JPH05203826A - Optical ring filter - Google Patents

Optical ring filter

Info

Publication number
JPH05203826A
JPH05203826A JP3875692A JP3875692A JPH05203826A JP H05203826 A JPH05203826 A JP H05203826A JP 3875692 A JP3875692 A JP 3875692A JP 3875692 A JP3875692 A JP 3875692A JP H05203826 A JPH05203826 A JP H05203826A
Authority
JP
Japan
Prior art keywords
input
ring
optical
optical waveguide
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3875692A
Other languages
Japanese (ja)
Inventor
Toshiki Ito
伊藤  俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12534138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05203826(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3875692A priority Critical patent/JPH05203826A/en
Publication of JPH05203826A publication Critical patent/JPH05203826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the optical ring filter which is easily mass-produced and has excellent frequency selectivity. CONSTITUTION:A ring light guide 2 and plural input/output light guides 3 and 4 which extend while directional coupling parts 5A and 5B are formed nearby the ring light guide 2 in parallel are formed on the same substrate. Input/output ports 32 and 33, and 42 and 43 at the respective end parts of the input/output light guides 3 and 4 are tapered gradually increasing in sectional area toward the light guide ends, so a large diameter optical fiber can be connected. The input/output light guides 3 and 4 can be formed having the same large specific refractive index difference with the ring light guide 2, so they can be formed in the same process with the light guide 2 and the mass-production efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光リングフィルタに関
し、特に周波数選択性が良く、製造も簡易な光リングフ
ィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical ring filter, and more particularly to an optical ring filter which has good frequency selectivity and is easy to manufacture.

【0002】[0002]

【従来の技術】光多重通信における分波、合波等の用途
に光リングフィルタが使用されており、これは所定の光
学距離を有するリング光導波路を、平行な入出力光導波
路間に介在せしめて、リング光導波路内で共振する光波
を選択的に分波ないし合波するものである。
2. Description of the Related Art Optical ring filters are used for demultiplexing, multiplexing, etc. in optical multiplex communication, in which a ring optical waveguide having a predetermined optical distance is interposed between parallel input / output optical waveguides. Thus, the light waves resonating in the ring optical waveguide are selectively demultiplexed or combined.

【0003】かかる光リングフィルタにおいては、リン
グ光導波路の共振周波数の間隔を多重通信に使用する周
波数範囲より大きくしておかないと、所望周波数の光波
のみを良好に選択することができず、このためには光リ
ング導波路の光学距離を充分小さくしておく必要があ
る。
In such an optical ring filter, unless the spacing between the resonance frequencies of the ring optical waveguide is set larger than the frequency range used for multiplex communication, only the light wave of the desired frequency cannot be selected satisfactorily. Therefore, it is necessary to make the optical distance of the optical ring waveguide sufficiently small.

【0004】そこで、特開昭62−100706号公報
では、リング光導波路の比屈折率差を大きくするととも
にその導波路断面積を小さくなして、外径が小さく(し
たがって光学距離が短い)曲率の大きいリング光導波路
における光漏れによる損失を防止しつつ共振時の単一モ
ード条件を満足せしめたものが開示されている。
In view of this, in Japanese Unexamined Patent Publication No. Sho 62-100706, the outer diameter is reduced (and therefore the optical distance is short) by increasing the relative refractive index difference of the ring optical waveguide and decreasing the waveguide cross-sectional area. It is disclosed that a single mode condition at the time of resonance is satisfied while preventing loss due to light leakage in a large ring optical waveguide.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の光リングフィルタでは、光ファイバとの整合を考慮
した比屈折率差が小さく導波路断面積が大きい入出力光
導波路とリング光導波路とを別工程で基板上に形成する
必要があるため、これが量産化のネックとなるおそれが
ある。
However, in the above-mentioned conventional optical ring filter, the input / output optical waveguide and the ring optical waveguide, which have a small relative refractive index difference and a large waveguide cross-sectional area in consideration of matching with the optical fiber, are separated from each other. Since it needs to be formed on the substrate in a process, this may be a bottleneck in mass production.

【0006】本発明はかかる課題を解決するもので、量
産化を容易になすことができるとともに、良好な周波数
選択性を有する光リングフィルタを提供することを目的
とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical ring filter which can be easily mass-produced and has good frequency selectivity.

