JPH0520509B2 - - Google Patents

Info

Publication number
JPH0520509B2
JPH0520509B2 JP32865988A JP32865988A JPH0520509B2 JP H0520509 B2 JPH0520509 B2 JP H0520509B2 JP 32865988 A JP32865988 A JP 32865988A JP 32865988 A JP32865988 A JP 32865988A JP H0520509 B2 JPH0520509 B2 JP H0520509B2
Authority
JP
Japan
Prior art keywords
alloy
plated
processing furnace
combustion gas
reflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32865988A
Other languages
Japanese (ja)
Other versions
JPH02173275A (en
Inventor
Masato Uchiito
Yasuhiro Shirokabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Original Assignee
NITSUKO KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK filed Critical NITSUKO KINZOKU KK
Priority to JP32865988A priority Critical patent/JPH02173275A/en
Publication of JPH02173275A publication Critical patent/JPH02173275A/en
Publication of JPH0520509B2 publication Critical patent/JPH0520509B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電子部品として具備すべき特性、特
に光沢、接触抵抗、半田付け性等を改善したCu
−Sn系複合材料の製造方法に関する。 〔従来の技術〕 一般に電子部品材料を製造する際に、Cuまた
はCu合金材にSnまたはSn合金めつきした場合、
ウイスカーの発生防止、耐食性、半田付け性等の
向上のためにリフロー処理を行う。 このリフロー処理は、大気中で材料を抵抗加熱
あるいは誘導加熱等の加熱方法により加熱してめ
つき層を溶融するか、あるいはプロパン、ブタン
等の燃焼ガスを大気中で燃焼させ、その火炎を直
接材料に当てることによりめつき層を溶融させて
いる。 また、加熱を効率的に行うために加熱部を耐火
物等で囲むことも行われている。 〔発明が解決しようとする課題〕 しかし、Cu及びCu合金は電気抵抗が小さいた
め、元来、抵抗加熱、誘導加熱による加熱を行う
ことは非効率的であり、たとえこれらを行つたと
しても、高温で大気中の酸素に触れるため、めつ
き表面が容易に酸化し、めつき製品の接触抵抗が
高く、また半田付け性が低下する等、電子部品と
しては不利な結果を招くこととなる。さらにリフ
ロー時にSnまたはSn合金めつき表面が酸化し、
溶融SnまたはSn合金の流動性が悪くなり、凝固
後の表面光沢が劣る原因にもなつていた。特にめ
つき厚が2μm以上の場合、この現象は顕著とな
る。 また、プロパン、ブタン等の燃焼ガスを大気中
で燃焼させ、その火炎を直接材料に当てることに
よりめつき金属を溶融させる場合も、溶融した
SnまたはSn合金が空気に触れて酸化することに
よる欠陥は上記と同様である。 また、加熱部を耐火物等で囲んだ場合であつて
も、直接火炎が当たつている部分の酸素濃度は非
常に低くとも、火炎が当たつていない部分の酸素
濃度が高く、溶融SnまたはSn合金めつき層は容
易に酸化する。 しかも、材料全体に火炎が当たるようにした場
合には、材料が加熱されすぎて、溶融Snまたは
Sn合金とCuまたはCu合金母材との反応により生
成する拡散層が厚くなり、表面光沢、半田付け性
に悪影響を及ぼすという問題がある。 本発明は上記の事情に鑑みてなされたのであ
り、電子部品としての特性、特に表面光沢、半田
付け性、電気接触性等に優れたCu−Sn系複合材
料をリフロー処理により製造する方法を提供する
ことを目的とするものである。 〔課題を解決するための手段〕 上記目的を達成するため本発明者は、リフロー
処理によりCu−Sn系複合材料を得る際の酸化を
防止し得る方法について鋭意研究を重ねた結果、
特定CO濃度にコントロールした燃焼ガスを使用
して加熱し、メツキ層を溶融させることにより可
能としたものである。 すなわち、本発明に係るリフローめつき材の製
造方法は、厚さ0.3〜10μmのSnまたはSn合金め
つきを施したCuまたはCu合金材につき、空気比
1以下に制御した混合ガスを予め別室にて燃焼さ
せ、CO濃度が1〜7vo%の燃焼ガスを処理炉
に導入し、この処理炉内でリフロー処理を施すこ
とを特徴とするものである。 また、その際、前記処理炉内において、該Cu
またはCu合金材の通板方向に対して燃焼ガスを
風速1m/sec以上で吹き付けて加熱し、かつ上記
処理炉内を1気圧以上に保ちながら該めつき層を
溶融した後、急冷することを特徴とするものであ
る。 〔作用〕 以下に本発明の作用について詳述する。 まず、SnまたはSn合金は、電気めつき等によ
りCuまたはCu合金の条、または線にめつきされ
る。めつき層は材料の用途により決められ、
10μm以下が一般的である。必要な場合、めつき
の中間層としてCuまたはNiの層を設けても良い。 この材料に吹き付ける燃焼ガスのCO濃度を1
〜7vo%とする理由は、CO濃度が1vo%未満
では、リフロー時にSnまたはSn合金めつき表面
が酸化し易くなるからである。このようにSnま
たはSn合金めつき表面が酸化されると、溶融Sn
またはSn合金の流動性が悪くなり、凝固後の表
面光沢が劣る原因となつてしまう。リフロー時に
SnまたはSn合金めつき表面の酸化を防止するに
は、CO濃度は7vo%以下で充分であり、かつ
CO濃度が高いことは大気汚染の危険性が増加す
るので、CO濃度は1〜7vo%とする。 CO濃度をこのようにコントロールするには、
空気比1以下に制御した混合ガスを予め別室で燃
