JPH052033A - Current sensor and setting method for range of detection current thereof - Google Patents

Current sensor and setting method for range of detection current thereof

Info

Publication number
JPH052033A
JPH052033A JP3194558A JP19455891A JPH052033A JP H052033 A JPH052033 A JP H052033A JP 3194558 A JP3194558 A JP 3194558A JP 19455891 A JP19455891 A JP 19455891A JP H052033 A JPH052033 A JP H052033A
Authority
JP
Japan
Prior art keywords
conductor
current
current sensor
magnetic field
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3194558A
Other languages
Japanese (ja)
Inventor
Shinkichi Shimizu
信吉 清水
Shigemi Kurashima
茂美 倉島
Shigeo Tanji
成生 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3194558A priority Critical patent/JPH052033A/en
Publication of JPH052033A publication Critical patent/JPH052033A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To improve a high-frequency response characteristic regarding a current sensor using a magnetoresistance element and a conductor through which a detection current flows and regarding a setting method of the range of the detection current thereof. CONSTITUTION:A current sensor is equipped with a conductor 1 which is made to generate a current magnetic field by making a detection current (i) flow therethrough, a magnetoresistance element 2 which is disposed corresponding to the conductor 1, supplied with an operating current and detects the current magnetic field, and a magnetic shield member 3 which shields the conductor 1 and the magnetoresistance element 2 from an external magnetic field. The magnetic shield member 3 is formed of an insulative soft ferrite material. For setting the range of the detection current, the shape of a section of a prescribed part of the conductor 1 facing the magneto-resistance element 2 is selected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電流センサ及び電流セ
ンサの検出電流範囲の設定方法に関し、特に、高周波応
答特性の改善を図った電流センサ並びに検出電流範囲の
設定の容易性を図った電流センサの検出電流範囲の設定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current sensor and a method for setting a detection current range of the current sensor, and more particularly to a current sensor for improving high frequency response characteristics and a current for facilitating setting of the detection current range. The present invention relates to a method of setting a detection current range of a sensor.

【0002】電流センサとして、センサの小形化及びセ
ンサ感度の向上等の目的のため、磁気抵抗素子を介して
検出電流が発生させる電流磁界を検出する方式を採用し
た磁気抵抗効果利用型の電流センサ(磁気検出装置)が
特開平1−299481号公報に提案されている。
As a current sensor, for the purpose of downsizing the sensor, improving the sensor sensitivity, and the like, a current sensor of the magnetoresistive effect type that employs a method of detecting a current magnetic field generated by a detection current through a magnetoresistive element. (Magnetic detection device) is proposed in Japanese Patent Laid-Open No. 1-299481.

【0003】[0003]

【従来の技術】図16に基づいて、前記公報記載の磁気
抵抗効果利用型の従来の電流センサについて説明する。
同図において、1は導体、2は磁気抵抗素子、3はパー
マロイ板から成る磁気遮蔽容器である。この電流センサ
では、導体1に外部から流入する検出電流iによって電
流磁界Hを発生させ、別に作動のための電流をリード部
6を介して供給されている磁気抵抗素子2によって前記
電流磁界Hを抵抗変化に変えており、別の検出部を介し
てこの抵抗変化を検出する。電流センサの外側には、外
部磁界Hexから電流センサを磁気的に遮蔽するための
磁気遮蔽容器3が電流センサ全体を取り囲むように配さ
れている。
2. Description of the Related Art A conventional current sensor utilizing the magnetoresistive effect described in the above publication will be described with reference to FIG.
In the figure, 1 is a conductor, 2 is a magnetoresistive element, and 3 is a magnetic shielding container made of a permalloy plate. In this current sensor, a current magnetic field H is generated by a detection current i flowing into the conductor 1 from the outside, and the current magnetic field H is generated by a magnetoresistive element 2 which is separately supplied with a current for operation via a lead portion 6. The change in resistance is changed, and this change in resistance is detected through another detection unit. A magnetic shielding container 3 for magnetically shielding the current sensor from the external magnetic field Hex is arranged outside the current sensor so as to surround the entire current sensor.

【0004】[0004]

【発明が解決しようとする課題】前記公報記載の電流セ
ンサの場合、磁気遮蔽容器3はパーマロイ板材から形成
されている。パーマロイ板材から成る磁気遮蔽は、磁気
遮蔽としてきわめて一般的で効果的な方法として知られ
ている。しかし、この磁気遮蔽は、検出電流によって発
生する電流磁界のために磁気遮蔽容器内部に渦電流が発
生するという問題がある。この渦電流による磁界は、検
出電流による電流磁界を弱めるように作用し、このため
検出電流がパルス波形等の如き急峻な波形を有する場合
には、この電流センサの出力波形が検出電流のパルス波
形を忠実に再現できないことにつながり、繰返し周波数
の高いパルス電流の検出には使用できない等、センサの
用途に制約が生ずる。
In the case of the current sensor described in the above publication, the magnetic shielding container 3 is made of a permalloy plate material. A magnetic shield made of a permalloy plate material is known as a very general and effective method for magnetic shield. However, this magnetic shield has a problem that an eddy current is generated inside the magnetic shield container due to the current magnetic field generated by the detected current. The magnetic field due to this eddy current acts to weaken the current magnetic field due to the detected current. Therefore, when the detected current has a steep waveform such as a pulse waveform, the output waveform of this current sensor is the pulse waveform of the detected current. Will not be faithfully reproduced, and it will not be possible to detect a pulse current with a high repetition frequency.

【0005】また、電流センサは、きわめて小形化が要
請されており、小さな磁気遮蔽容器内部に収容する必要
があるため、導体及び磁気抵抗素子の形状・寸法等の構
造に大きな制約が加えられる。このため、その構造の簡
素化及び製作コストの低減、並びに大量生産に適合した
構造とすることを前提として、様々な電流値を有する検
出電流に対していかに電流センサの検出電流範囲を設定
するかという点が問題となる。しかし、前記公報の場
合、この点についての開示はない。
Further, the current sensor is required to be extremely small in size, and it is necessary to accommodate it in a small magnetic shield container, so that the structure such as the shape and size of the conductor and the magnetoresistive element is greatly restricted. For this reason, how to set the detection current range of the current sensor for detection currents with various current values, assuming that the structure is simplified, the manufacturing cost is reduced, and the structure is suitable for mass production. That is a problem. However, the above publication does not disclose this point.

【0006】本発明の第一の目的は、上記従来の電流セ
ンサの問題に鑑み、パルス波形等の急峻な波形を有する
検出電流についても、センサの出力波形において検出電
流波形を忠実に再現でき、繰返し周波数の高いパルス電
流についても精度の高い電流センサを提供することに存
する。
In view of the above problems of the conventional current sensor, the first object of the present invention is to faithfully reproduce the detected current waveform in the output waveform of the sensor even for the detected current having a steep waveform such as a pulse waveform. It is to provide a current sensor with high accuracy even for a pulse current having a high repetition frequency.

