JPH05203977A - Electrooptical display device - Google Patents

Electrooptical display device

Info

Publication number
JPH05203977A
JPH05203977A JP4230198A JP23019892A JPH05203977A JP H05203977 A JPH05203977 A JP H05203977A JP 4230198 A JP4230198 A JP 4230198A JP 23019892 A JP23019892 A JP 23019892A JP H05203977 A JPH05203977 A JP H05203977A
Authority
JP
Japan
Prior art keywords
substrate
active matrix
polycrystalline silicon
silicon film
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230198A
Other languages
Japanese (ja)
Other versions
JP2697507B2 (en
Inventor
Takeo Yamada
彪夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4230198A priority Critical patent/JP2697507B2/en
Publication of JPH05203977A publication Critical patent/JPH05203977A/en
Application granted granted Critical
Publication of JP2697507B2 publication Critical patent/JP2697507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve a throughput and to decrease the mobility of a built-in active matrix circuit so as to prevent light leakage by building a peripheral driving circuit into the above device and subjecting only the driving circuit of the peripheral part of a substrate to laser annealing. CONSTITUTION:After a 1st polycrystalline silicon film is formed on a borosilicate glass substrate 1, this polycrystalline silicon film is photoetched and is partially bored with holes. Only the peripheral on the substrate 1, i.e., the inside of the region of the peripheral driving circuit is subjected to the laser annealing while this part is laterally scanned by a beam formed by using a CE excited YAG laser as a light source. A CVD-SiO2 film is then deposited over the entire surface and thereafter, the 2nd crystalline silicon film is formed by the same forming method as for the 1st polycrystalline silicon film and the source and drain parts of the 2nd polycrystalline silicon film are formed by the photoetching. The main surface of the substrate 1 is irradiated with phosphorus ions and is annealed in a forming gas, by which a diffused layer is formed. The active matrix substrate 2 is formed in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明のソーダガラス、ホウケイ
酸ガラス、あるいは石英等の透明基板上に少なくとも多
結晶シリコンあるいはアモルファスシリコンを主構成部
材としてなるアクティブマトリクス基板に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix substrate which comprises at least polycrystalline silicon or amorphous silicon as a main constituent member on a transparent substrate such as soda glass, borosilicate glass or quartz.

【0002】[0002]

【従来の技術】近年平板型液晶ディスプレーは腕時計、
電卓、玩具を始めとして自動車、計測器、情報機器端末
へと応用分野が拡大されつつあり、特に最近においては
半導体集積回路技術によってsi基板上へステッチング
用トランジスタ回路をマトリクス状に形成しこのsi基
板と透明ガラス板間に液晶を封入したテレビ画像表示用
の液晶ディスプレーパネルが開発されている。
2. Description of the Related Art In recent years, flat panel liquid crystal displays have been
The field of application is expanding to calculators, toys, automobiles, measuring instruments, and information equipment terminals. In particular, recently, semiconductor integrated circuit technology has been used to form stitching transistor circuits in a matrix on a si substrate. A liquid crystal display panel for displaying television images, in which liquid crystal is enclosed between a substrate and a transparent glass plate, has been developed.

【0003】アクティブマトリクス方式で液晶パネルを
構成した例では前記単結晶si基板を用いたものやガラ
ス基板上に薄膜トランジスタを形成したもの及びバリス
タ基板を用いたものなどが既に報告されているが中でも
大型パネル化ならびにコスト面から前記ガラス基板上に
薄膜トランジスタを形成してなるアクティブマトリクス
基板は将来有望な方式と考えられている。
In the example of the liquid crystal panel constructed by the active matrix system, the one using the single crystal si substrate, the one having the thin film transistor formed on the glass substrate, and the one using the varistor substrate have been already reported. From the viewpoint of panelization and cost, an active matrix substrate formed by forming a thin film transistor on the glass substrate is considered to be a promising system in the future.