焼して調整する。 次いで、この燃焼ガスを処理炉内に導入し、前
記材料を加熱することにより、リフロー処理を施
す。 リフロー処理の望ましい態様は、以下に示すと
おりである。 第1図はリフロー処理状態の一例を示す図であ
り、処理炉1は、多数のガス噴出口2が配置され
ており、これらのガス噴出口2の間に処理材3を
通過させ、めつき層の溶融後、冷却層5で冷却す
る構成である。 この場合、燃焼ガスは、バーナー4を備えた別
室でCO濃度をコントロールし、第1図bに示す
ように、循環フアン6で循環させる。また、ガス
噴出口2は、第2図及び第3図に示すように、処
理材3をウエーブさせるために熱風を集中させる
構造を有し、また第4図に示すように、処理材3
が板幅方向に均一に加熱させるように配列されて
いる。 処理材をリフロー処理炉内で行う理由は、熱を
外へ逃さないためと、めつき層が溶融状態で空気
に触れないように1気圧以上の燃焼生成ガスで満
たすためである。 1気圧維持用とする理由は、炉内への空気の侵
入を防ぎ、めつき層の酸化防止効果を高めるため
である。さらにめつき材の処理炉内の通板方向に
対し45度〜135度の方向(第1図参照)から風速
1m/sec以上で吹き付けることにより、めつき層
の酸化防止効果を高めるとともに、板幅方向のほ
ぼ均一な加熱を可能にするものである。 処理炉内でめつき層を溶融した後は、溶融した
めつき層を急冷させるのが望ましい。その理由
は、Snが溶融した状態では時間の経過と共に溶
融SnまたはSn合金とCuまたはCu合金母材成分と
の反応により生成する拡散層が厚くなり、表面光
沢、半田付け性に悪影響を及ぼすためである。 〔実施例〕 次に本発明の実施例について具体的に説明す
る。 本実施例では、厚さ0.20mm、幅300mmの黄銅条
(C2600)及びりん青銅条(C5210)を通常の脱
脂、酸洗した後、これにSnまたはSn−Pb合金め
つきを施した。 このめつきは、硫酸銅浴(硫酸銅200g/、
硫酸100g/)にて銅めつきを0.5μm厚さで施し
た後、硫酸錫浴(硫酸第1錫55g/、硫酸
100g/、添加剤10g/)あるいはホウフツ化
浴(ホウフツ化第1錫130g/、ホウフツ化鉛
50g/、ホウフツ酸125g/、ホウ酸25g/、
ペプトン5g/)にて、所定の厚さ(第1表に
記載)にSnまたはSn−Pb合金めつきを施した。 一方、ブタンガスと空気を所定の混合比にて混
ぜ、燃焼室で燃焼させた生成ガスを、前記錫めつ
き条が通板(23m/min)している処理炉(炉長
5m)内に導き、所定の風速にて通板条に均一に
熱風を当て、SnめつきあるいはSn−Pbめつき層
を溶融させた。その際、燃焼生成ガスの温度と
CO濃度を測定した。 また、比較のため同様にして作成したSnまた
はSn−Pb合金めつき条をブタンガスを燃焼させ
ている炉内に導き、その火炎をSnまたはSn−Pb
合金めつき条に直接当て、SnまたはSn−Pb合金
めつき層を溶融させた。 このようにしてSnまたはSn−Pb合金めつき層
が溶融した条は、直ちに水中(70℃)に浸漬し、
溶融Snまたは溶融Sn−Pb合金を凝固させた後、
乾燥させた。 得られたSnまたはSn−Pb合金めつき条の鏡面
光沢度、接触抵抗、半田付け性を測定した結果を
第2表に示す。 なお、鏡面光沢度はJIS Z 8741方法3(入射
角60度)に準拠して測定し、接触抵抗はJIS C
5402、5.4に準拠して測定した。また、半田付け
性は、JIS C 0050、4.6(方法1.235℃でのはん
だ槽法)に準拠し、フラツクスとして25%ロジン
メタノールを使用し、濡れ時間t2を測定して評価
した。 第2表から明らかなように、本発明例は、比較
例に比べ、表面光沢、半田付け性、電気接触性に
優れたCu−Sn系複合材料が得られている。
[Industrial Field of Application] The present invention is directed to Cu that has improved properties that electronic components should have, particularly gloss, contact resistance, solderability, etc.
-Relating to a method for producing Sn-based composite materials. [Prior art] Generally, when manufacturing electronic component materials, when Cu or Cu alloy material is plated with Sn or Sn alloy,
Reflow treatment is performed to prevent whisker generation, improve corrosion resistance, solderability, etc. This reflow process involves heating the material in the atmosphere using a heating method such as resistance heating or induction heating to melt the plating layer, or burning a combustion gas such as propane or butane in the atmosphere, and directly applying the flame. The plating layer is melted by applying it to the material. Furthermore, in order to perform heating efficiently, the heating section is sometimes surrounded by a refractory material or the like. [Problem to be solved by the invention] However, since Cu and Cu alloys have low electrical resistance, it is inherently inefficient to heat them by resistance heating or induction heating, and even if these methods are used, Because it comes into contact with oxygen in the atmosphere at high temperatures, the plated surface easily oxidizes, resulting in disadvantageous results for electronic parts, such as high contact resistance of plated products and reduced solderability. Furthermore, during reflow, the Sn or Sn alloy plated surface oxidizes.