【0007】更に本発明の第二の目的は、同様に従来の
電流センサの有する問題に鑑み、センサ形状が簡素化で
き、製作コストが低減できると共に大量生産が可能な電
流センサの検出電流範囲の設定方法の提供に存する。
Further, in view of the problems of the conventional current sensor, the second object of the present invention is to reduce the detection current range of the current sensor which can simplify the sensor shape, reduce the manufacturing cost, and enable mass production. It exists in providing the setting method.

【0008】[0008]

【課題を解決するための手段】図1は本発明の基本構成
を示す概念図である。同図において1は導体、2は磁気
抵抗素子、3は磁気シールド部材を夫々示す。本発明で
は、前記第一の目的を達成するため、検出電流iを介し
て電流磁界を発生する導体1と、作動電流の供給を受け
ると共に導体1と対応して配される磁気抵抗素子2と、
導体1及び磁気抵抗素子2を外部磁界から磁気的に遮蔽
する磁気シールド部材3とを備える電流センサにおい
て、磁気シールド部材3が絶縁性ソフトフェライト材料
から形成されるように構成し、また前記第二の目的を達
成するため、検出電流iを介して電流磁界を発生する導
体1と、作動電流の供給を受けると共に導体1と対応し
て配される磁気抵抗素子2と、導体1及び磁気抵抗素子
2を外部磁界から磁気的に遮蔽する磁気シールド部材3
とを備える電流センサの検出電流範囲の設定方法におい
て、導体1の、磁気抵抗素子2と対峙する所定部の断面
形状の選定により、前記検出電流の範囲を設定するよう
に、さらに所定部の断面形状の選定に際して、導体1の
所定部の幅寸法または厚さ寸法を変えることによって構
成する。
FIG. 1 is a conceptual diagram showing the basic configuration of the present invention. In the figure, 1 is a conductor, 2 is a magnetoresistive element, and 3 is a magnetic shield member. In the present invention, in order to achieve the first object, a conductor 1 that generates a current magnetic field via a detection current i, and a magnetoresistive element 2 that is supplied with an operating current and is arranged corresponding to the conductor 1. ,
In a current sensor including a magnetic shield member 3 for magnetically shielding the conductor 1 and the magnetoresistive element 2 from an external magnetic field, the magnetic shield member 3 is formed of an insulating soft ferrite material, and the second In order to achieve the above-mentioned object, a conductor 1 for generating a current magnetic field via a detection current i, a magnetoresistive element 2 which is supplied with an operating current and is arranged corresponding to the conductor 1, a conductor 1 and a magnetoresistive element Magnetic shield member 3 for magnetically shielding 2 from an external magnetic field
In the method for setting the detection current range of the current sensor, the cross section of the predetermined portion is further set by selecting the cross-sectional shape of the predetermined portion of the conductor 1 facing the magnetoresistive element 2. When the shape is selected, the width or thickness of the predetermined portion of the conductor 1 is changed.

【0009】[0009]

【作用】磁気シールド部材を絶縁性フェライトから形成
することで、電流磁界のために磁気シールド部材内に発
生する渦電流を防止できるので電流磁界を弱める虞れが
なく、また絶縁性ソフトフェライト材料は透磁率μの周
波数特性が一様であるため、検出電流の波形が忠実に再
現できる。
By forming the magnetic shield member from the insulating ferrite, it is possible to prevent the eddy current generated in the magnetic shield member due to the current magnetic field, so that there is no fear of weakening the current magnetic field. Since the frequency characteristic of permeability μ is uniform, the waveform of the detected current can be faithfully reproduced.

【0010】導体の所定部の断面形状の選定によって電
流センサの検出電流範囲を設定するという構成により、
磁気抵抗素子及び磁気シールド部材の形状・寸法を変え
ることなく、多数の検出電流値に適合可能な電流センサ
を供給できる。
With the configuration in which the detection current range of the current sensor is set by selecting the cross-sectional shape of the predetermined portion of the conductor,
It is possible to supply a current sensor adaptable to a large number of detected current values without changing the shapes and dimensions of the magnetic resistance element and the magnetic shield member.

【0011】[0011]

【実施例】図面に基いて本発明を更に説明する。図2は
本発明の一実施例に係る電流センサの要部を示す斜視図
である。同図において、1は導体、2は磁気抵抗素子、
3は磁気シールド部材を成す遮蔽板を夫々示す。この実
施例の電流センサでは、非磁性材料、好ましくは樹脂材
料から形成される支持ボード5上に磁気抵抗素子2が支
持されており、磁気抵抗素子2の図示されないリード部
は支持ボード5を図面上で見て下側に貫通している。
The present invention will be further described with reference to the drawings. FIG. 2 is a perspective view showing a main part of the current sensor according to the embodiment of the present invention. In the figure, 1 is a conductor, 2 is a magnetoresistive element,
Reference numerals 3 respectively denote shield plates which form a magnetic shield member. In the current sensor of this embodiment, the magnetoresistive element 2 is supported on a support board 5 formed of a non-magnetic material, preferably a resin material, and the lead portion (not shown) of the magnetoresistive element 2 is illustrated in the support board 5. Seen above, it penetrates downward.

【0012】導体1は、両端の端子部1Aで幅が広く形
成され、磁気抵抗素子2に対峙する中央部(所定部)1
Bで幅が狭く形成されており、全体として帯状をなす銅
板から製作され、図示しない静電遮蔽を兼ねるケースに
よって絶縁材を介して支持される。
The conductor 1 has a wide width at the terminal portions 1A at both ends thereof, and a central portion (predetermined portion) 1 facing the magnetoresistive element 2 is formed.
It is formed to have a narrow width at B and is made of a strip-shaped copper plate as a whole, and is supported by an insulating material by a case (not shown) which also serves as an electrostatic shield.

【0013】さらに、磁気抵抗素子2の中心を通る垂線
2aが、導体中央部1Bの長さ方向の中心線1aに交差
する導体1は、磁気抵抗素子2と対峙する所定部を成す
中央部1Bにおいて幅aの大きさを所定値に選定され、
磁気シールド部材を成す磁気遮蔽板3は、その一部を破
線にて示すように、支持ボード5の溝51内に挿入され
て支持される。この実施例の導体1の場合、導体厚みt
が3mm、導体全長が約30mm、導体幅は、1A部分では
約15mm、1B部分のaの値として約5mmが、夫々採用
されている。
Further, a conductor 1 in which a perpendicular line 2a passing through the center of the magnetoresistive element 2 intersects with the longitudinal centerline 1a of the conductor central portion 1B forms a predetermined portion facing the magnetoresistive element 2 at a central portion 1B. In, the size of the width a is selected as a predetermined value,
The magnetic shield plate 3 forming the magnetic shield member is inserted into and supported by the groove 51 of the support board 5 as shown by a part of the magnetic shield plate 3. In the case of the conductor 1 of this embodiment, the conductor thickness t
Is 3 mm, the total conductor length is about 30 mm, and the conductor width is about 15 mm in the 1A portion and about 5 mm as the value of a in the 1B portion.

