JPH05203500A - Element structure of pyroelectric infrared detector - Google Patents

Element structure of pyroelectric infrared detector

Info

Publication number
JPH05203500A
JPH05203500A JP4034509A JP3450992A JPH05203500A JP H05203500 A JPH05203500 A JP H05203500A JP 4034509 A JP4034509 A JP 4034509A JP 3450992 A JP3450992 A JP 3450992A JP H05203500 A JPH05203500 A JP H05203500A
Authority
JP
Japan
Prior art keywords
light receiving
infrared detector
pyroelectric infrared
pairs
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034509A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sotani
俊之 操谷
Kazutaka Okamoto
一隆 岡本
Hideji Takada
秀次 高田
Koichi Matsumoto
浩一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP4034509A priority Critical patent/JPH05203500A/en
Publication of JPH05203500A publication Critical patent/JPH05203500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain an element structure of pyroelectric infrared detector which can avoid common mode noize such as strong visible light, vibration, shock and the like and has no detection dead angle. CONSTITUTION:Each light receiving element 2, 3, 4 and 5 are arrange rotation symmetrically like a cross with phase shift of 90 degree, respectively and the opposit pair for the symmetrical center 0 or neighbouring pair are connected to reverse electrodes each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建屋の天井等に取り付け
られるデュアルタイプの焦電型赤外線検出器の素子構造
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the element structure of a dual type pyroelectric infrared detector mounted on the ceiling of a building.

【0002】[0002]

【従来の技術】天井取付用のデュアルタイプの焦電型赤
外線検出器は、例えば図4(A)および図5(A)に示
すように、焦電素材1の上に赤外線受光用の同一形状同
一受光面積を有する一対の受光エレメント2,3を近接
させて対称に配置したものが広く普及している。
2. Description of the Related Art A dual-type pyroelectric infrared detector for ceiling mounting has an identical shape for receiving infrared light on a pyroelectric material 1 as shown in FIGS. 4 (A) and 5 (A), for example. One in which a pair of light receiving elements 2 and 3 having the same light receiving area are closely arranged symmetrically is widely used.

【0003】このようなデュアルタイプの焦電型赤外線
検出器では、両受光エレメント2,3の受光面積を等し
くすることで、太陽光や各種照明、あるいは振動や衝撃
等のいわゆるコモンモードのノイズがあっても、両受光
エレメント2,3から出力差を生じさせないようにし
て、これらのノイズを排除できるようにしている。
In such a dual-type pyroelectric infrared detector, the light-receiving areas of both light-receiving elements 2 and 3 are made equal to each other, so that sunlight, various kinds of illumination, or so-called common mode noise such as vibration or shock is generated. Even if there is, an output difference is not generated from both light receiving elements 2 and 3 so that these noises can be eliminated.

【0004】[0004]

【発明が解決しようとする課題】しかし、いずれも、図
4(B),図5(B)の応答波形および図4(C),図
5(C)の感度指向特性線図に示すように、かなり顕著
な方向依存性が認められる。つまり、これらの検出器で
は90度または270度の対応角度で接近する移動体に
対してはほとんど感応することができず、いわゆる検出
死角が発生する。なお、応答波形は、45度ピッチで検
出器に対応させたスリットを介して赤外線を照射させる
ことにより出力電圧を計測して求め、これを極座標に変
換して感度指向特性線図を作成した。
However, in both cases, as shown in the response waveforms of FIGS. 4 (B) and 5 (B) and the sensitivity directional characteristic diagrams of FIGS. 4 (C) and 5 (C). , A very remarkable direction dependence is recognized. That is, these detectors can hardly sense a moving object approaching at a corresponding angle of 90 degrees or 270 degrees, and a so-called detection blind spot occurs. The response waveform was obtained by measuring the output voltage by irradiating infrared rays through a slit corresponding to the detector at a pitch of 45 degrees, and converting the output voltage into polar coordinates to create a sensitivity directivity characteristic diagram.