The fluidity of molten Sn or Sn alloy deteriorates, which also causes poor surface gloss after solidification. This phenomenon becomes particularly noticeable when the plating thickness is 2 μm or more. In addition, when melting the plated metal by burning combustion gas such as propane or butane in the atmosphere and applying the flame directly to the material, the molten metal may be melted.
Defects caused by oxidation of Sn or Sn alloy when exposed to air are similar to those described above. Furthermore, even if the heated part is surrounded by refractories, etc., the oxygen concentration in the part directly exposed to the flame is very low, but the oxygen concentration in the part not exposed to the flame is high, and molten Sn or The Sn alloy plating layer is easily oxidized. Moreover, if the flame hits the entire material, the material will be heated too much and melt Sn or
There is a problem in that the diffusion layer formed by the reaction between the Sn alloy and the Cu or Cu alloy base material becomes thick, which adversely affects the surface gloss and solderability. The present invention has been made in view of the above circumstances, and provides a method for producing a Cu-Sn composite material by reflow treatment that has excellent properties as an electronic component, particularly surface gloss, solderability, electrical contact properties, etc. The purpose is to [Means for Solving the Problem] In order to achieve the above object, the present inventor has conducted intensive research on a method for preventing oxidation when obtaining a Cu-Sn composite material by reflow treatment.
This was made possible by heating and melting the plating layer using combustion gas controlled to a specific CO concentration. That is, the method for producing a reflow plated material according to the present invention is to prepare a Cu or Cu alloy material that has been plated with Sn or Sn alloy with a thickness of 0.3 to 10 μm by placing a mixed gas controlled at an air ratio of 1 or less in a separate chamber in advance. The method is characterized in that the combustion gas having a CO concentration of 1 to 7 vo% is introduced into a processing furnace, and a reflow treatment is performed within the processing furnace. In addition, at that time, in the processing furnace, the Cu