【0014】図3(イ)及び(ロ)は夫々、図2で示し
た実施例のセンサの全体構造を示すための側面断面図及
び平面図である。なお、同図に示したように、この電流
センサは静電遮蔽をなすケース4で全体が覆われた構造
を有し、ケース4内部に支持ボード5が支持されてい
る。
FIGS. 3A and 3B are a side sectional view and a plan view showing the overall structure of the sensor of the embodiment shown in FIG. 2, respectively. As shown in the figure, the current sensor has a structure in which it is entirely covered with a case 4 that serves as an electrostatic shield, and a support board 5 is supported inside the case 4.

【0015】磁気抵抗素子2は、絶縁カバー8内に収納
され、支持ボード5を貫通するリード部2Aを介して支
持ボード5に支持されており、リード部2Aと外部リー
ド線6とが接続される。多数の磁気遮蔽板3は前記の如
く支持ボード5の構内に挿入されて支持ボード5によっ
て支持されており、内部点検等のため取外し自在であ
る。
The magnetoresistive element 2 is housed in an insulating cover 8 and supported by the support board 5 via a lead portion 2A penetrating the support board 5, and the lead portion 2A and the external lead wire 6 are connected. It The large number of magnetic shield plates 3 are inserted into the premises of the support board 5 and are supported by the support board 5 as described above, and are removable for internal inspection or the like.

【0016】図4は、本発明の電流センサで磁気遮蔽と
して採用される絶縁性ソフトフェライトの一般的な透磁
率μの周波数特性を通常の磁気遮蔽材であるパーマロイ
の透磁率μの周波数特性と対照させて示したものであ
る。
FIG. 4 shows the frequency characteristics of the general magnetic permeability μ of the insulating soft ferrite used as the magnetic shield in the current sensor of the present invention and the frequency characteristics of the magnetic permeability μ of permalloy, which is an ordinary magnetic shielding material. It is shown as a control.

【0017】同図に示したように各種の選択ソフトフェ
ライト材料は、いずれも透磁率μの周波数特性がきわめ
て平坦であり、このためパルス波からなる入力電流の検
出にあたっても、パーマロイを磁気遮蔽として使用した
従来の電流センサに比して、出力波形における入力波形
の再現性がきわめて良好となる。
As shown in the figure, each of the selected soft ferrite materials has a very flat frequency characteristic of magnetic permeability μ. Therefore, permalloy is used as a magnetic shield even when detecting an input current consisting of a pulse wave. Compared to the conventional current sensor used, the reproducibility of the input waveform in the output waveform is extremely good.

【0018】図3に戻り、導体1は取付孔9内に挿入さ
れる取付ボルトを介して絶縁台7上部に支持されて磁気
抵抗素子2の絶縁カバー8直下に配されている。導体1
は、両端の端子部1Aにおいて外部リード6と接続され
て検出電流iを供給される。導体1は、磁気抵抗素子2
と対峙する所定部を成す中央部1Bの幅aの大きさ、或
いは厚みtの寸法によって、検出電流範囲が設定され
る。好ましくは、厚みtを一定として中央部1Bの幅a
の選定が採用される。
Returning to FIG. 3, the conductor 1 is supported on the upper part of the insulating base 7 via mounting bolts inserted into the mounting holes 9 and is arranged directly below the insulating cover 8 of the magnetoresistive element 2. Conductor 1
Are connected to the external leads 6 at the terminal portions 1A at both ends and supplied with the detection current i. The conductor 1 is a magnetoresistive element 2
The detected current range is set according to the size of the width a or the thickness t of the central portion 1B forming a predetermined portion facing with. Preferably, the thickness a is constant and the width a of the central portion 1B is
The selection of is adopted.

【0019】導体1の厚みtを、中央部1Bの長さに対
して十分に小さくすれば、検出電流iによって磁気抵抗
素子2に生ずる電流電界は、 H=(1/4π)・(i/a)・(θ1−θ2) (但しθ1及びθ2は磁界測定点と導体両側部とを結ぶ
線と導体面のなす角度)である。導体1と磁気抵抗素子
2との相対位置を決めることでθ1−θ2は一定とな
り、この式によって導体1の中央部1Bの幅aによっ
て、磁気抵抗素子2の位置における磁界の大きさが選定
される。
If the thickness t of the conductor 1 is made sufficiently smaller than the length of the central portion 1B, the electric current electric field generated in the magnetoresistive element 2 by the detected current i is H = (1 / 4π). (I / a). (. theta.1-.theta.2) (where .theta.1 and .theta.2 are the angles formed by the conductor surface and the line connecting the magnetic field measurement point and both sides of the conductor). By determining the relative position between the conductor 1 and the magnetoresistive element 2, θ1−θ2 becomes constant, and the magnitude of the magnetic field at the position of the magnetoresistive element 2 is selected by this formula by the width a of the central portion 1B of the conductor 1. It

【0020】導体幅の選定の様子は図11のグラフに示
されている。同図において、横軸は磁気抵抗素子2と対
峙する所定部を成す導体1の中央部1Bの幅を、縦軸
は、検出電流の通電によって生ずる導体内部の電力損
(W)及び換算発生磁界(0e)をとっている。なお、
図の値は導体厚みtを3mmとしたときの値である。
The manner of selecting the conductor width is shown in the graph of FIG. In the figure, the horizontal axis represents the width of the central portion 1B of the conductor 1 forming a predetermined portion facing the magnetoresistive element 2, and the vertical axis represents the power loss (W) inside the conductor and the converted magnetic field generated by the passage of the detection current. (0e) is taken. In addition,
The values in the figure are values when the conductor thickness t is 3 mm.

【0021】曲線(a),(b)は夫々、検出電流が2
00Aのときの電流損及び発生磁界を、曲線(c),
(d)は夫々、検出電流が100Aのときの電流損及び
換算発生磁界を、曲線(e),(f)は夫々、検出電流
が50Aのときの電流損及び換算発生磁界を、示してい
る。
Each of the curves (a) and (b) has a detected current of 2
The current loss and the generated magnetic field at 00A are represented by the curve (c),
(D) shows the current loss and the converted magnetic field when the detected current is 100 A, and the curves (e) and (f) show the current loss and the converted magnetic field when the detected current is 50 A, respectively. .