【0005】そこで、このような方向依存性を除去する
ために、図6(A)に示すように、円形の受光エレメン
ト2を囲むように一対の感度を低下させた補償用の受光
エレメント2,3を配置したいわゆるシングルデュアル
タイプの焦電型赤外線検出器も提案されている。
Therefore, in order to eliminate such direction dependence, as shown in FIG. 6 (A), a pair of compensating light receiving elements 2 whose sensitivity is lowered so as to surround the circular light receiving element 2 is provided. A so-called single dual type pyroelectric infrared detector in which 3 is arranged is also proposed.

【0006】この検出器では、図6(B)の応答波形お
よび図6(C)の感度指向特性線図に示されるように、
方向依存性は認められず、いわゆる検出死角は発生しな
い。しかし、両受光エレメント2,3の形状が異なるの
で、振動や衝撃、あるいは種々の強力な可視光(太陽光
や車の前照灯等)によるコモンモードのノイズを完全に
排除することはできない。つまり、これは、振動や衝撃
が両受光エレメント2,3に作用した場合、それぞれ振
動特性が異なるため、両受光エレメントに絶対値の異な
る圧電信号が発生して相殺し得なくなり、また、可視光
を遮断し、目的とする赤外光のみを透過させるために設
けた赤外多層膜干渉フィルタ(図示省略)から強い可視
光の一部が洩れ込むと非対称な両受光エレメント2,3
間で受光量の差が生じたりするからである。
In this detector, as shown in the response waveform of FIG. 6 (B) and the sensitivity directivity characteristic diagram of FIG. 6 (C),
No direction dependency was observed, and so-called blind spots did not occur. However, since the two light receiving elements 2 and 3 have different shapes, it is not possible to completely eliminate common mode noise due to vibration, shock, or various types of strong visible light (sunlight, vehicle headlights, etc.). In other words, this is because when vibration or shock acts on both light receiving elements 2 and 3, the vibration characteristics differ from each other, so that piezoelectric signals having different absolute values are generated on both light receiving elements and they cannot cancel each other. Both asymmetrical light receiving elements 2 and 3 when a part of strong visible light leaks from an infrared multilayer interference filter (not shown) provided for blocking only the desired infrared light.
This is because there is a difference in the amount of received light between them.

【0007】ところで、近時は、焦電型赤外線検出器の
利用分野が広くなるに伴い、例えば直下の位置をも検知
エリアに含める等検知エリアが拡大する傾向があるのみ
ならず、各種照明や音響機器等のノイズ発生源が比較的
多く使用されている場所にも設置されるケースが増えて
きた。従って、これら可視光や振動・衝撃等のコモンモ
ードのノイズを排除することができるとともに、検出死
角が発生しない焦電型赤外線検出器の提案が望まれるよ
うになった。
By the way, recently, as the field of use of the pyroelectric infrared detector is widened, not only the detection area tends to be expanded, for example, the position directly below is also included in the detection area, and various lighting and In many cases, it is installed in places where noise sources such as audio equipment are relatively often used. Therefore, it has been desired to propose a pyroelectric infrared detector that can eliminate common mode noise such as visible light, vibration, and shock, and that does not generate a detection blind spot.