【0007】[0007]

【課題を解決するための手段】本発明の構成を説明する
と、リング光導波路2と、該リング光導波路2に近接し
てここに方向性結合部5A,5Bを形成して延びる複数
の入出力光導波路3,4とを同一基板1上に設けた光リ
ングフィルタにおいて、上記入出力光導波路3,4の各
端部の入出力ポート32,33,42,43を、当該光
導波路端に向けて漸次断面積が拡大するテーパ状とした
ものである。
To explain the constitution of the present invention, a ring optical waveguide 2 and a plurality of input / outputs extending in the vicinity of the ring optical waveguide 2 by forming directional coupling portions 5A and 5B therein. In the optical ring filter in which the optical waveguides 3 and 4 are provided on the same substrate 1, the input / output ports 32, 33, 42 and 43 at the respective ends of the input / output optical waveguides 3 and 4 are directed to the optical waveguide ends. The taper shape has a gradually increasing cross-sectional area.

【0008】[0008]

【作用】上記構成において、入出力光導波路3,4の端
部の入出力ポート32,33,42,43をテーパ状と
したから、入出力光導波路3,4に大径の光ファイバー
を接続しても、両端部を除く入出力導波路3,4の本体
部31,41は、リング光導波路2と同一の比屈折率差
で小断面積のものとすることができる。したがって、両
光導波路3,4を同一工程で形成することができ、量産
効率が向上する。
In the above structure, since the input / output ports 32, 33, 42, 43 at the ends of the input / output optical waveguides 3, 4 are tapered, a large-diameter optical fiber is connected to the input / output optical waveguides 3, 4. However, the main body portions 31 and 41 of the input / output waveguides 3 and 4 excluding the both end portions can have a small cross-sectional area with the same relative refractive index difference as the ring optical waveguide 2. Therefore, both optical waveguides 3 and 4 can be formed in the same process, and mass production efficiency is improved.

【0009】この場合、テーパ状の入出力ポート32,
33,42,43の比屈折率差も大きくなるが、この部
分はごく短くできるから、単一モード条件が損なわれる
ことはない。
In this case, the tapered input / output port 32,
Although the relative refractive index difference between 33, 42, and 43 also becomes large, this portion can be made very short, so that the single mode condition is not impaired.

【0010】[0010]

【実施例】図1において、基板1上には平行な直線部2
1を有する楕円形のリング光導波路2が形成され、これ
を挟んで平行に直線状の入出力光導波路3,4が形成さ
れている。これら基板1と光導波路2,3,4は石英あ
るいは多成分ガラス等の誘電体材料で構成され、光導波
路2,3,4の屈折率が基板1のそれよりも大きくして
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a straight line portion 2 parallel to a substrate 1 is formed.
An elliptical ring optical waveguide 2 having a line 1 is formed, and linear input / output optical waveguides 3 and 4 are formed in parallel with the ring optical waveguide 2 sandwiched therebetween. The substrate 1 and the optical waveguides 2, 3, 4 are made of a dielectric material such as quartz or multi-component glass, and the optical waveguides 2, 3, 4 have a refractive index higher than that of the substrate 1.

【0011】リング光導波路2の直線部21とこれに近
接する入出力光導波路3,4の部分は、一方より他方へ
光波が伝播する方向性結合部5A,5Bとなっており、
所定の光学距離に設定されたリング光導波路2内では次
式を満足する周波数f1 の光波が共振状態となる。
The linear portion 21 of the ring optical waveguide 2 and the portions of the input / output optical waveguides 3 and 4 adjacent thereto are directional coupling portions 5A and 5B for propagating a light wave from one to the other,
In the ring optical waveguide 2 set to a predetermined optical distance, a light wave having a frequency f1 satisfying the following expression is in a resonance state.

【0012】[0012]

【数1】Nc/f1 =nr Lr … ここで、Nは整数、cは光速、nr は光導波路2の屈折
率、Lr はその長さであり、nr Lr は光学距離であ
る。
## EQU1 ## Nc / f1 = nr Lr Here, N is an integer, c is the speed of light, nr is the refractive index of the optical waveguide 2, Lr is its length, and nr Lr is an optical distance.