【0022】電流損の0.4 Wの位置に示した下向きの矢
印は、各検出電流値に対して電力損をこの値0.4 W以下
にするように導体幅aを選定することを意味し、換算発
生磁界の150eの位置に示した上向きの矢印は、磁気
抵抗素子の磁界検出感度を考慮して検出電流の発生磁界
Hxがこの値150e以上となるように導体幅を選定す
ることを意味している。
The arrow pointing downward at the current loss of 0.4 W means that the conductor width a is selected so that the power loss becomes 0.4 W or less for each detected current value. The upward arrow at the position of 150e of the magnetic field means that the conductor width is selected so that the magnetic field Hx of the detected current is 150e or more in consideration of the magnetic field detection sensitivity of the magnetoresistive element. .

【0023】例えば検出電流の最大値が100Aの場合
には、電力損0.4 W上になる曲線(d)の位置Aから、
導体幅が約3mm以上として得られ、発生磁界150e上
にある曲線(c)の位置Bから導体幅12mm以下が得ら
れ、この範囲内の導体幅、例えば7.5mm 幅の導体幅が選
定される。
For example, when the maximum value of the detected current is 100 A, from the position A of the curve (d) where the power loss is 0.4 W,
A conductor width of about 3 mm or more is obtained, and a conductor width of 12 mm or less is obtained from position B of the curve (c) on the generated magnetic field 150e. A conductor width within this range, for example, a conductor width of 7.5 mm is selected. .

【0024】このようにすると、他の部材、及び要素の
サイズ、配置、形状等の変更を要することなく、単に導
体幅aの選定のみで種々の大きさの検出電流に対してセ
ンサの最も適当な磁界感度範囲を適合させることができ
て好適である。
In this way, the sensor is most suitable for detection currents of various magnitudes by simply selecting the conductor width a without changing the size, arrangement, shape, etc. of other members and elements. This is preferable because a wide magnetic field sensitivity range can be adapted.

【0025】導体の所定部の幅aの選定に代えて厚みt
の選定によって検出電流範囲を設定することも可能であ
り、また導体の側面部を磁気抵抗素子に対峙させ、導体
の幅aの選定により検出電流範囲を設定することもで
き、いずれも本発明の電流センサの検出電流範囲の設定
方法に含まれる。後者の場合、厚みtを小として H=(1/4π)・(i/a)・log(r2/r1) (r1,r2は夫々導体両側面と磁気抵抗素子との距
離)の式が利用できる。
Instead of selecting the width a of the predetermined portion of the conductor, the thickness t
It is also possible to set the detection current range by selecting, and it is also possible to set the detection current range by making the side surface of the conductor face the magnetoresistive element and selecting the width a of the conductor. It is included in the method for setting the detection current range of the current sensor. In the latter case, the formula of H = (1 / 4π) · (i / a) · log (r2 / r1) (r1 and r2 are the distances between the conductor side surfaces and the magnetoresistive element, respectively) is used with the thickness t being small. it can.

【0026】上記実施例では、磁気抵抗素子はバーバー
ポール形磁気抵抗素子が採用されている。図6は、この
実施例で採用されるバーバーポール形磁気抵抗素子2の
構成を示す平面略図である。
In the above-mentioned embodiment, the barber pole type magnetoresistive element is used as the magnetoresistive element. FIG. 6 is a schematic plan view showing the structure of the barber pole type magnetoresistive element 2 used in this embodiment.

【0027】図6において、四個の各磁気抵抗素子部分
2−1〜2−4は外部端子21〜24を介してホイート
ストーンブリッジとして接続されており、導体パターン
の形成方向を除いて互いに同じ形状を有する。この形式
の磁気抵抗素子2は、特開昭64−22076号公報に
記載されたものと同様な構成を有している。各磁気抵抗
素子部分2−1〜2−4は長い直線状部25がつづら状
に直列に接続されている。
In FIG. 6, each of the four magnetoresistive element portions 2-1 to 2-4 is connected as a Wheatstone bridge via the external terminals 21 to 24, and except for the conductor pattern forming direction. Have the same shape. The magnetoresistive element 2 of this type has a structure similar to that described in Japanese Patent Laid-Open No. 64-22076. In each of the magnetoresistive element portions 2-1 to 2-4, long linear portions 25 are connected in series in a zigzag shape.

【0028】図7は上記バーバーポール形磁気抵抗素子
の直線状部25の基本構成を略図的に示す各磁気抵抗素
子部分2−1〜2−4の部分拡大平面図であり、同図
(イ)は四つの内二つの磁気抵抗素子部分2−1及び2
−3の直線状部25の構成を、同図(ロ)は別の二つの
磁気抵抗素子部分2−2及び2−4の直線状部25の構
成を、夫々示す。同図において、26は例えばパーマロ
イ(Ni−Fe)から成る磁性薄膜を、27,28は例
えば金(Au)から成る導体パターンを示し、導体パタ
ーンは両端の電極部27と中央の帯状導体層28とから
成る。
FIG. 7 is a partially enlarged plan view of the magnetoresistive element portions 2-1 to 2-4 schematically showing the basic structure of the linear portion 25 of the barber pole type magnetoresistive element. ) Is two of the four magnetoresistive element parts 2-1 and 2
-3, the configuration of the linear portion 25 of FIG. 3 shows the configuration of the linear portion 25 of the other two magnetoresistive element portions 2-2 and 2-4. In the figure, 26 is a magnetic thin film made of, for example, permalloy (Ni-Fe), and 27 and 28 are conductor patterns made of, for example, gold (Au). The conductor patterns are electrode portions 27 at both ends and a strip-shaped conductor layer 28 at the center. It consists of and.

【0029】磁性薄膜26は図示M方向に一軸磁気異方
性を与えられると共に初期磁化されており、各導体パタ
ーン27,28は、この磁性膜26上に薄層として形成
され、左右両端の電極部分26を結ぶ線に対し45度で
傾斜して所定間隔で配列された多数の帯状導体層28と
でバーバーポール様のパターンに形成される。
The magnetic thin film 26 is given a uniaxial magnetic anisotropy in the M direction in the figure and is initially magnetized, and the conductor patterns 27 and 28 are formed as thin layers on the magnetic film 26, and electrodes on both left and right ends are formed. It is formed in a barber pole-like pattern with a large number of strip-shaped conductor layers 28 which are inclined at 45 degrees with respect to the line connecting the portions 26 and arranged at predetermined intervals.