【0008】本発明はこのような実情を考慮してなさ
れ、可視光や振動・衝撃等のコモンモードのノイズを排
除でき、かつ検出死角のない焦電型赤外線検出器の素子
構造を提供することを目的としている。
The present invention has been made in consideration of such circumstances, and provides an element structure of a pyroelectric infrared detector capable of eliminating common mode noise such as visible light, vibration and shock and having no detection blind spot. It is an object.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を達成
するための手段を以下のように構成している。すなわ
ち、焦電素材の上に互いに同一形状同一受光面積かつ同
一受光感度を有する2対の受光エレメントを有するクァ
ッド(4素子)タイプの焦電型赤外線検出器の素子構造
にあって、2対の各受光エレメントがそれぞれ90度ず
つ位相を異にした巴状の回転対称に配置されており、対
称の中心を挟んで対向する2対または隣り合う2対がそ
れぞれ逆極に接続されていることを特徴としている。
The present invention has the following means for achieving the above object. That is, in the element structure of a quad (4 element) type pyroelectric infrared detector having two pairs of light receiving elements having the same shape and light receiving area and the same light receiving sensitivity on the pyroelectric material, The respective light receiving elements are arranged in a rotationally symmetrical tongue-like shape having a phase difference of 90 degrees, and two pairs facing each other or two pairs adjacent to each other with the center of symmetry interposed are connected to the opposite poles. It has a feature.

【0010】[0010]

【作用】例えば図1(A)に示すように、2対の受光エ
レメント2,3および4,5を焦電素材1の上に配置
し、各受光エレメント2と3および4と5をそれぞれ互
いに逆極に接続して受光エレメント対E1 とE2 を形成
し、図2に示すように、これらを直列(または並列)に
接続すると、コモンモードのノイズを排除することがで
きるとともにどの角度から移動体が接近してもほぼ均一
に感応することができ〔図1(B),(C)参照〕、い
わゆる検出死角が発生することがない。つまり、同一形
状、同一受光面積かつ同一受光感度を有する両受光エレ
メント2,3および4と5とが互いに逆極に接続されて
いるので、たとえ赤外多層膜干渉フィルタ(図示省略)
を介して強い可視光が検出器に洩れ込むようなことがあ
っても、また振動や衝撃が伝播されても両受光エレメン
ト対E1 (2と3),E2 (4と5)内で打消されて出
力が発生せず、これらコモンモードのノイズは消去され
る。そして、各受光エレメントが90度ずつ位相を異に
した巴状の回転対称に配置されているので、いかなる角
度から移動体が接近しても各対となっている受光エレメ
ント2,3および4,5間では必ず赤外線の受光量に差
を生じる。従って、その受光量に応じた電荷が各受光エ
レメントに誘起されることとなり、しかも両受光エレメ
ント対E1 とE2 を直列に接続した場合にはその差分の
総和を検出することができ、方向性に依存することのな
い高い検出感度が得られるのである。なお、両受光エレ
メント対E1 とE2 を並列に接続した場合にはたとえ一
方の受光エレメント対E1 またはE2 にトラブルがあっ
ても検知可能で信頼性が向上する。
For example, as shown in FIG. 1 (A), two pairs of light receiving elements 2, 3 and 4, 5 are arranged on the pyroelectric material 1, and the respective light receiving elements 2 and 3 and 4 and 5 are respectively arranged. By connecting the opposite poles to form the light receiving element pair E 1 and E 2 and connecting them in series (or in parallel) as shown in FIG. 2, common mode noise can be eliminated and from which angle Even if the moving body approaches, it can be sensed almost uniformly [see FIGS. 1 (B) and 1 (C)], and so-called detection blind spot does not occur. That is, since both light receiving elements 2, 3 and 4 and 5 having the same shape, the same light receiving area and the same light receiving sensitivity are connected to the opposite poles, even if an infrared multilayer interference filter (not shown) is used.
Even if strong visible light leaks into the detector through the sensor, or if vibration or shock is propagated, it will be detected in both light receiving element pairs E 1 (2 and 3) and E 2 (4 and 5). These common mode noises are canceled because they are canceled and no output is generated. Since the respective light receiving elements are arranged in a rotationally symmetrical toe-like shape having a phase difference of 90 degrees, each pair of light receiving elements 2, 3 and 4, no matter which angle the moving body approaches. There is always a difference in the amount of infrared light received between the five. Therefore, charges corresponding to the amount of received light are induced in each light receiving element, and when both light receiving element pairs E 1 and E 2 are connected in series, the total sum of the differences can be detected, and the direction High detection sensitivity independent of sex can be obtained. When the two light receiving element pairs E 1 and E 2 are connected in parallel, even if one of the light receiving element pairs E 1 or E 2 has a trouble, it can be detected and the reliability is improved.