【0013】しかして、入出力光導波路3の入力ポート
32より図の矢印で示す如く、周波数f1 ,f2 ,f3
の光波を混合した光信号が入力すると、方向性結合部5
Aで周波数f1 の光波のみがリング光導波路2に伝播
し、上記光導波路3の出力ポート33からは周波数f2
,f3 の光波のみを含む光信号が出力される。
As a result, the frequencies f1, f2, f3 from the input port 32 of the input / output optical waveguide 3 as shown by the arrows in the figure.
When an optical signal obtained by mixing the light waves of
At A, only the light wave of frequency f1 propagates to the ring optical waveguide 2, and the frequency f2 is output from the output port 33 of the optical waveguide 3.
, F3, an optical signal containing only the light waves of f3 is output.

【0014】リング光導波路2に選択入力して共振する
周波数f1 の光波は方向性結合部5Bを経て入出力光導
波路4に伝播し、該光導波路4の出力ポート43より出
力される。
An optical wave of frequency f1 which is selectively input to the ring optical waveguide 2 and resonates propagates to the input / output optical waveguide 4 via the directional coupling portion 5B and is output from the output port 43 of the optical waveguide 4.

【0015】なお、リング光導波路2の周波数選択性を
確保するためには、その共振周波数間隔をf1 とf3 の
間隔以上とする必要があるから、その長さLr は次式
を満足する範囲内に抑える必要がある。
In order to secure the frequency selectivity of the ring optical waveguide 2, it is necessary that the resonance frequency interval be equal to or greater than the interval between f1 and f3. Therefore, the length Lr is within the range that satisfies the following equation. Need to be kept to.

【0016】[0016]

【数2】Lr <c/(f3 −f1 )nr …## EQU2 ## Lr <c / (f3 -f1) nr ...

【0017】(f3 −f1 )が大きい場合には、リング
光導波路2の長さLr を充分小さくする必要があり、そ
の湾曲部の曲率が大きくなる。そこで、上記リング光導
波路2は比屈折率差を大きくして湾曲部での光漏れによ
る損失を低減するとともに、単一モード条件を満足する
ように導波路断面積が小さくしてある。
When (f3-f1) is large, it is necessary to make the length Lr of the ring optical waveguide 2 sufficiently small, and the curvature of the curved portion becomes large. Therefore, in the ring optical waveguide 2, the relative refractive index difference is increased to reduce the loss due to light leakage at the curved portion, and the waveguide cross-sectional area is made small so as to satisfy the single mode condition.

【0018】各入出力光導波路3,4は、両端部の入力
および出力ポート32,33,42,43を除く本体部
31,41を上記リング光導波路2と同様の小断面積と
なすとともに、光屈折率差も同様の大きさとしてある。
そして、その入力および出力ポート32,33,42,
43は基板1端縁に向けて漸次断面積が大きくなるテー
パ状に形成されて、大径の光ファイバと接続できるよう
になっている。
In each of the input / output optical waveguides 3 and 4, the body portions 31 and 41 except the input and output ports 32, 33, 42 and 43 at both ends have the same small cross-sectional area as the ring optical waveguide 2, and The difference in optical refractive index is also set to the same size.
And its input and output ports 32, 33, 42,
43 is formed in a taper shape whose cross-sectional area gradually increases toward the edge of the substrate 1 so that it can be connected to a large-diameter optical fiber.

【0019】これら光導波路2,3,4はイオン交換法
により、あるいはCVD法やスパッタ法で光導波路材料
を成膜後フォトリソグラフィ工程を経て所定形状に成形
することにより同一工程で形成される。なお、基板1の
屈折率が光導波路2,3,4のそれよりも大きい場合に
は、基板1と光導波路2,3,4との間に屈折率の小さ
いバッファ層を設ける。この場合は、基板1としてシリ
コン等の半導体材料を使用することが可能である。
The optical waveguides 2, 3 and 4 are formed in the same step by ion exchange or by forming an optical waveguide material by a CVD method or a sputtering method and then forming it into a predetermined shape through a photolithography step. When the refractive index of the substrate 1 is larger than that of the optical waveguides 2, 3 and 4, a buffer layer having a small refractive index is provided between the substrate 1 and the optical waveguides 2, 3 and 4. In this case, a semiconductor material such as silicon can be used as the substrate 1.

【0020】なお、テーパ状の入力および出力ポート3
2,33,42,43の比屈折率差もリング光導波路2
と同様に大きくなっているが、この部分は充分短いか
ら、単一モード条件が損なわれることはない。
The tapered input and output ports 3
The difference in relative refractive index between 2, 33, 42, and 43 is also caused by the ring optical waveguide 2.
However, this part is short enough that the single mode condition is not compromised.

