthermore, Ti is added to obtain good ductility. However, if it exceeds 0.05wt%, ductility is lost, so it is limited to 0.05wt% or less. Further, in order to obtain good ductility, Nb and Ti may be added in combination. More preferably, B is added. B is added to prevent secondary processing brittleness. However, if it exceeds 0.0030wt%, the r value will drop rapidly and press formability will deteriorate, so it is limited to 0.0030wt% or less. The content of impurities and other elements is not particularly limited, but is preferably as small as possible. However, it is particularly preferable to limit the following elements to the following ranges. Si is preferably 0.5 wt% or less. This is because if it exceeds 0.5 wt%, oxides will be generated on the surface of the steel sheet during annealing, impairing phosphating properties. Mn is preferably 0.05 to 1.20 wt%. If it is less than 0.05wt%, brittleness deteriorates, and if it exceeds 1.20wt%, the r value deteriorates. P is preferably 0.1 wt% or less. This is because if it exceeds 0.1wt%, the steel plate will become brittle. Al is preferably 0.01 to 0.08 wt% and at least (N×8) wt%. Al is 0.01wt because N is fixed
% or more is necessary, but if it exceeds 0.08 wt%, inclusions will occur frequently, which is not preferable. In addition, in order to fix N, more than (N×8)wt% is required. Like C, N impairs workability, so it is desirable that its content in steel be as low as possible. Next, continuous annealing is performed to recrystallize the structure of the cold rolled steel sheet, but in the present invention, the C content in the steel is 0.001wt.
% to less than 0.008wt%, so almost no cementite precipitation is observed during annealing, so special heat treatment such as overaging treatment is not required. It is necessary to perform temper rolling at least once between continuous annealing and coating with the organic film. This is to correct the shape of the steel plate and introduce appropriate movable dislocations into the steel plate to suppress the occurrence of yield elongation and prevent stretcher strain during press forming. When the thickness of the steel plate is tmm, if the rolling reduction is less than (t + 0.5)%, the effect will not be sufficient because the density of mobile dislocations introduced into the steel plate will be small, and if the rolling reduction is more than 3.0%, the effect will be insufficient due to work hardening. Significant deterioration of the material. Therefore, the range of rolling reduction is (t+0.5) to 3.0%.
Further, this temper rolling may be performed once or more than once in the step after continuous annealing and before organic coating. Zn-based plating applied to steel sheets is Zn, which has traditionally been used to improve corrosion resistance.
-Ni alloy plating (Ni content 8-16wt%), Zn-
Fe alloy plating (Fe content: 5 to 30 wt%) can be used, and is mainly performed by electroplating. These platings are applied to impart corrosion resistance to the steel plate, and the coating weight is preferably 10 to 40 g/m 2 . This is because if the basis weight is less than 10 g/m 2 , corrosion resistance is insufficient, and if it exceeds 40 g/m 2 , there is no further significant improvement in corrosion resistance and it is not economical. On top of these Zn-based alloy plating layers, chromate treatment is applied, firstly to impart high corrosion resistance, and secondly to fix the upper layer film and give it adhesion by bonding it with the organic film described below. I do. The main component of the chromate treatment solution is a water-soluble chromium compound, in addition to which appropriate amounts of phosphate radicals, anions such as fluorine ions, metal ions such as Zn, Ni, Co, etc., and organic substances such as starch and methanol are required. Add accordingly. Furthermore, by adding silica sol, corrosion resistance is further improved. The amount of chromate deposited is preferably 10 to 150 mg/m 2 in terms of chromium. If the adhesion amount is less than 10 mg/m 2 , the adhesion with the organic film layer will not be sufficient, and if it exceeds 150 mg/m 2 , the amount of soluble components in the chromate layer will increase, resulting in poor chromium elution during degreasing. This is because it deteriorates. Baking after applying the chromate layer is done at 60-130℃.
This is because the chromate film does not dry sufficiently at temperatures below 60°C, resulting in chromium elution.
This is because at temperatures exceeding 0.degree. C., the chromium hydrate in the chromate layer bonded to the organic film layer dehydrates, and the adhesion between the organic film layer and the chromate layer is rapidly lost. Next, a composite organic film containing 10 to 60 wt% of silica sol based on the total amount is applied to the upper layer of the chromate film at a solid content of 0.3 to 2.0 g/m 2 and baked at a temperature of 150 to 200°C to form a composite organic film layer. . Here, the organic resin in the composite organic film is as follows:
For example, acrylic resin, epoxy resin, polyethylene resin, alkyd resin, polyester resin,