【0011】[0011]

【実施例】以下に本発明を実施例に基づいて詳細に説明
する。図1(A)は本発明の焦電型赤外線検出器の素子
構造の一実施例における平面図である。図中符号1は自
発分極性を有する焦電素材で、PZTやLiTaO3
の強誘電体結晶によりペレット状(4×4×0.1mm)
に形成され、その表面には互いに同一形状、同一受光面
積かつ受光感度の等しい2対の受光エレメント2,3お
よび4,5が、Cr,Ni,AlやNi−Cr等の金属
を蒸着やスパッタリングすることにより被着形成されて
いる。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1A is a plan view of an embodiment of the element structure of the pyroelectric infrared detector of the present invention. In the figure, reference numeral 1 is a pyroelectric material having spontaneous polarization, which is a pellet (4 × 4 × 0.1 mm) made of a ferroelectric crystal such as PZT or LiTaO 3.
On the surface, two pairs of light receiving elements 2, 3 and 4, 5 having the same shape, the same light receiving area and the same light receiving sensitivity are deposited or sputtered with metal such as Cr, Ni, Al or Ni-Cr. By doing so, it is adhered and formed.

【0012】その各受光エレメント2,3,4,5は中
央部位に配置される中央部2a,3a,4a,5aと、
その外側に配置される外側部2b,3b,4b,5bと
が接続されてなり、それぞれ互いに90度位相を異にし
た巴状の回転対称に配置されている。そして、隣り合う
受光エレメント2と3および4と5がそれぞれ互いに逆
極に接続されて、両受光エレメント対E1 (2と3)と
2 (4と5)とが図2に示すように直列に接続されて
いる。なお、図示は省略するが、両受光エレメント対E
1 ,E2 には不要な可視光を遮断する機能を有する赤外
多層膜干渉フィルタを介して移動体からの赤外線を入射
させるようにしている。また、図2中、符号6はインピ
ーダンス変換用のFET、Rはゲート抵抗、Dは供給電
圧端子、Sは出力電圧端子、Eはアース端子である。
Each of the light receiving elements 2, 3, 4, 5 has a central portion 2a, 3a, 4a, 5a arranged at a central portion,
The outer side portions 2b, 3b, 4b, 5b arranged on the outer side are connected to each other, and are arranged in a rotationally symmetrical toe-like shape having phases different from each other by 90 degrees. Then, adjacent light receiving elements 2 and 3 and 4 and 5 are connected to opposite poles, respectively, so that both light receiving element pairs E 1 (2 and 3) and E 2 (4 and 5) are connected as shown in FIG. It is connected in series. Although not shown, both light receiving element pairs E
Infrared rays from the moving body are made to enter 1 and E 2 through an infrared multilayer interference filter having a function of blocking unnecessary visible light. In FIG. 2, reference numeral 6 is an impedance conversion FET, R is a gate resistance, D is a supply voltage terminal, S is an output voltage terminal, and E is a ground terminal.

【0013】このような構成では、振動や衝撃が作用し
ても各受光エレメントの振動特性が相等しいことから、
各受光エレメントからは絶対値の等しい圧電信号が発生
し、各受光エレメント対E1 (2と3)、E2 (4と
5)内で相殺される。また、赤外多層膜干渉フィルタか
ら強い可視光が洩れ込むことがあっても各受光エレメン
ト2,3,4,5での受光量が相等しいので、各受光エ
レメント対E1 ,E2 内で出力差が生じることがなく相
殺される。このように、いわゆるコモンモードのノイズ
を効果的に除去することができる。
In such a structure, since the vibration characteristics of the respective light receiving elements are the same even when vibration or impact is applied,
Piezoelectric signals having the same absolute value are generated from the respective light receiving elements and are canceled in the respective light receiving element pairs E 1 (2 and 3) and E 2 (4 and 5). Further, even if strong visible light may leak from the infrared multilayer interference filter, the light receiving amounts of the light receiving elements 2, 3, 4, and 5 are equal, so that in each light receiving element pair E 1 and E 2 . The output difference does not occur and is canceled. In this way, so-called common mode noise can be effectively removed.