【0021】[0021]

【実施例2】図2において、リング光導波路2の一方の
湾曲部を光学距離制御領域22としてあり、この部分の
光学距離を変更することで、次式より当該光導波路2
の共振周波数fを選択することができる。
[Embodiment 2] In FIG. 2, one curved portion of the ring optical waveguide 2 is provided as an optical distance control region 22, and by changing the optical distance of this portion, the optical waveguide 2 can be calculated from the following equation.
The resonance frequency f can be selected.

【0022】[0022]

【数3】Nc/f=nv Lv +nr-v Lr-v … ここで、cは光速、nv は制御領域の屈折率、Lv は当
該領域の長さ、nr-vは非制御領域の屈折率、Lr-v は
当該領域の長さ、Nは整数である。
Nc / f = nv Lv + nr-v Lr-v ... where c is the speed of light, nv is the refractive index of the control region, Lv is the length of the region, and nr-v is the refractive index of the non-control region. , Lr-v is the length of the region, and N is an integer.

【0023】この共振周波数fの選択は、例えば制御領
域22にヒータを設けて通電加熱し、上記nv Lv を変
更することにより行う。
The resonance frequency f is selected, for example, by providing a heater in the control region 22 to heat by energization and changing the nv Lv.

【0024】[0024]

【発明の効果】以上の如く、周波数選択性の良いリング
光導波路と入出力光導波路を同一工程で形成できるか
ら、量産効率を大きく向上せしめることができる。
As described above, since the ring optical waveguide having good frequency selectivity and the input / output optical waveguide can be formed in the same process, mass production efficiency can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における光リングフィルタの
斜視図である。
FIG. 1 is a perspective view of an optical ring filter according to an embodiment of the present invention.

【図2】本発明の他の実施例における光リングフィルタ
の斜視図である。
FIG. 2 is a perspective view of an optical ring filter according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 リング光導波路 3,4 入出力光導波路 31,41 本体部 32,42 入力ポート(入出力ポート) 33,43 出力ポート(入出力ポート) 5A,5B 方向性結合部 1 substrate 2 ring optical waveguide 3,4 input / output optical waveguide 31,41 body part 32,42 input port (input / output port) 33,43 output port (input / output port) 5A, 5B directional coupling part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リング光導波路と、該リング光導波路に
近接してここに方向性結合部を形成して延びる複数の入
出力光導波路とを同一基板上に設けた光リングフィルタ
において、上記入出力光導波路の各端部の入出力ポート
を、当該光導波路端に向けて漸次断面積が拡大するテー
パ状としたことを特徴とする光リングフィルタ。
1. An optical ring filter in which a ring optical waveguide and a plurality of input / output optical waveguides that extend in the vicinity of the ring optical waveguide by forming directional coupling portions therein are provided on the same substrate. An optical ring filter, wherein an input / output port at each end of the output optical waveguide is tapered so that the cross-sectional area gradually increases toward the optical waveguide end.
JP3875692A 1992-01-29 1992-01-29 Optical ring filter Pending JPH05203826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3875692A JPH05203826A (en) 1992-01-29 1992-01-29 Optical ring filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3875692A JPH05203826A (en) 1992-01-29 1992-01-29 Optical ring filter

Publications (1)

Publication Number Publication Date
JPH05203826A true JPH05203826A (en) 1993-08-13

Family

ID=12534138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3875692A Pending JPH05203826A (en) 1992-01-29 1992-01-29 Optical ring filter

Country Status (1)