【0004】従来ガラス基板上に多結晶シリコン等を堆
積して形成される薄膜トランジスタは基板に対する熱制
約から低温プロセスを用いざるを得ないことは周知の通
りである。しかし前記薄膜トランジスタを用いてのアク
ティブマトリクス基板の場合アクティブマトリクス回路
はともかくとして周辺駆動回路は高周波動作を要求され
るため少なくとも移動度は単結晶シリコンに近いもので
なくてはならない。そのため周辺駆動回路は単結晶シリ
コン基板上に形成し、アクティブマトリクス基板にいわ
ゆる外ずけすることが一般的である。
It is well known that a thin film transistor conventionally formed by depositing polycrystalline silicon or the like on a glass substrate has to use a low temperature process due to thermal restrictions on the substrate. However, in the case of an active matrix substrate using the thin film transistor, the peripheral drive circuit is required to operate at high frequency, not to mention the active matrix circuit, so that at least the mobility must be close to that of single crystal silicon. Therefore, it is general that the peripheral drive circuit is formed on a single crystal silicon substrate and is so-called externally arranged on the active matrix substrate.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の前記方
式では周辺駆動回路基板の製造費は勿論のことアクティ
ブマトリクス基板への外ずけ費用を含めると当然の事な
がら大幅なコストアップにつながることは言うまでもな
い。又基板材として石英基板のように耐熱性を有する材
を用いてアクティブマトリクス基板を形成した場合は1
000℃以上の高温プロセスも可能となるため周辺駆動
回路を内蔵したアクティブマトリクス基板の製造は可能
となる。
However, in the above-mentioned conventional method, not only the manufacturing cost of the peripheral drive circuit substrate but also the cost of the outlying of the active matrix substrate naturally leads to a significant cost increase. Needless to say. When the active matrix substrate is formed by using a heat resistant material such as a quartz substrate as the substrate material, 1
Since a high temperature process of 000 ° C. or higher is also possible, it becomes possible to manufacture an active matrix substrate incorporating a peripheral drive circuit.

【0006】しかし、ここで一つ問題となるのは光リー
クについてである。本来平板液晶ディスプレーは携帯用
かつ野外用としての利用価値が大きく当然の事ながら太
陽光の下での使用頻度が多くなる。
However, one problem here is the light leakage. Originally, the flat panel liquid crystal display has great utility value for both portable and outdoor use, and as a matter of course, it is frequently used in sunlight.

【0007】アクティブマトリクスIC基板は直接太陽
光が表示面を照射するためにIC基板内にも光が入射す
る。IC基板内への入射光は電子と正孔を発生させ基板
内に拡散しP−N接合部に到達するとP−N接合部に電
流が流れてしまう。すなわちこの光起電力効果はトラン
ジスタのソースドレインのP−N接合部にリーク現象を
引き起こし、正しい画像表示が得られなくなり、画像が
ちらついたり消えたりする。このため前記光リーク現象
を押えるための一手段としては基板の移動度を小さくし
リーク電流の低減を計ることであり、前述の如くアクテ
ィブマトリクス回路においてはそれがある程度可能であ
るからである。
[0007] In the active matrix IC substrate, sunlight directly illuminates the display surface, so that light also enters the IC substrate. The incident light into the IC substrate generates electrons and holes, diffuses into the substrate, reaches the PN junction, and a current flows through the PN junction. That is, this photovoltaic effect causes a leak phenomenon in the P-N junction portion of the source and drain of the transistor, a correct image display cannot be obtained, and the image flickers or disappears. Therefore, one means for suppressing the light leak phenomenon is to reduce the mobility of the substrate to reduce the leak current, which is possible to some extent in the active matrix circuit as described above.

【0008】しかしながら前記高温プロセスは石英基板
上の多結晶シリコン全体を結晶化させることになり、当
然移動度が高くなり、光リークが増加し好ましい構造と
はいえない。
However, the high temperature process causes the entire polycrystalline silicon on the quartz substrate to be crystallized, which naturally increases the mobility and increases the light leakage, which is not a preferable structure.

【0009】又近来は周知の如くレーザー光あるいはE
B(エレクトロンビーム)を用いて無定型あるいは多結
晶のシリコン画に照射することにより、結晶化をはかっ
たり、あるいはイオン照射時のダメージを消去する技術
が開発されてきている。
As is well known, laser light or E
A technique has been developed for irradiating an amorphous or polycrystalline silicon image with B (electron beam) for crystallization or eliminating damage at the time of ion irradiation.