【0014】そして、各受光エレメントがそれぞれ90
度ずつ位相を異にして巴状の回転対称に配置されている
ことにより、いかなる方向から移動体が接近しても、各
受光エレメント対E1 ,E2 内では両受光エレメント2
と3および4と5間に必ず入射赤外線の光量に差異が生
じ、その差分を出力差として検出することができ、図1
(B)の応答波形および図1(C)の感度指向特性線図
に示すように、検出死角を生じることなく失報のない高
い信頼性を得ることができる。
Then, each light receiving element has 90
By being arranged in different from to Tomoe shaped rotary symmetrical phase by degrees, even if the approaching mobile from any direction, the light-receiving element pair E 1, E both light receiving element 2 is in the 2
1 and 3 and 4 and 5 always have a difference in the amount of incident infrared light, and the difference can be detected as an output difference.
As shown in the response waveform of (B) and the sensitivity directivity characteristic diagram of FIG. 1 (C), it is possible to obtain high reliability with no false alarms without causing a detection blind spot.

【0015】図1(B)の応答波形は、焦電型赤外線検
出器に対して45度ピッチでスリットを対応させ、その
スリットを介して基準熱源(黒体炉)からの赤外線を受
光させることにより計測した出力電圧を示し、図1
(C)はその出力電圧に係数を乗じて極座標のグラフに
変換したものであり、焦電型赤外線検出器に対して45
度刻みに移動体が接近する場合を想定してこれを模式的
にシミュレートしたのである。
The response waveform of FIG. 1 (B) corresponds to the pyroelectric infrared detector with slits at a pitch of 45 degrees, and infrared rays from a reference heat source (black body furnace) are received through the slits. Fig. 1 shows the output voltage measured by
(C) is a graph obtained by multiplying the output voltage by a coefficient and converting it into a polar coordinate graph, which is 45 for a pyroelectric infrared detector.
This was schematically simulated on the assumption that the moving body approaches each time.

【0016】図1(C)より、本焦電型赤外線検出器が
方向性に依存することなく全方位に対して良好な指向特
性を有していることが判る。つまり、移動体が検知エリ
ア内にいかなる方向から接近しても良好な感度で検出す
ることができ、いわゆる検出死角が発生することがな
い。従って、かかる焦電型赤外線検出器を天井に貼り付
けて、その直下の位置にあらゆる方向から接近する移動
体を感度よく検知することができる。なお、両受光エレ
メント対E1 ,E2 を、図2のように、直列に接続する
ことによって各受光エレメント対E1 ,E2 における出
力の総和を検出することができるので良好な検出感度を
得ることができるとともにコモンモードノイズの排除の
度合も高まるため信頼性も向上する。また、図示は省略
するが、両受光エレメント対E1 ,E2 を並列に接続し
てもよく、その場合には、いずれか一方の受光エレメン
ト対E1 またはE2 にトラブルが発生していても検知可
能となり一層信頼性が向上する。なお、図3に示す異な
る実施例でも同様の作用効果を奏することができる。
From FIG. 1C, it can be seen that the present pyroelectric infrared detector has good directional characteristics in all directions without depending on directionality. That is, no matter what direction the moving body approaches the detection area, it can be detected with good sensitivity, and so-called detection blind spot does not occur. Therefore, such a pyroelectric infrared detector can be attached to the ceiling, and a moving body approaching the position directly below it from any direction can be detected with high sensitivity. By connecting both light receiving element pairs E 1 and E 2 in series as shown in FIG. 2, it is possible to detect the total output of the respective light receiving element pairs E 1 and E 2 , so that good detection sensitivity is obtained. In addition to being obtained, the degree of elimination of common mode noise is increased and reliability is also improved. Although not shown, both light receiving element pairs E 1 and E 2 may be connected in parallel. In that case, one of the light receiving element pairs E 1 or E 2 may be in trouble. Can also be detected and reliability is further improved. It should be noted that the same effects can be achieved in the different embodiment shown in FIG.