It is a resin such as urethane resin, and these resins are used alone or in combination. Silica sol is added to improve the corrosion resistance of an organic film, and its forms include water-dispersed colloidal silica sol, organic solvent-substituted colloidal silica sol, and fumed silica, all of which have a primary particle size of several to several tens of nanometers. In some cases, it is used by dispersing it in water or an organic solvent together with the above-mentioned organic resin. The silica sol content is 10 to 60 wt%. 10wt
This is because corrosion resistance is insufficient if it is less than %.
This is because if it exceeds 60 wt%, the viscosity of the paint increases and it becomes more likely to gel. The amount of organic composite film deposited is 0.3 to 2.0g/
Let it be m2 . If the coating weight is less than 0.3 g/m 2 , corrosion resistance will be poor, and if it exceeds 2.0 g/m 2 , the coating resistance will increase, resulting in poor spot weldability and electrodeposition coating properties. The organic composite film is baked at temperatures above 150℃ and below 200℃. The reasons for limiting the baking temperature will be explained below. As mentioned above, the adhesion between the organic composite film and the chromate layer is provided by the bond between the hydroxyl groups in the resin in the organic composite film and the chromium hydrated oxide in the chromate layer. On the other hand, when silica sol is present in the organic composite film, the hydroxyl groups in the resin react with the silanol groups of the silica sol, so the number of hydroxyl groups in the organic film that should react with the chromate layer decreases, and the adhesion deteriorates. Therefore, in order to provide good adhesion between the chromate layer and the organic composite film even if silica sol is present in the resin, it is necessary to increase the baking temperature after coating the paint on the chromate layer. The inventors of the present invention discovered this as a result of intensive research. If the baking temperature of the organic composite film is 150°C or lower, the chromate layer and the organic composite film will not bond sufficiently, resulting in poor secondary waterproof adhesion after painting, so the baking temperature must be higher than 150°C. On the other hand, when the baking temperature exceeds 200℃, solid solution C diffuses and fixes to the movable dislocations introduced by temper rolling before painting, resulting in yield elongation of the steel plate and stretcher strain during press working. occurs. Therefore, the upper limit of the organic composite film baking temperature is determined from the viewpoint of press formability.
The temperature shall be 200℃. <Example> Hereinafter, the effects of the present invention will be specifically explained based on Examples. Steel with the chemical composition shown in Table 1 was cold-rolled to a thickness of 0.7 mm, then continuously annealed at 830°C for 1 minute. An amount of 20.6 g/m 2 ) was applied, and a coating type chromate treatment was performed using a roll coater. After baking, an organic composite film was applied using a roll coater and baked. The manufacturing conditions for each are shown in Table 2. The coating type chromate treatment liquid has Cr 3+ /Cr 6+ =
50/50, solid content 100g/, PH2.5. The composite organic silicate treatment liquid is an organic solvent-based paint with a colloidal silica sol:epoxy resin ratio of 60/40 and a solid content of 15%. Table 3 shows the results of the corrosion resistance, water resistant secondary adhesion, chromium elution resistance, and material properties of each steel plate. The details of each performance evaluation method are as follows. ◎ Corrosion resistance Salt spray 4 hours 5% NaCl solution 35°C Dry 2 hours 60°C Wet 2 hours 95% RH A cycle corrosion test was conducted with 50°C as one cycle, and the evaluation was based on the number of cycles at which red rust occurs. ◎ Water resistant secondary adhesion after painting After the sample was treated with phosphate (PB L3020, manufactured by Nippon Parker Co., Ltd.), cationic electrodeposition painting (Power Top
U100, manufactured by Nippon Paint Co., Ltd.) applied to 20μm, 170℃
x 20 minutes of baking, then topcoat on top (Olga
G65 B326, manufactured by Nippon Paint Co., Ltd.) 35μm coated, 140
After baking for 30 minutes at ℃, immersion in pure warm water at 40℃ for 10 days, peeling off a 2 mm 10 x 10 grid tape using a cutter knife, and measuring the coating film residual rate to evaluate secondary water adhesion. . ◎ Chromium elution resistance Phosphate treatment solution (PB L3020, Nippon Parker Co., Ltd.)
The Cr coating was carried out through 4 steps of degreasing, water washing, and chemical formation using a commercially available commercially available product (manufactured by J.D. Co., Ltd.), and the amount of Cr deposited before and after the treatment was measured by fluorescent X-ray analysis to calculate the elution amount. As shown in Table 3, organic composite plated steel sheets (No. 3, 4, 7, 8,
9, 13, 14 and 16) all have higher water resistance secondary adhesion and Cr elution resistance than the comparative example steel plates (Nos. 1, 2, 5, 6, 10, 11, 12 and 15). , products with excellent yield elongation have been obtained.