【0010】中でもレーザー加熱にはCWアルゴンレー
ザー、CWクリプトンレーザー、パルスYAGレーザ
ー、CW励起YAGレーザーなど種々の方式があり出
力、エネルギーあるいはスポット径をはじめとして生産
性安定性に至るまで構造上、動作上の本質的な違いを有
しており、目的による選択も重要な要素となる。
Among them, there are various methods for laser heating such as CW argon laser, CW krypton laser, pulse YAG laser, and CW pumped YAG laser. Structurally, operation such as output, energy or spot diameter and stability of productivity are performed. It has the above essential differences, and selection by purpose is also an important factor.

【0011】このレーザ光を利用してのレーザーアニー
ル技術を用いれば、例えばガラス基板上に周辺駆動回路
を内蔵したアクティブマトリクス基板にレーザーアニー
ルし全体に移動度を高めることは可能となる。しかしレ
ーザーアニール効果はスポット径と照射時間によりスル
ープットが決定されるため基板全体にレーザーアニール
加工を行なうと例えば1時間当たりの生産性は基板数枚
程度と小量であり効率の極めて悪い工程となってしま
う。
If the laser annealing technique utilizing this laser light is used, it is possible to increase the overall mobility by laser annealing, for example, an active matrix substrate having a peripheral driving circuit built in on a glass substrate. However, since the throughput of the laser annealing effect is determined by the spot diameter and the irradiation time, if the laser annealing process is performed on the entire substrate, the productivity per hour is as small as several substrates, which is an extremely inefficient process. Will end up.

【0012】以上述べた如く光リークに強くしかも低価
格アクティブマトリクス基板を製造するに当たっては従
来方式における種々の欠点を改善する必要がある。
As described above, in manufacturing a low-price active matrix substrate which is resistant to light leakage and has a low price, it is necessary to improve various drawbacks in the conventional method.

【0013】[0013]

【課題を解決するための手段】本発明は従来の欠点を除
去せしめるものであり、すなわちガラス等の透明基板上
に多結晶シリコンあるいはアモルファスシリコンを主構
成部材とするアクティブマトリクス回路を形成し、しか
も同一基板上に前記アクティブマトリクス回路を包み込
む形で周辺駆動回路を配置し、該周辺駆動回路領域のみ
をレーザーアニール加工等を行ないトランジスタの移動
度を高めるというものである。すなわち前述の如く周辺
駆動回路の内蔵化をはじめとし、移動度を高める一手段
としてレーザーアニールを基板周辺部の駆動回路のみに
照射するためスループットを向上ししかも内蔵のアクテ
ィブマトリクス回路の移動度を小さくしたため光リーク
防止の向上も計れるという特徴を備えたものである。
DISCLOSURE OF THE INVENTION The present invention eliminates the conventional drawbacks, that is, an active matrix circuit having polycrystalline silicon or amorphous silicon as a main constituent member is formed on a transparent substrate such as glass, and A peripheral drive circuit is arranged on the same substrate so as to enclose the active matrix circuit, and only the peripheral drive circuit region is subjected to laser annealing processing or the like to increase the mobility of transistors. That is, as described above, the peripheral drive circuit is built in, and laser annealing is applied only to the drive circuit in the peripheral portion of the substrate as one means for increasing the mobility, so that the throughput is improved and the mobility of the built-in active matrix circuit is reduced. Therefore, it has a feature that the prevention of light leakage can be improved.

【0014】[0014]

【実施例】次に本発明を下記に記す実施例に基づいて詳
細に説明する。
EXAMPLES Next, the present invention will be explained in detail based on the examples described below.

【0015】(実施例1)図1は本発明によるアクティ
ブマトリクス基板であり、ホウケイ酸ガラス基板1上に
アクティブマトリクス回路2を中心部に周辺駆動回路3
を外周部に配置したものである。
(Embodiment 1) FIG. 1 shows an active matrix substrate according to the present invention, in which an active matrix circuit 2 is provided on a borosilicate glass substrate 1 and a peripheral drive circuit 3 is provided around the active matrix circuit 2.
Are arranged on the outer peripheral portion.