【0017】ちなみに、図示は省略するが、受光エレメ
ント対E1 ,E2 は、対称の中心Oを挟んで対向し合う
2対、つまり受光エレメント2と4および3と5をそれ
ぞれ逆極に接続させて形成してもよく、その両受光エレ
メント対E1 (2と4),E2 (3と5)を直列または
並列に接続してもよい。
Incidentally, although not shown, the light receiving element pair E 1 and E 2 are two pairs facing each other with the center of symmetry O in between, that is, the light receiving elements 2 and 4 and 3 and 5 are connected to opposite poles, respectively. The light receiving element pairs E 1 (2 and 4) and E 2 (3 and 5) may be connected in series or in parallel.

【0018】[0018]

【発明の効果】以上説明したように、本発明の焦電型赤
外線検出器の素子構造によれば、2対の各受光エレメン
トをそれぞれ90度ずつ位相を異にした巴状の回転対称
に配置して、対称の中心を挟んで対向する2対または隣
り合う2対をそれぞれ逆極に接続しているので、可視光
や振動・衝撃等のコモンモードのノイズを効果的に排除
でき、かつあらゆる方向から移動体が接近しても洩れな
く検知することができる優れた効果を得られる。
As described above, according to the element structure of the pyroelectric infrared detector of the present invention, the two pairs of light receiving elements are arranged in a rotationally symmetrical toe-like shape having a phase difference of 90 degrees. Since two pairs facing each other with the center of symmetry sandwiched or two pairs adjacent to each other are connected to the opposite poles respectively, common mode noise such as visible light, vibration and shock can be effectively eliminated, and Even if the moving body approaches from the direction, it is possible to obtain an excellent effect that it can be detected without leakage.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の焦電型赤外線検出器の素子構
造の一実施例を示す平面図、(B)はその応答波形を示
すグラフ、(C)はその感度指向特性線図である。
1A is a plan view showing an embodiment of an element structure of a pyroelectric infrared detector of the present invention, FIG. 1B is a graph showing a response waveform thereof, and FIG. 1C is a sensitivity directivity characteristic diagram thereof. Is.

【図2】上記構成よりなる焦電型赤外線検出器の内部回
路図の一例である。
FIG. 2 is an example of an internal circuit diagram of the pyroelectric infrared detector having the above configuration.

【図3】異なる実施例を示す焦電型赤外線検出器の素子
構造の平面図である。
FIG. 3 is a plan view of an element structure of a pyroelectric infrared detector showing another embodiment.

【図4】(A)は従来の焦電型赤外線検出器の素子構造
の一例を示す平面図、(B)はその応答波形を示すグラ
フ、(C)はその感度指向特性線図である。
4A is a plan view showing an example of an element structure of a conventional pyroelectric infrared detector, FIG. 4B is a graph showing a response waveform thereof, and FIG. 4C is a sensitivity directivity characteristic diagram thereof.

【図5】(A)は異なる従来例を示す平面図、(B)は
その応答波形を示すグラフ、(C)はその感度指向特性
線図である。
5A is a plan view showing another conventional example, FIG. 5B is a graph showing its response waveform, and FIG. 5C is its sensitivity directional characteristic diagram.