Country Link
JP (1) JPH05203826A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301716A (en) * 1993-12-16 1995-11-14 Cselt Spa (Cent Stud E Lab Telecomun) Resonance filter for wavelength-division multiplexing optical communication system
JPH08195720A (en) * 1995-01-13 1996-07-30 Okayama Univ Wavelength selection filter for pill box type optical resonator
US6633696B1 (en) * 1998-12-07 2003-10-14 California Institute Of Technology Resonant optical wave power control devices and methods
GB2392510A (en) * 2002-08-30 2004-03-03 Kddi Corp Optical waveguide ring resonator
US7515617B1 (en) 2005-11-15 2009-04-07 California Institute Of Technology Photonic device having higher order harmonic emissions
US7545843B2 (en) 2002-10-02 2009-06-09 California Institute Of Technology Ultra-high Q micro-resonator and method of fabrication
US7769071B2 (en) 2004-02-02 2010-08-03 California Institute Of Technology Silica sol gel micro-laser on a substrate
US7781217B2 (en) 2002-10-02 2010-08-24 California Institute Of Technology Biological and chemical microcavity resonant sensors and methods of detecting molecules
US7951299B2 (en) 2007-02-27 2011-05-31 California Institute Of Technology Method of fabricating a microresonator
US8092855B2 (en) 2007-11-28 2012-01-10 California Institute Of Technology Click chemistry surface functionalization for resonant micro-cavity sensors
US8597577B2 (en) 2010-02-19 2013-12-03 California Institute Of Technology Swept-frequency semiconductor laser coupled to microfabricated biomolecular sensor and methods related thereto
JP2014531021A (en) * 2011-10-14 2014-11-20 アストリアムリミテッド Spectrometer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301716A (en) * 1993-12-16 1995-11-14 Cselt Spa (Cent Stud E Lab Telecomun) Resonance filter for wavelength-division multiplexing optical communication system
JPH08195720A (en) * 1995-01-13 1996-07-30 Okayama Univ Wavelength selection filter for pill box type optical resonator
US6633696B1 (en) * 1998-12-07 2003-10-14 California Institute Of Technology Resonant optical wave power control devices and methods
GB2392510A (en) * 2002-08-30 2004-03-03 Kddi Corp Optical waveguide ring resonator
GB2392510B (en) * 2002-08-30 2005-07-20 Kddi Corp Ring resonator
US7545843B2 (en) 2002-10-02 2009-06-09 California Institute Of Technology Ultra-high Q micro-resonator and method of fabrication
US7781217B2 (en) 2002-10-02 2010-08-24 California Institute Of Technology Biological and chemical microcavity resonant sensors and methods of detecting molecules
US7769071B2 (en) 2004-02-02 2010-08-03 California Institute Of Technology Silica sol gel micro-laser on a substrate
US7515617B1 (en) 2005-11-15 2009-04-07 California Institute Of Technology Photonic device having higher order harmonic emissions
US7951299B2 (en) 2007-02-27 2011-05-31 California Institute Of Technology Method of fabricating a microresonator
US8092855B2 (en) 2007-11-28 2012-01-10 California Institute Of Technology Click chemistry surface functionalization for resonant micro-cavity sensors
US9116128B2 (en) 2007-11-28 2015-08-25 California Institute Of Technology Click chemistry surface functionalization for resonant micro-cavity sensors
US8597577B2 (en) 2010-02-19 2013-12-03 California Institute Of Technology Swept-frequency semiconductor laser coupled to microfabricated biomolecular sensor and methods related thereto
JP2014531021A (en) * 2011-10-14 2014-11-20 アストリアムリミテッド Spectrometer
US9671285B2 (en) 2011-10-14 2017-06-06 Astrium Limited Spectrometer

Similar Documents

Publication Publication Date Title
US5841919A (en) Optical wavelength multiplexer/demultiplexer
JPH05203826A (en) Optical ring filter
EP1530736B1 (en) Improved optical splitter with taperd multimode interference waveguide
JP2003057464A (en) Y-branch optical waveguide and multistage optical power splitter using the same
JPS62100706A (en) Optical ring filter
JP3139571B2 (en) Optical multiplexer / demultiplexer
US5526453A (en) Integrated optical coupler
JP2004145238A (en) Ring resonance circuit
JP2001124945A (en) Y-branching waveguide
JPH05181028A (en) Optical ring resonator
EP3669220A1 (en) Photonic device for splitting optical beams
KR100509511B1 (en) Integrated optical power splitter and its manufacturing method
JP2021170136A (en) Ring resonator filter element
JPS63147145A (en) Waveguide type mach-zehnder interferometer
JPH05232333A (en) Waveguide type optical multiplexer demultiplexer
JP2001013336A (en) Optical wavelength multiplexer/demultiplexer
US6404957B1 (en) Optical power divider and fabrication method thereof
EP3316011A1 (en) Apparatus and method for a low loss, high q resonator
JP3224086B2 (en) Arrayed waveguide grating with variable frequency width of flat band characteristics
JP3152127B2 (en) Y-branch waveguide type optical tap
KR100420951B1 (en) Poled fibers, a method for fabricating a poled fiber, and dispersion compensator
US6134361A (en) Optical multiplexer/demultiplexer
JPH09230151A (en) Optical branching device
US8594473B2 (en) Optical router with stationary response and increased number of channels
JP3214545B2 (en) Array waveguide grating