【0016】図2(a)から(c)は本発明のアクティ
ブマトリクス基板の製造過程を説明するための基板断面
図である。まず図2(a)の如くホウケイ酸ガラス基板
1上に625℃の減圧雰囲気中にて5000Aの第1の
多結晶シリコン膜4を形成後該多結晶シリコン膜4をホ
トエッチングし部分的に開孔せしめる。次に基板上の周
辺部すなわち図1の周辺駆動回路3の領域内のみ図3
(a)の如くCW励起YAGレーザーを光源としたビー
ム径200μm、線速度50cm/secでビームを左
右の方向にスキャンさせながら、しかも1から4の順序
にてレーザーアニール加工を行なった。次に図2(b)
の如くに全面にCVD−SiO2 膜5を2000A堆積
した後、前記第1の多結晶シリコン膜と同一形成方法で
第2の多結晶シリコン膜6を形成した後、多結晶シリコ
ン膜6のソースドレイン部の開孔をホトエッチングにて
行なう。
2 (a) to 2 (c) are cross-sectional views of substrates for explaining the manufacturing process of the active matrix substrate of the present invention. First, as shown in FIG. 2A, a first polycrystalline silicon film 4 of 5000 A is formed on a borosilicate glass substrate 1 in a reduced pressure atmosphere at 625 ° C., and then the polycrystalline silicon film 4 is photoetched and partially opened. Make a hole. Next, only the peripheral portion on the substrate, that is, the area of the peripheral drive circuit 3 in FIG.
Laser annealing was performed in the order of 1 to 4 while scanning the beam in the left and right directions at a beam diameter of 200 μm using a CW-excited YAG laser as a light source and a linear velocity of 50 cm / sec as shown in (a). Next, FIG. 2 (b)
After the CVD-SiO 2 film 5 is deposited to 2000 A on the entire surface as described above, the second polycrystalline silicon film 6 is formed by the same forming method as the first polycrystalline silicon film, and then the source of the polycrystalline silicon film 6 is formed. The opening of the drain portion is formed by photoetching.

【0017】次に基板主面に1×10/cm2 のリンイ
オンを照射し550℃1Hのフォーミングガス中にてア
ニールを行ない拡散層を形成する。次に図2(c)の如
くCVD−SiO2 膜7を形成した後コンタクトホール
を開孔し引き続き電極8の形成を行ないアクティブマト
リクス基板の形成を終了する。本実施例にもちいたアク
ティブマトリクス回路のゲート及びデータ線のライン数
は各々200本であり、本基板を用いてデーター線は約
1KMHz 、又ゲート線も25KMHz での動作が確認
され液晶表示ディスプレーとして充分な性能を有するこ
とが確認されている。又レーザーアニール加工の効果と
してアニールのスループットは従来に較べて数倍以上の
向上を見せており、さらに移動度はアクティブマトリク
ス回路中では約10cm/V−secであり、周辺駆動
回路部では約100cm/V−secが得られている。
Then, the main surface of the substrate is irradiated with 1 × 10 / cm 2 of phosphorus ions and annealed in a forming gas at 550 ° C. and 1 H to form a diffusion layer. Next, as shown in FIG. 2C, a CVD-SiO 2 film 7 is formed, contact holes are opened, electrodes 8 are subsequently formed, and the formation of the active matrix substrate is completed. The number of gate lines and data lines of the active matrix circuit used in this embodiment is 200 each, and using this substrate, it was confirmed that the data lines were operating at about 1 KMHz and the gate lines were operating at 25 KMHz. It has been confirmed to have sufficient performance. As a result of the laser annealing process, the annealing throughput has been improved several times as compared with the conventional one, and the mobility is about 10 cm / V-sec in the active matrix circuit and about 100 cm in the peripheral drive circuit section. / V-sec is obtained.