Alternatively, heat the Cu alloy material by blowing combustion gas at a wind speed of 1 m/sec or more in the direction of sheet passing, melt the plated layer while maintaining the inside of the processing furnace at 1 atm or more, and then rapidly cool it. This is a characteristic feature. [Operation] The operation of the present invention will be explained in detail below. First, Sn or Sn alloy is plated onto a Cu or Cu alloy strip or wire by electroplating or the like. The plating layer is determined by the use of the material.
Generally 10μm or less. If necessary, a layer of Cu or Ni may be provided as an intermediate plating layer. The CO concentration of the combustion gas blown onto this material is 1
The reason for setting it to ~7 vo% is that if the CO concentration is less than 1 vo%, the Sn or Sn alloy plated surface will be easily oxidized during reflow. When the Sn or Sn alloy plated surface is oxidized in this way, the molten Sn
Alternatively, the fluidity of the Sn alloy deteriorates, resulting in poor surface gloss after solidification. during reflow
To prevent oxidation of the Sn or Sn alloy plated surface, a CO concentration of 7 vo% or less is sufficient, and
Since a high CO concentration increases the risk of air pollution, the CO concentration should be between 1 and 7 vo%. To control CO concentration in this way,
A mixed gas whose air ratio is controlled to be less than 1 is combusted in a separate chamber in advance. Next, this combustion gas is introduced into a processing furnace and the material is heated to perform reflow processing. A desirable aspect of the reflow process is as shown below. FIG. 1 is a diagram showing an example of a reflow processing state. A processing furnace 1 is equipped with a large number of gas outlets 2, and a processing material 3 is passed between these gas outlets 2 to perform plating. The structure is such that after the layers are melted, they are cooled by a cooling layer 5. In this case, the CO concentration of the combustion gas is controlled in a separate chamber equipped with a burner 4, and the combustion gas is circulated by a circulation fan 6, as shown in FIG. 1b. Further, as shown in FIGS. 2 and 3, the gas outlet 2 has a structure that concentrates hot air to wave the processing material 3, and as shown in FIG.
are arranged so as to uniformly heat the plate in the width direction. The reason why the processing material is carried out in a reflow processing furnace is to prevent heat from escaping and to fill the furnace with combustion gas at a pressure of 1 atmosphere or more so that the plating layer does not come into contact with air in a molten state. The reason for maintaining 1 atmosphere is to prevent air from entering the furnace and to enhance the oxidation prevention effect of the plating layer. Furthermore, the wind speed is measured from a direction of 45 degrees to 135 degrees (see Figure 1) with respect to the direction in which the plated materials are passed through the processing furnace.