【図6】(A)は別の従来例を示す平面図、(B)はそ
の応答波形を示すグラフ、(C)はその感度指向特性線
図である。
6A is a plan view showing another conventional example, FIG. 6B is a graph showing its response waveform, and FIG. 6C is its sensitivity directivity characteristic diagram.

【符号の説明】[Explanation of symbols]

1…焦電素材、2,3,4,5…受光エレメント、O…
中心。
1 ... Pyroelectric material, 2, 3, 4, 5 ... Light receiving element, O ...
center.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 浩一 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Matsumoto 2 Higashimachi, Kichijoin Miya, Minami-ku, Kyoto-shi, Kyoto

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焦電素材の上に互いに同一形状同一受光
面積かつ同一受光感度を有する2対の受光エレメントを
有するクァッド(4素子)タイプの焦電型赤外線検出器
の素子構造であって、2対の各受光エレメントがそれぞ
れ90度ずつ位相を異にした巴状の回転対称に配置され
ており、対称の中心を挟んで対向する2対または隣り合
う2対がそれぞれ逆極に接続されていることを特徴とす
る焦電型赤外線検出器の素子構造。
1. An element structure of a quad (4 element) type pyroelectric infrared detector having two pairs of light receiving elements having the same shape and light receiving area and the same light receiving sensitivity on a pyroelectric material. The two pairs of light receiving elements are arranged in a rotationally symmetrical toe-like shape having a phase difference of 90 degrees, and two pairs facing each other with the center of symmetry interposed therebetween or two pairs adjacent to each other are connected to opposite poles. The element structure of the pyroelectric infrared detector characterized in that
JP4034509A 1992-01-25 1992-01-25 Element structure of pyroelectric infrared detector Pending JPH05203500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034509A JPH05203500A (en) 1992-01-25 1992-01-25 Element structure of pyroelectric infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034509A JPH05203500A (en) 1992-01-25 1992-01-25 Element structure of pyroelectric infrared detector

Publications (1)

Publication Number Publication Date
JPH05203500A true JPH05203500A (en) 1993-08-10

Family

ID=12416235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034509A Pending JPH05203500A (en) 1992-01-25 1992-01-25 Element structure of pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JPH05203500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020927A1 (en) * 2012-07-31 2014-02-06 Eizo株式会社 Structure for masks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020927A1 (en) * 2012-07-31 2014-02-06 Eizo株式会社 Structure for masks
US9389123B2 (en) 2012-07-31 2016-07-12 Eizo Corporation Mask applied to a sensing surface of a dual pyroelectric sensor

Similar Documents

Publication Publication Date Title
US5045702A (en) Infrared intrustion detector
US4745284A (en) Infrared ray detector
KR970010976B1 (en) Infrared array sensor system
US4225786A (en) Infrared detection system
JPH0572969B2 (en)
US4166955A (en) Radiation detector and method of operating the same
JPH05281035A (en) Pyro-electricity type infrared detector
JPH05203500A (en) Element structure of pyroelectric infrared detector
EP0235372A2 (en) Infrared ray detector
US5352895A (en) Pyroelectric device
JPS61175583A (en) Pyroelectric element for detecting moving object
JPH02272330A (en) Infrared sensor for detecting mobile object
JPH08128896A (en) Pyroelectric infrared ray detector
JPH0416236Y2 (en)
JPH06117925A (en) Difference output type dual twin pyroelectric detector
US5574375A (en) Dual pyroelectric sensor
JPH02278131A (en) Pyroelectric-type infrared detector
JP2987543B2 (en) Thermistor thin film element and human body heat detector using the same
WO2017221718A1 (en) Infrared detection element and infrared detection device
JPH08178748A (en) Pyroelectric array sensor
JPS58151698A (en) Infrared ray infiltration detector with pyro-electric light receiver
JP2616654B2 (en) One-dimensional pyroelectric sensor array
WO2021095081A1 (en) Pyroelectric infrared detector
JPS637612B2 (en)
JPH07104202B2 (en) Pyroelectric infrared sensor