【0018】(実施例2)実施例1と同様に図1の多結
晶シリコン膜を形成後ホトエッチング2で部分的な開孔
を行なった後図3(b)の如く実施例1と同一条件にて
周辺駆動回路の(1)と(3)の領域をレーザーアニー
ル加工した後周辺駆動回路の(2)と(4)を(1)及
び(3)に較べて低出力の約1J/cm2 のエネルギー
密度で照射した。すなわち周辺駆動回路の(2)と
(4)の領域はゲート線駆動用であり、(1)及び
(3)のデータ線用に較べて低周波動作が可能なため周
辺駆動回路部全体を同一エネルギー密度で照射する必要
性はなく本実施例の結果でもゲート線を動作させるため
に充分な移動度を得ることが確認され、しかも基板外周
部の二辺は低エネルギー密度照射のためスループットは
実施例1に較べてさらに向上している。
(Embodiment 2) Similar to Embodiment 1, after forming the polycrystalline silicon film of FIG. 1 and partially opening holes by photoetching 2, as shown in FIG. 3B, the same conditions as Embodiment 1 are used. After laser annealing the areas (1) and (3) of the peripheral drive circuit, the peripheral drive circuits (2) and (4) have a low output of about 1 J / cm compared to (1) and (3). Irradiation with an energy density of 2 . That is, the areas (2) and (4) of the peripheral drive circuit are for driving the gate lines and can operate at a lower frequency than the data lines of (1) and (3), so that the entire peripheral drive circuit section is the same. It is not necessary to irradiate with energy density, and it is confirmed by the results of this embodiment that sufficient mobility can be obtained to operate the gate lines. Moreover, since the two sides of the substrate outer periphery are irradiated with low energy density, the throughput is high. It is further improved as compared with Example 1.

【0019】(実施例3)実施例1と同様に第1の多結
晶シリコン膜を形成後ホトエッチングにて部分的な開孔
を行なった後図3(c)の如く実施例1と同一条件にて
周辺駆動回路の(1)と(3)領域すなわちデータ線駆
動回路領域のみをレーザーアニールする。すなわち実施
例(2)にて説明の如く特にゲート線のライン数の少な
いアクティブマトリクス基板については本方式でも充分
対応が取れスループットの大幅な向上が望める。
(Embodiment 3) Similar to Embodiment 1, after forming the first polycrystalline silicon film and partially opening holes by photo-etching, the same conditions as Embodiment 1 as shown in FIG. At (1) and (3) of the peripheral drive circuit, that is, only the data line drive circuit area is laser-annealed. That is, as described in the embodiment (2), particularly for the active matrix substrate in which the number of gate lines is small, this method can be sufficiently dealt with and the throughput can be greatly improved.

【0020】(実施例4)実施例1と同様に第1の多結
晶シリコン膜を形成後ホトエッチングにて部分的な開孔
を行なった後図3(d)の如く基板の周辺駆動回路領域
へのレザーアニール照射をまず(1)の領域にビームを
矢印の如く左右にスキャンさせて行ない、つづいて基板
を中心に対して90度回転し(2)の領域を(1)と同
一方式にて照射し続いて同じ方式にて基板を回転させて
(3)(4)の領域を照射する。この方式では実施例1
に較べビームのスキャン数が大幅に減少できるため実施
例1に較べてスループットが向上できる利点を有する。
(Embodiment 4) Similar to Embodiment 1, after forming the first polycrystalline silicon film and partially opening holes by photoetching, as shown in FIG. 3D, the peripheral drive circuit region of the substrate is formed. First, laser annealing irradiation is performed by scanning the beam to the left and right in the area of (1) as shown by the arrow, and then rotating the substrate by 90 degrees about the center, and making the area of (2) the same method as (1). And then the substrate is rotated in the same manner to irradiate the regions (3) and (4). In this system, the first embodiment
Compared with the first embodiment, the number of beam scans can be significantly reduced, which has an advantage that the throughput can be improved as compared with the first embodiment.

【0021】以上実施例(1)から(4)にて説明した
如く、本発明は平板液晶ディスプレー等に用いられるア
クティブマトリクス基板において、ガラス基板上にアク
ティブマトリクス回路と周辺駆動回路をワンチップ化す
ると同時にレーザーアニール技術を利用し駆動回路のみ
にレーザーアニール照射を行ないアクティブマトリクス
基板に耐光リーク対策をほどこしたものであり、低コス
トでしかも光リークに強いアクティブマトリクス基板の
提供を可能にしたものである。
As described in the above embodiments (1) to (4), in the present invention, in an active matrix substrate used for a flat panel liquid crystal display or the like, if the active matrix circuit and the peripheral drive circuit are integrated into one chip on a glass substrate. At the same time, laser annealing is applied to only the drive circuit by using the laser annealing technology, and the active matrix substrate is provided with light leakage resistance measures, which makes it possible to provide an active matrix substrate that is low in cost and resistant to light leakage. .