By spraying at a speed of 1 m/sec or more, the oxidation prevention effect of the plating layer is enhanced and it is possible to heat the plate almost uniformly in the width direction. After melting the plating layer in the processing furnace, it is desirable to rapidly cool the melted plating layer. The reason for this is that when Sn is in a molten state, the diffusion layer formed by the reaction between molten Sn or Sn alloy and Cu or Cu alloy base material components becomes thicker over time, which has a negative effect on surface gloss and solderability. It is. [Example] Next, an example of the present invention will be specifically described. In this example, a brass strip (C2600) and a phosphor bronze strip (C5210) with a thickness of 0.20 mm and a width of 300 mm were subjected to conventional degreasing and pickling, and then Sn or Sn--Pb alloy plating was applied thereto. This plating is done in a copper sulfate bath (copper sulfate 200g/,
After applying copper plating to a thickness of 0.5 μm using sulfuric acid (100g/), tin sulfate bath (stannic sulfate 55g/), sulfuric acid
100g/, additive 10g/) or a borofusating bath (stannic borofluoride 130g/, lead borofusate)
50g/, boric acid 125g/, boric acid 25g/,
Sn or Sn--Pb alloy plating was applied to a predetermined thickness (listed in Table 1) using peptone (5 g/). On the other hand, butane gas and air are mixed at a predetermined mixing ratio and the resulting gas is combusted in a combustion chamber.
5 m) and uniformly applied hot air to the strip at a predetermined wind speed to melt the Sn plating or Sn-Pb plating layer. At that time, the temperature of the combustion gas and
CO concentration was measured. For comparison, Sn or Sn-Pb alloy plated strips prepared in the same manner were introduced into a furnace burning butane gas, and the flame was
It was applied directly to the alloy plated strip to melt the Sn or Sn-Pb alloy plated layer. The strip with the Sn or Sn-Pb alloy plated layer melted in this way is immediately immersed in water (70°C).
After solidifying the molten Sn or molten Sn-Pb alloy,
Dry. Table 2 shows the results of measuring the specular gloss, contact resistance, and solderability of the Sn or Sn-Pb alloy plated strips obtained. The specular gloss was measured according to JIS Z 8741 method 3 (incidence angle 60 degrees), and the contact resistance was measured according to JIS C.
Measured in accordance with 5402, 5.4. Furthermore, solderability was evaluated in accordance with JIS C 0050, 4.6 (method: 1.235°C soldering bath method) using 25% rosin methanol as a flux and measuring the wetting time t2 . As is clear from Table 2, the inventive examples yielded Cu-Sn composite materials with superior surface gloss, solderability, and electrical contact properties compared to the comparative examples.

【表】【table】

【表】【table】

【表】 (注) 測定箇所は第5図の記号に対応してい
る。
〔発明の効果〕 以上説明したように本発明によれば、表面性状
も優れたCu−Sn系複合材料が得られるので、特
に電子部品として有用な材料を提供することがで
きる。
[Table] (Note) The measurement points correspond to the symbols in Figure 5.
[Effects of the Invention] As explained above, according to the present invention, a Cu-Sn composite material having excellent surface properties can be obtained, and therefore a material particularly useful as an electronic component can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは処理炉及びリフロー処理状態を
示す説明図、第2図〜第4図はガス噴出口の構造
及び配列例を示す説明図、第5図は実施例で得ら
れた材料の特性測定箇所を説明する図である。 1……処理炉、2……ガス噴出口、3……処理
材、4……バーナー、5……冷却槽、6……循環
フアン。
Figures 1a and b are explanatory diagrams showing the processing furnace and the reflow processing state, Figures 2 to 4 are explanatory diagrams showing the structure and arrangement example of the gas outlet, and Figure 5 is the material obtained in the example. It is a figure explaining the characteristic measurement point of. 1... Processing furnace, 2... Gas spout, 3... Processing material, 4... Burner, 5... Cooling tank, 6... Circulation fan.

Claims (1)

【特許請求の範囲】 1 厚さ0.3〜10μmのSn又はSn合金めつきを施
したCu又はCu合金材につき、空気比1以下に制
御した混合ガスを予め別室にて燃焼させ、CO濃
度が1〜7vo%の燃焼ガスを処理炉に導入し、
この処理炉内でリフロー処理を施すことを特徴と
するリフローめつき材の製造方法。 2 前記処理炉内において、該Cu又はCu合金材
の通板方向に対して燃焼ガスを風速1m/sec以上
で吹き付けて加熱し、かつ上記処理炉内を1気圧
以上に保ちながら該めつき層を溶融した後、急冷
することを特徴とする請求項第1項に記載の方
法。
[Claims] 1. For a Cu or Cu alloy material plated with Sn or Sn alloy with a thickness of 0.3 to 10 μm, a mixed gas controlled to have an air ratio of 1 or less is combusted in a separate chamber in advance so that the CO concentration is 1. ~7vo% combustion gas is introduced into the processing furnace,
A method for producing a reflow-plated material, characterized by performing reflow treatment in this processing furnace. 2. Heat the Cu or Cu alloy material in the processing furnace by blowing combustion gas at a wind speed of 1 m/sec or more in the sheet-threading direction, and heat the plated layer while maintaining the inside of the processing furnace at 1 atmosphere or more. The method according to claim 1, characterized in that after melting, the method is rapidly cooled.
JP32865988A 1988-12-26 1988-12-26 Production of reflowed material Granted JPH02173275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32865988A JPH02173275A (en) 1988-12-26 1988-12-26 Production of reflowed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32865988A JPH02173275A (en) 1988-12-26 1988-12-26 Production of reflowed material

Publications (2)

Publication Number Publication Date
JPH02173275A JPH02173275A (en) 1990-07-04
JPH0520509B2 true JPH0520509B2 (en) 1993-03-19

Family

ID=18212731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32865988A Granted JPH02173275A (en) 1988-12-26 1988-12-26 Production of reflowed material

Country Status (1)

Country Link
JP (1) JPH02173275A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570581B2 (en) * 2005-03-29 2010-10-27 古河電気工業株式会社 Metal plating material reflow processing method, metal plating material and metal plating material reflow processing apparatus
JP6134557B2 (en) * 2013-03-29 2017-05-24 Jx金属株式会社 Copper strip or copper alloy strip and heat dissipating part provided with the strip
JP7040224B2 (en) * 2018-03-30 2022-03-23 三菱マテリアル株式会社 Tin-plated copper terminal material and its manufacturing method

Also Published As

Publication number Publication date
JPH02173275A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
KR101029404B1 (en) Conductive material for a connecting part
JP2587724B2 (en) Method for producing high Si content high tensile galvanized steel sheet with good plating adhesion
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JPH0520509B2 (en)
JPH0510439B2 (en)
JP2671032B2 (en) Reflow plating method
JPS61106760A (en) Continuous melting plating method of tin or tin alloy
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
US949837A (en) Compound metal and process of making the same.
JP4889422B2 (en) Connection terminal reflow processing method
JP2002069688A (en) Tin alloy plated material for terminal and connector
US943161A (en) Method of protecting molten metals.
JP2007031806A (en) Method for manufacturing galvannealed steel sheet
JPH02243793A (en) Production of tin and tin alloy plated material
JP2639718B2 (en) Reflow method for tin or tin alloy plating
JPH042759A (en) Production of galvannealed steel sheet and hot-dip galvanizing bath
FR2661426A1 (en) Process for continuous dip galvanising
JPS6013095A (en) Material for electronic parts and its manufacture
JPH03202495A (en) Production of reflow-tinned wire
JPH04154950A (en) Production of fe-zn alloy coated steel sheet
Ebrill et al. Influence of substrate oxidation on dynamic wetting, interfacial resistance and surface appearance of hot dip coatings
JPH05263210A (en) Production of hot-dip zinc-aluminum alloy-plated steel sheet excellent in spot weldability
JPH03202492A (en) Production of reflow-tinned wire
JP2909378B2 (en) Zinc chloride-free flux for tin plating and method of using same
JP3273308B2 (en) Coating method of Al or Al alloy on metal substrate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 16