【0030】図7(イ),(ロ)にて示したように磁気
抵抗素子部分2−1,2−3と磁気抵抗素子部分2−
2,2−4とは互いに90度異なる方向に帯状導体層2
8が配されており、いずれの帯状導体層の方向も初期磁
化の方向M及び電流磁界Hの方向と45度方向又は13
5度方向である。この構成に従い、各磁性薄膜26を流
れる電流方向mは図示した方向、即ち帯状導体層28の
長軸と直角方向である。
As shown in FIGS. 7A and 7B, the magnetoresistive element portions 2-1 and 2-3 and the magnetoresistive element portion 2-
2, 2-4 and the strip-shaped conductor layer 2 in directions different from each other by 90 degrees
8 are arranged, and the direction of any of the strip-shaped conductor layers is 45 degrees with the direction M of the initial magnetization and the direction of the current magnetic field H or 13
The direction is 5 degrees. According to this structure, the direction m of the current flowing through each magnetic thin film 26 is the illustrated direction, that is, the direction perpendicular to the major axis of the strip conductor layer 28.

【0031】図8は各バーバーポール形磁気抵抗素子部
分における抵抗変化を示す作用説明図である。曲線
(a),(b)は夫々図7に示した磁気抵抗素子の直線
状部25の構成説明図の(イ),(ロ)と対応して示し
てある。
FIG. 8 is an operation explanatory view showing a resistance change in each barber pole type magnetoresistive element portion. Curves (a) and (b) are shown in correspondence with (a) and (b) in the configuration explanatory view of the linear portion 25 of the magnetoresistive element shown in FIG. 7, respectively.

【0032】図8に示したように電流磁界Hの増加に伴
って、図7(イ)の直線状部25を有する磁気抵抗素子
部分2−1,2−3は抵抗値が増大し、図7(ロ)の直
線状部25を有する磁気抵抗素子部分2−2,2−4は
抵抗値が減少する。
As shown in FIG. 8, as the current magnetic field H increases, the resistance values of the magnetoresistive element portions 2-1 and 2-3 having the linear portion 25 of FIG. The resistance values of the magnetoresistive element portions 2-2 and 2-4 having the 7 (b) linear portions 25 decrease.

【0033】更に、外部磁界が反転する場合には抵抗変
化は逆になり、通常の磁気抵抗素子が磁界の正負方向に
対して同じ抵抗変化を起こすのとは異なる。このため、
ホイートストーンブリッジ回路として構成した実施例の
電流センサの場合、検出電流の極性の判別も可能であ
る。
Further, when the external magnetic field is reversed, the resistance change is reversed, which is different from the case where a normal magnetoresistive element causes the same resistance change in the positive and negative directions of the magnetic field. For this reason,
In the case of the current sensor of the embodiment configured as the Wheatstone bridge circuit, the polarity of the detected current can be determined.

【0034】図9(イ),(ロ)に示した各曲線は、磁
性薄膜71の初期磁化と夫々逆方向又は順方向に永久磁
石によって磁気抵抗素子にバイアス磁界を与えた場合の
抵抗変化を示す特性図である。
The curves shown in FIGS. 9 (a) and 9 (b) represent the resistance changes when a bias magnetic field is applied to the magnetoresistive element by a permanent magnet in the direction opposite to the initial magnetization of the magnetic thin film 71 or in the forward direction, respectively. It is a characteristic view to show.

【0035】同図に示すように、永久磁石のバイアス磁
界の方向及び大きさを種々選定することにより、特定回
路の制御電流の大きさに適合させることができる。ま
た、同図(ロ)の順方向バイアスの場合、バイアス磁界
を大きくすると、曲線Fから順次曲線Kに移行し、磁界
と抵抗変化との関係が、リニアになるというメリットも
ある。同図(イ)の如く永久磁石のバイアス方向を初期
磁化の方向と逆方向にする場合において、バイアス磁界
が大きいときには磁気抵抗素子は感度が低下し、更に大
きいときには出力特性が逆転する。
As shown in the figure, by selecting various directions and magnitudes of the bias magnetic field of the permanent magnet, it is possible to adapt to the magnitude of the control current of the specific circuit. Further, in the case of the forward bias shown in FIG. 9B, when the bias magnetic field is increased, the curve F sequentially shifts to the curve K, and there is an advantage that the relationship between the magnetic field and the resistance change becomes linear. In the case where the bias direction of the permanent magnet is set in the direction opposite to the direction of the initial magnetization as shown in (a) of the figure, the sensitivity of the magnetoresistive element decreases when the bias magnetic field is large, and the output characteristic is reversed when the bias magnetic field is larger.

【0036】図10はバーバーポール形磁気抵抗素子の
一般的な構造を示すための断面図である。なお、同図で
は磁気抵抗素子2の磁性薄膜の初期磁化方向Mと同方向
0 に、永久磁石201のバイアス磁界を与える例につ
いて示してある。
FIG. 10 is a sectional view showing the general structure of a barber pole type magnetoresistive element. In the figure, an example in which a bias magnetic field of the permanent magnet 201 is applied in the same direction M 0 as the initial magnetization direction M of the magnetic thin film of the magnetoresistive element 2 is shown.

【0037】同図において、この磁気抵抗素子2は、永
久磁石201上にSi基板202を設け、該Si基板上
に、SiO2 膜203,パーマロイの磁性薄膜204,
密着層205,導体層206を順次積層すると共に所定
のパターンに形成し、更にその上から保護層207によ
って全体が覆われる。
In this magnetoresistive element 2, a Si substrate 202 is provided on a permanent magnet 201, and a SiO 2 film 203, a permalloy magnetic thin film 204, is formed on the Si substrate 202.
The adhesion layer 205 and the conductor layer 206 are sequentially laminated and formed into a predetermined pattern, and the whole is covered with a protective layer 207 from above.

【0038】磁性薄膜204は、図示M方向に一軸磁気
異方性が与えられ、且つ初期磁化がなされている。永久
磁石として、フェライト磁石,Fe−Cr−Co磁石,
或いはアルニコ磁石等を用いることができる。
The magnetic thin film 204 is given uniaxial magnetic anisotropy in the M direction shown in the drawing, and is initially magnetized. As permanent magnets, ferrite magnets, Fe-Cr-Co magnets,
Alternatively, an alnico magnet or the like can be used.

【0039】図12は上記実施例の電流センサ及びそれ
に付属する増幅器を介して得られる出力波形を説明する
ための図であり、(イ)は検出電流(入力電流)波形
を、(ロ)は本実施例の電流センサの出力波形を、夫々
示している。
FIG. 12 is a diagram for explaining an output waveform obtained through the current sensor of the above-mentioned embodiment and the amplifier attached to the current sensor. (A) shows a detected current (input current) waveform, and (b) shows The output waveforms of the current sensor of this embodiment are shown respectively.

【0040】同図に示したように本実施例の電流センサ
の出力波形は、検出される入力電流波形をかなり忠実に
再現できており、高周波応答特性(特にスリューレー
ト)の改善がなされている。
As shown in the figure, the output waveform of the current sensor of this embodiment can reproduce the detected input current waveform quite faithfully, and the high frequency response characteristic (especially slew rate) is improved. There is.

【0041】なお、上記実施例の出力波形との比較のた
め、一例として磁気コアとコイルとを使用した形式の従
来の電流センサの出力波形を同図(ハ)に示した。図5
は本発明の別の実施例の電流センサである。図2に示し
た実施例1の電流センサとの違いは、導体1が静電遮蔽
ケース及び磁気シールド部材の開口部から露出してお
り、且つ静電ケース下側から交換可能にした点である。
For comparison with the output waveform of the above embodiment, the output waveform of a conventional current sensor of the type using a magnetic core and a coil is shown in FIG. Figure 5
Is a current sensor according to another embodiment of the present invention. The difference from the current sensor of the first embodiment shown in FIG. 2 is that the conductor 1 is exposed from the openings of the electrostatic shield case and the magnetic shield member and can be replaced from the lower side of the electrostatic case. .

【0042】このようにすると一つの電流センサにおい
て導体の所定部の断面形状、例えば導体幅を変えること
により、種々の検出電流範囲に対応可能とすることがで
きるという利点がある。この場合導体幅の選定範囲を、
単に所定部を成す中央部の範囲にとどめることとすれ
ば、導体取付部の形状を変える必要がないので、導体の
互換性が確保される。
In this way, there is an advantage that it is possible to deal with various detection current ranges by changing the cross-sectional shape of a predetermined portion of the conductor, for example, the conductor width in one current sensor. In this case, select the conductor width
If it is simply limited to the range of the central portion forming the predetermined portion, it is not necessary to change the shape of the conductor mounting portion, so that the compatibility of the conductors is ensured.

【0043】図13は本発明の他の実施例による電流セ
ンサの要部を示す斜視図、図14は図13に示す導体を
使用した電流センサの測定電流と発生磁界,電力損失と
の関係を示す図(その1)、図15は図13に示す導体
を使用した電流センサの測定電流と発生磁界,電力損失
との関係を示す図(その2)である。
FIG. 13 is a perspective view showing an essential part of a current sensor according to another embodiment of the present invention, and FIG. 14 shows the relationship between the measured current, the generated magnetic field and the power loss of the current sensor using the conductor shown in FIG. FIG. 15 is a diagram (No. 1), and FIG. 15 is a diagram (No. 2) showing the relationship between the measured current, the generated magnetic field, and the power loss of the current sensor using the conductor shown in FIG.

【0044】図13において、1は導体、2は磁気抵抗
素子であり、平面視コ字形の導体1は、磁気抵抗素子2
に対峙する中央部1Dが両端の端子部1Cより小断面に
形成されている。導体1は、磁気抵抗素子2に対峙する
中央部(所定部)1Dの中心線1aが磁気抵抗素子2の
中心を通る垂線2aと交差しないように配せられ、中央
部1Dの幅をa,厚さをtとしたとき、検出電流の強さ
に対する中央部1Dの断面形状は、幅aまたは厚さtを
変えることになる。
In FIG. 13, 1 is a conductor, 2 is a magnetoresistive element, and the conductor 1 having a U-shape in plan view is a magnetoresistive element 2.
The central portion 1D facing each other is formed in a smaller cross section than the terminal portions 1C at both ends. The conductor 1 is arranged so that the center line 1a of the central portion (predetermined portion) 1D facing the magnetoresistive element 2 does not intersect the perpendicular 2a passing through the center of the magnetoresistive element 2, and the width of the central portion 1D is a, Assuming that the thickness is t, the cross-sectional shape of the central portion 1D with respect to the strength of the detected current changes the width a or the thickness t.

【0045】そこで、例えば銅板よりなり検出電流が2
00Aである導体1が、図13に実線で示すコ字形であ
りその厚さtが6mm, 幅aが4mmのとき、検出電流が1
00Aである導体1は、図13に破線で示す如く削除し
て幅aを1.5mmとし、検出電流を50Aとするには、図
13に二点鎖線で示す如く削除して幅aを0.8mmとす
る。
Therefore, for example, a detection current is 2 made of a copper plate.
When the conductor 1 of 00A has a U shape shown by a solid line in FIG. 13 and the thickness t is 6 mm and the width a is 4 mm, the detected current is 1
The conductor 1 of 00A is deleted as shown by a broken line in FIG. 13 to have a width a of 1.5 mm, and the detected current is 50 A, as shown by a chain double-dashed line in FIG. It will be 0.8 mm.

【0046】図14は、図13に示す導体中央部の厚さ
を変える方法で形成した50A用,100A用,200
A用導体1に付いて発生磁界(Oe)を実測し、その測定
値をプロットしたものである。図15は、図13に示す
導体中央部の幅を変える方法で形成した50A用,10
0A用,200A用導体1に付いて発生磁界(Oe)を実
測し、その測定値をプロットしたものである。
FIGS. 14A and 14B are for 50A, 100A and 200 formed by the method of changing the thickness of the central portion of the conductor shown in FIG.
The generated magnetic field (Oe) is actually measured for the A conductor 1 and the measured value is plotted. FIG. 15 shows a structure for 50A, 10 formed by the method of changing the width of the conductor central portion shown in FIG.
The generated magnetic field (Oe) was actually measured for the 0A and 200A conductors 1 and the measured values are plotted.

【0047】図14および図15から明らかなように、
導体中央部の断面形状を変えることによって、200A
用導体1から実用的な50A用,100A用導体1が、
容易に製造される。しかし、コ字形導体1を基本体とし
たとき、導体中央部の断面形状の変化は、幅を変えたも
のより厚さを変えた方が、低電流に対する発生磁界が大
きくなるため有利である。
As is clear from FIGS. 14 and 15,
By changing the cross-sectional shape of the conductor center, 200A
From the conductor 1 for practical use to the conductor 1 for 50A and 100A,
Easily manufactured. However, when the U-shaped conductor 1 is used as a basic body, the change in the cross-sectional shape of the central portion of the conductor is advantageous when the thickness is changed rather than when the width is changed, because the generated magnetic field for a low current becomes larger.

【0048】[0048]

【発明の効果】以上説明したように、本発明において
は、磁気シールド部材を絶縁性ソフトフェライト材料か
ら形成したことにより、高周波応答特性に秀れ、検出電
流の波形を忠実に再現できる電流センサを提供すること
ができる。また導体幅の選定により検出電流範囲を設定
することで、磁気抵抗素子及び磁気遮蔽部材の変更を要
することなく種々の電流値に対応可能となるので、互換
性に秀れる電流センサの検出電流範囲の設定方法を提供
できる。
As described above, according to the present invention, since the magnetic shield member is formed of the insulating soft ferrite material, a current sensor having excellent high frequency response characteristics and capable of faithfully reproducing the detected current waveform is provided. Can be provided. Also, by setting the detection current range by selecting the conductor width, it is possible to handle various current values without the need to change the magnetic resistance element and the magnetic shielding member. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電流センサの基本的構成図である。FIG. 1 is a basic configuration diagram of a current sensor of the present invention.

【図2】 実施例1の電流センサの要部斜視図である。FIG. 2 is a perspective view of a main part of the current sensor according to the first embodiment.

【図3】 実施例1の電流センサの断面図と平面図であ
る。
3A and 3B are a cross-sectional view and a plan view of the current sensor according to the first embodiment.

【図4】 フェライトとパーマロイの透磁率μの周波数
特性の説明図である。
FIG. 4 is an explanatory diagram of frequency characteristics of magnetic permeability μ of ferrite and permalloy.

【図5】 実施例2の電流センサの断面図である。FIG. 5 is a sectional view of a current sensor according to a second embodiment.

【図6】 バーバーポール形磁気抵抗素子の概略平面図
である。
FIG. 6 is a schematic plan view of a barber pole type magnetoresistive element.

【図7】 バーバーポール形磁気抵抗素子の直線状部の
構成説明図である。
FIG. 7 is a structural explanatory view of a linear portion of a barber pole type magnetoresistive element.

【図8】 バーバーポール形磁気抵抗素子の作用説明図
である。
FIG. 8 is an explanatory view of the action of a barber pole type magnetoresistive element.

【図9】 バーバーポール形磁気抵抗素子のバイアス磁
界による安定化の説明図である。
FIG. 9 is an explanatory diagram of stabilization of a barber pole type magnetoresistive element by a bias magnetic field.

【図10】 バーバーポール形磁気抵抗素子の構造断面
図である。
FIG. 10 is a structural cross-sectional view of a barber pole type magnetoresistive element.

【図11】 電流センサの導体幅と電力損及び発生磁界
の関係を示す図である。
FIG. 11 is a diagram showing the relationship between the conductor width of the current sensor and the power loss and generated magnetic field.

【図12】 電流センサの波形説明図である。FIG. 12 is a waveform explanatory diagram of a current sensor.

【図13】 本発明の他の実施例による電流センサの要
部を示す斜視図である。
FIG. 13 is a perspective view showing a main part of a current sensor according to another embodiment of the present invention.

【図14】 図13に示す導体を使用した電流センサの
測定電流と発生磁界,電力損失との関係を示す図(その
1)である。
14 is a diagram (part 1) showing the relationship between the measured current, the generated magnetic field, and the power loss of the current sensor using the conductor shown in FIG.

【図15】 図13に示す導体を使用した電流センサの
測定電流と発生磁界,電力損失との関係を示す図(その
2)である。
15 is a diagram (part 2) showing the relationship between the measured current, the generated magnetic field, and the power loss of the current sensor using the conductor shown in FIG.

【図16】 磁気抵抗素子を使用した従来の電流センサ
の斜視図である。
FIG. 16 is a perspective view of a conventional current sensor using a magnetoresistive element.

【符号の説明】[Explanation of symbols]

1,11は導体 1B,1Dは導体の中央部(所定部) 2は磁気抵抗素子 3は磁気シールド部材 1 and 11 are conductors 1B and 1D are the central parts of the conductors (predetermined parts) 2 is a magnetoresistive element 3 is a magnetic shield member

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 検出電流(i)を流すことによって電流
磁界を発生させる導体(1)と、該導体(1)に対応し
て配され作動電流の供給を受けて該電流磁界を検出する
磁気抵抗素子(2)と、該導体(1)及び該磁気抵抗素
子(2)を外部磁界から磁気的に遮蔽する磁気シールド
部材(3)とを備える電流センサにおいて、該磁気シー
ルド部材(3)が絶縁性ソフトフェライト材料から形成
されることを特徴とする電流センサ。
1. A conductor (1) for generating a current magnetic field by flowing a detection current (i), and a magnet arranged corresponding to the conductor (1) for receiving an operating current and detecting the current magnetic field. In a current sensor comprising a resistance element (2) and a magnetic shield member (3) for magnetically shielding the conductor (1) and the magnetoresistive element (2) from an external magnetic field, the magnetic shield member (3) is A current sensor characterized by being formed from an insulating soft ferrite material.
【請求項2】 前記導体(1)は、前記磁気抵抗素子
(2)と対峙する所定部の断面が他の導体部分の断面よ
りも小さく形成されていることを特徴とする請求項1記
載の電流センサ。
2. The conductor (1) according to claim 1, wherein a predetermined portion of the conductor (1) facing the magnetoresistive element (2) has a cross section smaller than that of another conductor portion. Current sensor.
【請求項3】 前記導体(1)は、前記所定部の長さ方
向の中心線が前記磁気抵抗素子(2)の中心を通る垂線
に交差することを特徴とする請求項2記載の電流セン
サ。
3. The current sensor according to claim 2, wherein the conductor (1) has a center line in the lengthwise direction of the predetermined portion intersecting a perpendicular line passing through the center of the magnetoresistive element (2). .
【請求項4】 前記導体(1)は、前記所定部の長さ方
向の中心線が前記磁気抵抗素子(2)の中心を通る垂線
から一側にずれていることを特徴とする請求項2記載の
電流センサ。
4. The conductor (1) is characterized in that the center line in the lengthwise direction of the predetermined portion is displaced to one side from a perpendicular line passing through the center of the magnetoresistive element (2). The described current sensor.
【請求項5】 前記磁気シールド部材(3)が、前記導
体(1)の配される面側に該導体(1)の形状よりも大
きな開口を備えることを特徴とする請求項1又は2に記
載の電流センサ。
5. The magnetic shield member (3) according to claim 1 or 2, wherein an opening larger than the shape of the conductor (1) is provided on the surface side where the conductor (1) is arranged. The described current sensor.
【請求項6】 検出電流(i)を介して電流磁界を発生
させる導体(1)と、該導体(1)に対応して配され作
動電流の供給を受けて該電流磁界を検出する磁気抵抗素
子(2)と、前記導体(1)及び前記磁気抵抗素子
(2)を外部磁界から磁気的に遮蔽する磁気シールド部
材(3)とを備える電流センサの検出電流範囲の設定方
法において、前記導体(1)の、磁気抵抗素子(2)と
対峙する所定部の断面形状の選定により、前記検出電流
(i)の範囲を設定することを特徴とする電流センサの
検出電流範囲の設定方法。
6. A conductor (1) for generating a current magnetic field via a detection current (i), and a magnetoresistor arranged corresponding to the conductor (1) and supplied with an operating current to detect the current magnetic field. A method for setting a detection current range of a current sensor, comprising: an element (2); and a magnetic shield member (3) that magnetically shields the conductor (1) and the magnetoresistive element (2) from an external magnetic field. A method of setting a detection current range of a current sensor, characterized in that the range of the detection current (i) is set by selecting a cross-sectional shape of a predetermined portion facing the magnetoresistive element (2).
【請求項7】 前記導体(1)の所定部の断面形状の選
定が、該所定部の幅寸法の変化であることを特徴とする
請求項6記載の電流センサの検出電流範囲の設定方法。
7. The method for setting a detection current range of a current sensor according to claim 6, wherein the selection of the cross-sectional shape of the predetermined portion of the conductor (1) is a change of the width dimension of the predetermined portion.
【請求項8】 前記導体(1)の所定部の断面形状の選
定が、該所定部の厚さ寸法の変化であることを特徴とす
る請求項6記載の電流センサの検出電流範囲の設定方
法。
8. The method for setting the detected current range of a current sensor according to claim 6, wherein the selection of the cross-sectional shape of the predetermined portion of the conductor (1) is a change in the thickness dimension of the predetermined portion. .
JP3194558A 1990-11-15 1991-08-03 Current sensor and setting method for range of detection current thereof Withdrawn JPH052033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194558A JPH052033A (en) 1990-11-15 1991-08-03 Current sensor and setting method for range of detection current thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-309204 1990-11-15
JP30920490 1990-11-15
JP3194558A JPH052033A (en) 1990-11-15 1991-08-03 Current sensor and setting method for range of detection current thereof

Publications (1)

Publication Number Publication Date
JPH052033A true JPH052033A (en) 1993-01-08

Family

ID=26508570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194558A Withdrawn JPH052033A (en) 1990-11-15 1991-08-03 Current sensor and setting method for range of detection current thereof

Country Status (1)

Country Link
JP (1) JPH052033A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011475A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Circuit breaker
US6734671B2 (en) 2001-03-07 2004-05-11 Denso Corporation Magnetic sensor and manufacturing method therefor
WO2006098372A1 (en) * 2005-03-17 2006-09-21 Omron Corporation High frequency interface device
JP2007113965A (en) * 2005-10-18 2007-05-10 Denso Corp Current sensor
JP2008241678A (en) * 2007-03-27 2008-10-09 Koshin Denki Kk Current sensor and current detecting device
JP2009156874A (en) * 1999-03-12 2009-07-16 Eaton Corp Soft starter for electric motor
JP2010014729A (en) * 2002-09-20 2010-01-21 Allegro Microsyst Inc Integrated current sensor
WO2014196203A1 (en) 2013-06-06 2014-12-11 パナソニックIpマネジメント株式会社 Image acquisition device, image acquisition method, and program
CN104820125A (en) * 2015-04-27 2015-08-05 江苏多维科技有限公司 Integrated current sensor using Z-axis magnetoresistance gradiometer and lead frame current
WO2016190087A1 (en) * 2015-05-22 2016-12-01 アルプス・グリーンデバイス株式会社 Current sensor
JP2019120687A (en) * 2018-01-05 2019-07-22 メレクシス・テクノロジーズ・ソシエテ・アノニムMelexis Technologies Sa Offset current sensor structure
EP4075151A1 (en) * 2021-04-18 2022-10-19 Melexis Technologies SA Current sensor system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011475A1 (en) * 1995-09-20 1997-03-27 Hitachi, Ltd. Circuit breaker
JP2009156874A (en) * 1999-03-12 2009-07-16 Eaton Corp Soft starter for electric motor
US6734671B2 (en) 2001-03-07 2004-05-11 Denso Corporation Magnetic sensor and manufacturing method therefor
US7078238B2 (en) 2001-03-07 2006-07-18 Denso Corporation Method for manufacturing magnetic sensor
JP2010014729A (en) * 2002-09-20 2010-01-21 Allegro Microsyst Inc Integrated current sensor
WO2006098372A1 (en) * 2005-03-17 2006-09-21 Omron Corporation High frequency interface device
JP2007113965A (en) * 2005-10-18 2007-05-10 Denso Corp Current sensor
JP2008241678A (en) * 2007-03-27 2008-10-09 Koshin Denki Kk Current sensor and current detecting device
WO2014196203A1 (en) 2013-06-06 2014-12-11 パナソニックIpマネジメント株式会社 Image acquisition device, image acquisition method, and program
US9426363B2 (en) 2013-06-06 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Image forming apparatus image forming method and image sensor
CN104820125A (en) * 2015-04-27 2015-08-05 江苏多维科技有限公司 Integrated current sensor using Z-axis magnetoresistance gradiometer and lead frame current
WO2016190087A1 (en) * 2015-05-22 2016-12-01 アルプス・グリーンデバイス株式会社 Current sensor
JP2019120687A (en) * 2018-01-05 2019-07-22 メレクシス・テクノロジーズ・ソシエテ・アノニムMelexis Technologies Sa Offset current sensor structure
EP4075151A1 (en) * 2021-04-18 2022-10-19 Melexis Technologies SA Current sensor system
US11796573B2 (en) 2021-04-18 2023-10-24 Melexis Technologies Sa Current sensor system

Similar Documents

Publication Publication Date Title
CA1281132C (en) Magnetic transducer head utilizing magnetoresistance effect
US4097802A (en) Magnetoresistive field sensor with a magnetic shield which prevents sensor response at fields below saturation of the shield
CA1320549C (en) Acceleration sensor
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
EP0484474B1 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
JP3210192B2 (en) Magnetic sensing element
US6472868B1 (en) Magnetic impedance element having at least two thin film-magnetic cores
US12055605B2 (en) Hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive sensing elements
JPS6240611A (en) Magnetic head
JPH052033A (en) Current sensor and setting method for range of detection current thereof
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
US20200142009A1 (en) Low-noise magnetoresistive sensor having multi-layer magnetic modulation structure
JPH09185809A (en) Magnetic head
Thompson Magnetoresistive transducers in high‐density magnetic recording
JPS61173101A (en) Positional sensor
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
JP4418986B2 (en) Magnetic field detection element and magnetic field detection method using the same
JPS62192017A (en) Magnetic head
CN210572104U (en) Hydrogen sensor based on electric isolation tunnel magnetic resistance sensitive element
JPS638531B2 (en)
JP2552683B2 (en) Current sensor
JPH0534374A (en) Current detection by use of current sensor
JPS58100217A (en) Magnetoresistance effect head
US5699214A (en) Magnetic information detecting apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112