【0022】なお本実施例において透明基板としてホウ
ケイ酸ガラスを用いているが他にソーダガラスあるいは
石英板等の透明基板でも良く、さらにトランジスタ移動
度を高的手段としてレーザーアニールの他にEB等につ
いても効果は確認されており、これらの照射条件につい
ても目的に応じて自由に選択可能であり、なんら本発明
の目的から逸脱するものではない。
Although borosilicate glass is used as the transparent substrate in this embodiment, a transparent substrate such as soda glass or a quartz plate may be used, and EB or the like may be used in addition to laser annealing as a means for increasing the transistor mobility. The effects have been confirmed, and these irradiation conditions can be freely selected according to the purpose, without departing from the purpose of the present invention.

【0023】[0023]

【発明の効果】上述の如く本発明は、一対のガラス基板
内に電気光学的応答をする組成物が封入されてなり、該
ガラス基板上にはマトリクス状に配列されたデータ線と
ゲート線、該データ線と該ゲート線の各交点にはシリコ
ン薄膜トランジスタからなるスイッチング素子及び駆動
電極が配置されてアクティブマトリクス回路部を形成し
てなる電気光学的表示装置において、該アクティブマト
リクス回路部外周の該ガラス基板上には該データ線及び
該ゲート線に信号を提供する周辺駆動回路が形成され、
該周辺駆動回路中の能動素子はシリコン薄膜トランジス
タで構成されてなり、該周辺駆動回路のシリコン薄膜ト
ランジスタの移動度と該アクティブマトリクス回路部の
シリコン薄膜トランジスタの移動度とを異ならせるよう
にしたからレーザーアニール処理等によって、シリコン
トランジスタの薄膜の組成変化により容易に移動度の異
なる領域を形成することが可能であるために、周辺駆動
回路の応答速度は移動度を高くすることによって高周波
応答を保証することができ、一方アクティブマトリクス
回路部の移動度は低くすることによって、表示領域に入
射される光によるトランジスタのオフ時のリーク電流を
最小限に押えることができる。このように移動度に対し
両者が互いに背反する特性を有する薄膜トランジスタを
同一基板上に構成することが可能である効果を有する。
As described above, according to the present invention, a composition having an electro-optical response is enclosed in a pair of glass substrates, and data lines and gate lines arranged in a matrix on the glass substrates, In an electro-optical display device in which a switching element made of a silicon thin film transistor and a driving electrode are arranged at each intersection of the data line and the gate line to form an active matrix circuit part, the glass around the active matrix circuit part is provided. Peripheral driving circuits that provide signals to the data lines and the gate lines are formed on the substrate,
The active element in the peripheral drive circuit is composed of a silicon thin film transistor, and the mobility of the silicon thin film transistor of the peripheral drive circuit is made different from the mobility of the silicon thin film transistor of the active matrix circuit section. As described above, since it is possible to easily form regions having different mobilities by changing the composition of the thin film of the silicon transistor, the response speed of the peripheral drive circuit can ensure a high frequency response by increasing the mobility. On the other hand, by lowering the mobility of the active matrix circuit portion, it is possible to minimize the leak current when the transistor is turned off due to the light incident on the display region. As described above, there is an effect that it is possible to form a thin film transistor having characteristics that the two are contrary to each other on the mobility on the same substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるアクティブマトリクス基板にお
ける回路配置図。
FIG. 1 is a circuit layout diagram of an active matrix substrate according to the present invention.

【図2】 (a)から(c)は本発明におけるアクティ
ブマトリクス基板の製造工程を示す基板断面図。
2A to 2C are cross-sectional views of a substrate showing a manufacturing process of an active matrix substrate according to the present invention.

【図3】 (a)から(d)は本発明におけるアクティ
ブマトリクス基板上の周辺駆動回路領域へのレーザーア
ニール照射方法を示す平面図。
3A to 3D are plan views showing a method of irradiating the peripheral drive circuit area on the active matrix substrate with laser annealing in the present invention.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板 2・・・アクティブマトリクス基板 3・・・周辺駆動回路 4・・・多結晶シリコン膜 5・・・CVD−SiO2 膜 6・・・多結晶シリコン膜 7・・・CVD−SiO2 膜 8・・・電極1 ... glass substrate 2 ... active matrix substrate 3 ... peripheral driving circuit 4 ... polycrystalline silicon film 5 ... CVD-SiO 2 film 6 ... polycrystalline silicon film 7 ... CVD -SiO 2 film 8 ... electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対のガラス基板内に電気光学的応答を
する組成物が封入されてなり、該ガラス基板上にはマト
リクス状に配列されたデータ線とゲート線、該データ線
と該ゲート線の各交点にはシリコン薄膜トランジスタか
らなるスイッチング素子及び駆動電極が配置されてアク
ティブマトリクス回路部を形成してなる電気光学的表示
装置において、該周辺駆動回路中の能動素子はシリコン
薄膜トランジスタで構成されてなり、該アクティブマト
リクス回路部外周の該ガラス基板上には該データ線及び
該ゲート線に信号を提供する周辺駆動回路が形成され、
該周辺駆動回路のうちデータ線周辺駆動回路のみがレー
ザー・アニールされてなることを特徴とする電気光学的
表示装置。
1. A pair of glass substrates, in which a composition having an electro-optical response is encapsulated, and data lines and gate lines, and the data lines and the gate lines arranged in a matrix on the glass substrates. In an electro-optical display device in which a switching element made of a silicon thin film transistor and a drive electrode are arranged at each intersection of the above to form an active matrix circuit part, the active element in the peripheral drive circuit is made of a silicon thin film transistor. A peripheral driving circuit for providing a signal to the data lines and the gate lines is formed on the glass substrate around the active matrix circuit section,
An electro-optical display device, wherein only the data line peripheral drive circuit of the peripheral drive circuit is laser-annealed.
JP4230198A 1992-08-28 1992-08-28 Liquid crystal display Expired - Lifetime JP2697507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4230198A JP2697507B2 (en) 1992-08-28 1992-08-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4230198A JP2697507B2 (en) 1992-08-28 1992-08-28 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62082401A Division JPS6311989A (en) 1987-04-03 1987-04-03 Electro-optical display unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21260796A Division JP2697728B2 (en) 1996-08-12 1996-08-12 Active matrix substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH05203977A true JPH05203977A (en) 1993-08-13
JP2697507B2 JP2697507B2 (en) 1998-01-14

Family

ID=16904122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4230198A Expired - Lifetime JP2697507B2 (en) 1992-08-28 1992-08-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2697507B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589406A (en) * 1993-07-30 1996-12-31 Ag Technology Co., Ltd. Method of making TFT display
US5612235A (en) * 1995-11-01 1997-03-18 Industrial Technology Research Institute Method of making thin film transistor with light-absorbing layer
US6054739A (en) * 1994-12-16 2000-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having channel refractive index in first and second directions
US6057183A (en) * 1994-04-22 2000-05-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of drive circuit of active matrix device
US6096581A (en) * 1994-03-09 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for operating an active matrix display device with limited variation in threshold voltages
US6236444B1 (en) 1993-09-20 2001-05-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device with drive circuits on both substrates
KR100297865B1 (en) * 1993-09-20 2001-10-24 야마자끼 순페이 Electro-optical device
US6496171B2 (en) 1998-01-23 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US6538632B1 (en) 1998-04-28 2003-03-25 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor circuit and a semiconductor display device using the same
US6549184B1 (en) 1998-03-27 2003-04-15 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US6567147B1 (en) 1997-03-27 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of fabricating the same
US6723590B1 (en) 1994-03-09 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US6831299B2 (en) 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6872607B2 (en) 2000-03-21 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7550765B2 (en) 1994-08-19 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589406A (en) * 1993-07-30 1996-12-31 Ag Technology Co., Ltd. Method of making TFT display
KR100303900B1 (en) * 1993-09-20 2001-11-22 야마자끼 순페이 Liquid crysatal display device
US7525629B2 (en) 1993-09-20 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising drive circuits that include thin film transistors formed on both substrates
US6980275B1 (en) 1993-09-20 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6236444B1 (en) 1993-09-20 2001-05-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device with drive circuits on both substrates
KR100297865B1 (en) * 1993-09-20 2001-10-24 야마자끼 순페이 Electro-optical device
KR100297869B1 (en) * 1993-09-20 2001-10-24 야마자끼 순페이 Liquid crysatal display device
US6096581A (en) * 1994-03-09 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for operating an active matrix display device with limited variation in threshold voltages
US6723590B1 (en) 1994-03-09 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US6509212B1 (en) 1994-03-09 2003-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
CN100362398C (en) * 1994-04-22 2008-01-16 株式会社半导体能源研究所 Display device
US6057183A (en) * 1994-04-22 2000-05-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of drive circuit of active matrix device
US7459355B2 (en) 1994-04-22 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Drive circuit of active matrix device and manufacturing method thereof
US7027022B2 (en) 1994-04-22 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Drive circuit of active matrix type display device having buffer with parallel connected elemental circuits and manufacturing method thereof
US7015057B2 (en) 1994-04-22 2006-03-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a drive circuit of active matrix device
US7557377B2 (en) 1994-08-19 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor
US7550765B2 (en) 1994-08-19 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US8450743B2 (en) 1994-08-19 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having parallel thin film transistors
US6242292B1 (en) * 1994-12-16 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of producing a semiconductor device with overlapped scanned linear lasers
US6274885B1 (en) 1994-12-16 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with TFTs of different refractive index
US6054739A (en) * 1994-12-16 2000-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having channel refractive index in first and second directions
US5612235A (en) * 1995-11-01 1997-03-18 Industrial Technology Research Institute Method of making thin film transistor with light-absorbing layer
US6567147B1 (en) 1997-03-27 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of fabricating the same
US6496171B2 (en) 1998-01-23 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US7304625B2 (en) 1998-03-27 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US6549184B1 (en) 1998-03-27 2003-04-15 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US7315296B2 (en) 1998-03-27 2008-01-01 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US9262978B2 (en) 1998-03-27 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US6538632B1 (en) 1998-04-28 2003-03-25 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor circuit and a semiconductor display device using the same
US7042432B2 (en) 1998-04-28 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor circuit and a semiconductor display using the same
US7746311B2 (en) 1998-04-28 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor circuit and a semiconductor display using the same
US7384832B2 (en) 2000-03-21 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6872607B2 (en) 2000-03-21 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7229864B2 (en) 2000-03-21 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6831299B2 (en) 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7652289B2 (en) 2000-11-09 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8217395B2 (en) 2000-11-09 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9099362B2 (en) 2000-11-09 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7208763B2 (en) 2000-11-09 2007-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2697507B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JPH0261032B2 (en)
CN100502047C (en) Thin film transistor
JP2697507B2 (en) Liquid crystal display
JP2000101088A (en) Electro-optical device, electro-optical device drive board, and manufacture thereof
US6759628B1 (en) Laser annealing apparatus
JPH06289431A (en) Formation of thin-film transistor and active matrix display element
JP3499381B2 (en) Active matrix display device and manufacturing method thereof
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JPH08264802A (en) Manufacture of semiconductor, manufacture of thin film transistor and thin film transistor
US7015122B2 (en) Method of forming polysilicon thin film transistor
JP2697730B2 (en) Active matrix substrate manufacturing method
JP2697728B2 (en) Active matrix substrate manufacturing method
JP3284899B2 (en) Semiconductor device and manufacturing method thereof
JPS6311989A (en) Electro-optical display unit
JP3089718B2 (en) Drive circuit integrated type active matrix array and method of manufacturing the same
JPH0677252A (en) Thin film-shaped semiconductor device and manufacture thereof
JPH0142146B2 (en)
KR100833956B1 (en) Optical mask for crystallization of amorphous silicon
JPS6066471A (en) Manufacture of thin film transistor
JPH03114030A (en) Production of liquid crystal display device
JPS641053B2 (en)
JP3242867B2 (en) Method for manufacturing semiconductor element and method for manufacturing liquid crystal display device
KR100920924B1 (en) Thin Film Transistor Array Type Liquid Crystal Display Device and a Method for manufacturing the same
JP3084252B2 (en) Method for manufacturing inverted staggered insulated gate semiconductor device
JP2568990B2 (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090913

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130913

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250