【表】【table】

【表】 * 本発明例
[Table] * Examples of the present invention

【表】【table】

【表】 * 本発明例
<発明の効果> 本発明の製造方法によればプレス成形性に優れ
かつ塗装後耐水二次密着性および耐クロム溶出性
の良好な高耐食性有機複合めつき鋼板が得られ
る。
[Table] * Examples of the present invention <Effects of the invention> According to the production method of the present invention, a highly corrosion-resistant organic composite plated steel sheet with excellent press formability and good post-coating water-resistant secondary adhesion and chromium elution resistance can be obtained. It will be done.

Claims (1)

【特許請求の範囲】 1 C:0.008wt%以下含有し、Nb:Cwt%×2
〜(Cwt%×8+0.02wt%)および/またはTi:
0.05wt%以下を含有する極低炭素冷延鋼板に連続
焼鈍を施した後に亜鉛系合金めつきを施し、その
上層にクロメート層を塗布し、60〜130℃で焼付
け、次いでシリカゾルを全重量当たり10〜60wt
%含有する有機皮膜を固形分として0.3〜2.0g/
m2被覆し、150℃超200℃以下で焼付け、かつ連続
焼鈍してから有機皮膜を被覆する間に、鋼板の板
厚をtmmとしたとき、(t+0.5)〜3%の圧下率
で調質圧延を行うことを特徴とするプレス成形性
および塗装後密着性に優れた有機複合めつき鋼板
の製造方法。 2 C:0.008wt%以下含有し、Nb:Cwt%×2
〜(Cwt%×8+0.02wt%)および/またはTi:
0.05wt%以下、ならびにB:0.0030wt%以下を含
有する極低炭素冷延鋼板に連続焼鈍を施した後に
亜鉛系合金めつきを施し、その上層にクロメート
層を塗布し、60〜130℃で焼付け、次いでシリカ
ゾルを全重量当たり10〜60wt%含有する有機皮
膜を固形分として0.3〜2.0g/m2被覆し、150℃超
200℃以下で焼付け、かつ連続焼鈍してから有機
皮膜を被覆する間に、鋼板の板厚をtmmとしたと
き、(t+0.5)〜3%の圧下率で調質圧延を行う
ことを特徴とするプレス成形性および塗装後密着
性に優れた有機複合めつき鋼板の製造方法。
[Claims] 1 C: Contains 0.008wt% or less, Nb: Cwt% x 2
~(Cwt%×8+0.02wt%) and/or Ti:
Ultra-low carbon cold-rolled steel sheets containing 0.05wt% or less are subjected to continuous annealing and then plated with zinc-based alloy.A chromate layer is applied on top of this, baked at 60-130℃, and then silica sol is applied per total weight. 10~60wt
% containing organic film as solid content 0.3-2.0g/
When the thickness of the steel plate is tmm, the rolling reduction rate is between (t+0.5) and 3%. A method for producing an organic composite plated steel sheet having excellent press formability and adhesion after coating, which comprises performing temper rolling. 2 Contains C: 0.008wt% or less, Nb: Cwt% x 2
~(Cwt%×8+0.02wt%) and/or Ti:
Ultra-low carbon cold-rolled steel sheets containing 0.05wt% or less and B: 0.0030wt% or less are subjected to continuous annealing, then zinc-based alloy plating is applied, a chromate layer is applied on the top layer, and the plate is heated at 60 to 130℃. Baked, then coated with an organic film containing 10 to 60 wt% of silica sol based on the total weight, with a solid content of 0.3 to 2.0 g/ m2 , and heated to temperatures above 150℃.
It is characterized by performing temper rolling at a reduction rate of (t+0.5) to 3%, where the thickness of the steel plate is tmm, during baking at 200℃ or less and continuous annealing, and then coating with an organic film. A method for producing an organic composite plated steel sheet with excellent press formability and adhesion after coating.
JP20376188A 1988-08-18 1988-08-18 Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating Granted JPH0254779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20376188A JPH0254779A (en) 1988-08-18 1988-08-18 Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20376188A JPH0254779A (en) 1988-08-18 1988-08-18 Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating

Publications (2)

Publication Number Publication Date
JPH0254779A JPH0254779A (en) 1990-02-23
JPH0520512B2 true JPH0520512B2 (en) 1993-03-19

Family

ID=16479394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20376188A Granted JPH0254779A (en) 1988-08-18 1988-08-18 Manufacture of organic composite-plated steel sheet excellent in press formability and adhesive strength after coating

Country Status (1)

Country Link
JP (1) JPH0254779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022618B2 (en) 2007-11-27 2018-07-17 Angel Playing Cards Co., Ltd. Shuffled playing cards and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106611B2 (en) * 1990-03-20 1995-11-15 川崎製鉄株式会社 Method for producing organic composite coated steel sheet having excellent corrosion resistance and weldability
JPH05171456A (en) * 1991-11-21 1993-07-09 Sumitomo Metal Ind Ltd Steel sheet for exterior of automobile excellent in chipping resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc
JPS5976826A (en) * 1982-10-22 1984-05-02 Nippon Steel Corp Manufacture of cold rolling steel sheet for superdeep drawing
JPS61276927A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having good deep drawability
JPS61276932A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet for extra-deep drawing having extremely excellent resistance to brittleness by secondary operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing
JPS58177476A (en) * 1982-04-12 1983-10-18 Kawasaki Steel Corp Surface treatment of steel plate electroplated with zinc
JPS5976826A (en) * 1982-10-22 1984-05-02 Nippon Steel Corp Manufacture of cold rolling steel sheet for superdeep drawing
JPS61276927A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having good deep drawability
JPS61276932A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet for extra-deep drawing having extremely excellent resistance to brittleness by secondary operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022618B2 (en) 2007-11-27 2018-07-17 Angel Playing Cards Co., Ltd. Shuffled playing cards and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0254779A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US20220356552A1 (en) Phosphatable Part Starting from a Steel Sheet Coated with a Metallic Coating Based on Aluminum
JP6728332B2 (en) Steel plates, parts and their use coated with an aluminum-based metal coating
JP4695459B2 (en) Hot pressed steel with zinc-based plating with excellent corrosion resistance after painting
JP3731560B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP4023710B2 (en) Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same
JPH0441658A (en) Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production
JP2002004018A (en) High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
JP2938402B2 (en) Rust-proof steel plate for fuel tanks with excellent press moldability and corrosion resistance after molding
EP0230320B1 (en) Organic coated steel strip having improved bake hardenability and method for making
JPH0520512B2 (en)
JP3496228B2 (en) High corrosion resistance, high workability, ultra-high tensile cold rolled steel sheet, and method for producing the same
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP3280450B2 (en) High corrosion resistance, high workability ultra-high tensile cold rolled steel sheet and method for producing the same
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JPH0232326B2 (en) TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO
JP2642284B2 (en) High strength and high ductility alloyed hot-dip galvanized steel sheet
JPS62260046A (en) High-strength alloyed hot dip zinc coated steel sheet having excellent deep drawability and its production
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JP3217890B2 (en) High corrosion resistance, high workability ultra-high tensile cold rolled steel sheet and method for producing the same
JPS63143270A (en) Highly corrosion resistant organic coated steel sheet having excellent baking hardenability
JP2661711B2 (en) Cold rolled steel sheet excellent in mold resistance and galling resistance and method for producing the same
JPH04301060A (en) High strength alloyed galvanized steel sheet having seizing hardenability and excellent in powdering resistance and its production
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees