JPH0520200B2 - - Google Patents

Info

Publication number
JPH0520200B2
JPH0520200B2 JP2269189A JP2269189A JPH0520200B2 JP H0520200 B2 JPH0520200 B2 JP H0520200B2 JP 2269189 A JP2269189 A JP 2269189A JP 2269189 A JP2269189 A JP 2269189A JP H0520200 B2 JPH0520200 B2 JP H0520200B2
Authority
JP
Japan
Prior art keywords
arc
amount
bead
wire
bead shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2269189A
Other languages
Japanese (ja)
Other versions
JPH02205299A (en
Inventor
Tomoyuki Suzuki
Toshuki Izumi
Shigeru Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2269189A priority Critical patent/JPH02205299A/en
Publication of JPH02205299A publication Critical patent/JPH02205299A/en
Publication of JPH0520200B2 publication Critical patent/JPH0520200B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は鋼構造物の溶接に用いるガスシールド
アーク溶接用複合ワイヤに係るものであり、更に
詳しくは、低電流でのアークが安定で、ビード形
状が良好な小脚長のすみ肉溶接金属を与えるガス
シールドアーク溶接用複合ワイヤに関するもので
ある。 [従来の技術] TiO2系フラツクスを充填してなるガスシール
ドアーク溶接用複合ワイヤ(以下複合ワイヤと記
す)は、TiO2を主成分とするためCO2シールド
溶接でもソリツドワイヤに比べアークが安定しス
パツタの少ない溶接が可能となり、ビードは生成
スラグにより完全に被包されるため外観が美しい
等の利点があり、鋼材の突合せ溶接、すみ肉溶接
に多く採用されてきている。 更に近年溶接構造物は多岐にわたり、特に造船
業界では、客船用に3.2mmから6mm程度の板厚を
有する鋼板に対し、半自動溶接でも、ビード形状
が良好な脚長3〜4mmのすみ肉ビードガ得られる
複合ワイヤの開発要望が強まつてきた。 しかしながら、この要望に対し従来の複合ワイ
ヤでは、係る要望を達成することは困難であつ
た。即ち、従来の複合ワイヤを半自動溶接にて3
〜4mmの小脚長ビードを得るには、低電流で溶接
せざるをえない。しかし、低電流で溶接を行う場
合、例えば1.2mmφの複合ワイヤでは170A以下で
はアークが不安定でビードが不揃いになり易く、
アンダーカツトが発生する等の問題があつた。ま
た、ワイヤ径を0.9mmφ,1.0mmφとさらに細径化
し、低電流で電流密度を高めて溶接する方法もあ
るが、アークの安定性はあまり改善されず、半自
動溶接による小脚長のすみ肉ビードを得ることは
実現されないのが実情であつた。 [発明が解決しようとする課題] 本発明はこうした事情に着目してなされたもの
であつて、低電流でのアークが安定で、ビード形
状の良好な小脚長のすみ肉溶接金属を付与し得る
ガスシールドアーク溶接用複合ワイヤを提供する
ことを目的とするものである。 [課題を解決するための手段] 上記目的を達成した本発明複合ワイヤは、ワイ
ヤ全重量に対してスラグ形成剤としてTiO2:5.6
〜8.5wt%、ZrO2:0.4〜2.5wt%、KMg2.5Si4O10
F2(カリ四ケイ素雲母):0.2〜1.2wt%、脱酸剤と
してSi:0.3〜0.8wt%、Mn:1.0〜3.0wt%,を含
み、Si,Mn以外の脱酸剤の総量:0.2wt%以下に
制限され、その他、スラグ形成剤、合金剤、鉄粉
及び不可避不純物よりなるフラツクスを、ワイヤ
全重量に対して10〜25wt%を含有する点に要旨
が存在する。 即ち、本発明は溶接作業性並びに溶接能率が良
好である、TiO2系複合ワイヤの特長を生かしつ
つ、低電流域でのアーク安定性の向上をはかるべ
く、TiO2系複合ワイヤのワイヤ成分組成に種々
検討を重ねた結果完成されたものであり、前記構
成に示されるフラツクス組成、特にスラグ形成剤
としてTiO2量,ZrO2,KMg2.5Si4O10F2量、脱酸
剤としてSi量,Mn量,及びSi,Mn以外の脱酸剤
の総量を夫々適正に設定することによつて、特に
低電流域においてアークを安定化させ、これによ
り溶滴の移行性を改善させ、ビード形状の良好な
小脚長のすみ肉ビードを得ることに成功したもの
である。 [作用] 即ち、本発明者は、TiO2,ZrO2,KMg2.5Si4
O10F2,Si,Mn,及びSi,Mn以外の脱酸剤の適
正含有量を調査するために、第1表〜第6表に示
すワイヤ成分を基本に、1.2mmφ,フラツクス充
填率15.0wt%の複合ワイヤを試作し、以下の溶接
条件にて水平すみ肉溶接で目標脚長3.0〜4.0mmと
し、半自動溶接にてアーク状態、ビード形状を評
価した。 溶接条件 極 性 DCRP 溶接電流 150A ワイヤ突き出し長さ 10〜15mm ガ ス CO2 25/min 鋼 板 SM41B(6t)
[Industrial Field of Application] The present invention relates to a composite wire for gas-shielded arc welding used for welding steel structures, and more specifically, a composite wire with a small leg length that has a stable arc at low current and a good bead shape. This invention relates to a composite wire for gas-shielded arc welding that provides fillet weld metal. [Conventional technology] Composite wire for gas-shielded arc welding (hereinafter referred to as composite wire) filled with TiO 2 -based flux has TiO 2 as its main component, so the arc is more stable than solid wire even during CO 2 shield welding. It enables welding with fewer spatters, and has the advantage of a beautiful appearance because the bead is completely covered by the generated slag, so it has been widely used for butt welding and fillet welding of steel materials. Furthermore, in recent years, welded structures have become diverse, and in the shipbuilding industry in particular, fillet beads with a good bead shape and leg length of 3 to 4 mm can be obtained even with semi-automatic welding for steel plates with a thickness of about 3.2 mm to 6 mm for passenger ships. Demand for the development of composite wires has been increasing. However, it has been difficult to meet this demand with conventional composite wires. In other words, 3 conventional composite wires are semi-automatically welded.
To obtain a bead with a small leg length of ~4 mm, it is necessary to weld at a low current. However, when welding with a low current, for example with a composite wire of 1.2 mmφ, the arc is unstable and the bead tends to become irregular at 170 A or less.
There were problems such as undercutting. Another method is to reduce the wire diameter to 0.9mmφ or 1.0mmφ and weld by increasing the current density at a low current, but the stability of the arc is not improved much, and fillet beads with small legs are produced by semi-automatic welding. The reality was that it was not possible to achieve this goal. [Problems to be Solved by the Invention] The present invention has been made with attention to these circumstances, and it is possible to provide fillet weld metal with a small leg length and a stable arc at low current and a good bead shape. The object of the present invention is to provide a composite wire for gas-shielded arc welding. [Means for Solving the Problems] The composite wire of the present invention, which has achieved the above object, contains TiO 2 :5.6 as a slag forming agent based on the total weight of the wire.
~8.5wt%, ZrO2 :0.4 ~ 2.5wt% , KMg2.5Si4O10
Contains F 2 (potash tetrasilicon mica): 0.2 to 1.2 wt%, Si: 0.3 to 0.8 wt%, Mn: 1.0 to 3.0 wt% as deoxidizing agents, total amount of deoxidizing agents other than Si and Mn: 0.2 The gist is that the flux is limited to 10 to 25 wt% of the total weight of the wire, and fluxes consisting of slag forming agents, alloying agents, iron powder, and unavoidable impurities are limited to 10 to 25 wt% based on the total weight of the wire. That is, the present invention takes advantage of the characteristics of TiO 2 composite wire, which has good welding workability and welding efficiency, and improves the wire composition of TiO 2 composite wire in order to improve arc stability in the low current range. It was completed as a result of various studies, and the flux composition shown in the above structure, especially the amount of TiO 2 as a slag forming agent, the amount of ZrO 2 , KMg 2.5 Si 4 O 10 F 2 amount, and the amount of Si as a deoxidizing agent. By appropriately setting the amount of , Mn, and the total amount of deoxidizers other than Si and Mn, the arc is stabilized, especially in the low current range, and this improves droplet migration and improves the bead shape. We succeeded in obtaining a fillet bead with a good small leg length. [Function] That is, the present inventor discovered that TiO 2 , ZrO 2 , KMg 2.5 Si 4
In order to investigate the appropriate content of O 10 F 2 , Si, Mn, and deoxidizers other than Si and Mn, we used wire compositions of 1.2 mmφ and flux filling rate of 15.0 based on the wire components shown in Tables 1 to 6. We prototyped a composite wire of wt% and used horizontal fillet welding to achieve a target leg length of 3.0 to 4.0 mm under the following welding conditions, and evaluated the arc condition and bead shape using semi-automatic welding. Welding conditions Polarity DCRP Welding current 150A Wire protrusion length 10~15mm Gas CO 2 25/min Steel plate SM41B (6t)

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1図はTiO2の適正含有量を示す図であり、
TiO2が5.6wt%未満では、アーク状態、ビード形
状とも不良であり、5.6wt%以上でアークが安定
となりビード形状も良好となる。しかし、8.5wt
%を超えて含有させると、スラグが溶接ビードに
かみ込みビード形状が不良となる。即ちTiO2
適正範囲は5.6〜8.5wt%であることが分つた。 第2図はZrO2の適正含有量を示す図であり、
ZrO2が0.4wt%ではアーク状態、ビード形状とも
不良であり、2.5wt%を超えると溶接ビードが不
揃いとなる。即ちZrO2の適正範囲は0.4〜2.5wt%
であることが分つた。 第3図はKMg2.5Si4O10F2の適正含有量を示す
図である。ビード形状においては、0.2wt%未満
ではビードが不揃いで表面が凹凸となり、1.2wt
%を超えると溶接し難くビードが不揃いとなる。
また、アーク状態においては、1.2wt%を超える
とアークが不安定でスパツタが増える。即ち、ビ
ード形状及びアーク状態が良好となる範囲は、
0.2〜1.2wt%であることが分つた。 第4図はSiの適正含有量を示す図であり、アー
ク状態においては、0.8wt%を超えると溶滴が大
塊化しアークが不安定となり、ビード形状も不良
となる。また、ビード形状においては、0.3wt%
未満では脱酸不足となりビードにピツト,ブロー
ホールが発生する。即ち、Siの適正範囲は0.3〜
0.8wt%であることが分つた。 第5図は、Mnの適正含有量を示す図であり、
アーク状態においては3.0wt%を超えるとSi同様、
溶滴が大塊化しアークが不安定となり、ビード形
状も不良となる。また、ビード形状においては、
1.0wt%未満では脱酸不足となりビードにピツト,
ブローホールが発生する。即ち、Mnの適正範囲
は1.0〜3.0wt%であることが分つた。 第6図は、Si,Mn以外の脱酸剤の適正含有量
を示す図であり、Si,Mn以外の脱酸剤の総量が
0.2wt%を超えると、溶滴が大塊化しアークが不
安定になり、ビード形状も不良となる。即ち、
Si,Mn以外の脱酸剤の総量は0.2wt%以下である
ことが分つた。 以下に上記の知見等に基づき成分限定根拠につ
いて述べる。 ・ スラグ形成剤のうちTiO2:5.6〜8.5wt% ワイヤ先端に形成される溶滴は一方は表面張力
によつて粗大化しようとする傾向があり、他方で
は溶接電流によるピンチ力の影響によつてワイヤ
先端から突放されようとしている。従つて溶接電
流が低過ぎると、ピンチ力が不足しワイヤ先端か
ら突放す力が弱いので溶滴は表面張力によつてど
んどん成長し、大塊化してから重力によつて落下
するという状況(グロビユラー移行)を呈するこ
とになる。従つて溶滴が大塊化すればアーク発生
が不均一でアークが安定しないことになる。これ
を改善するためには、溶滴の酸素量濃度を高め、
溶滴の表面張力を低下させ溶滴の細粒化を図るこ
とである。 上記効果を発揮させるためにTiO2は5.6〜8.5wt
%含有させる必要がある。TiO2は酸性酸化物で
あり溶滴の酸素濃度を高めて溶滴の細粒化に効果
がある。5.6wt%未満では、低電流でのアーク安
定性に効果がなく、8.5wt%を超えるとスラグの
粘性が増加して、溶接ビードが不揃いとなり、ビ
ード表面が凹凸になるので好ましくない。 ・ スラグ形成剤のうちZrO2:0.4〜2.5wt% ZrO2はTiO2と同様に酸性酸化物であり、溶滴
の酸素濃度を高めて溶滴の細粒化に効果がある。
この作用を発揮させるためには0.4wt%以上含有
させなければならない。しかし、ZrO2は凝固温
度が高いので2.5wt%を超えると、TiO2同様、溶
接ビードが不揃いとなり好ましくない。 ・ スラグ形成剤のうちKMg2.5Si4O10F2
:0.2〜1.2wt% TiO2,ZrO2の添加により溶滴の酸素濃度を高
め溶滴を細粒化させ、アークの安定性を向上させ
ることが出来るが、生成スラグの粘性が低く、す
み肉溶接ビードが不揃いでビード表面が凹凸にな
り易い。更に、溶接ビードを良好にするために
種々の検討の結果、特開昭54−127848号公報で提
案された、低水素系被覆アーク溶接棒の溶接ビー
ド止端の疲労強度を改善する目的で開発された、
KMg2.5Si4O10F2を複合ワイヤに0.2〜1.2wt%含有
させることにより、スラグの粘性を調整し、溶接
ビードの揃いを良好にさせ、ビード表面を滑らか
にすることが出来た。また、KMg2.5Si4O10F2
含まれるK+イオンがアーク中で分解し、アーク
を安定化させる効果もあり低電流でのアーク安定
性を向上することができる。これらの効果を発揮
させるために0.2wt%以上含有させなければなら
ない。1.2wt%を超えるとスラグの粘度が高くな
りすぎて溶接し難くビードが揃いにくくなる。更
にK+イオンが多量に含まれるためアーク長を長
くさせ、スパツタ量,ヒユーム量を増加させる原
因となるので好ましくない。 ・ Si:0.3〜0.8wt% 低電流ではピンチ力が不足しワイヤ先端から離
脱する力が弱いため、溶滴はワイヤ先端部に滞留
する時間が長くなり、脱酸剤との反応時間も多く
なる。特に脱酸剤が過剰に存在する状況下では溶
滴の酸素濃度を減少させ、溶滴の表面張力が増加
し溶滴は大塊化する。 また、脱酸剤と反応形成された酸化物層が溶滴
表面に形成されアーク発生点を乱すことにもな
る。これらの悪影響を防止するためには、脱酸剤
による溶滴の表面張力の増大と表面酸化層の形成
を抑制することである。しかしながら、溶接金属
の性能を良好に保つ量は必要である。これらを満
足させるためには、Si量は0.3〜0.8wt%とする必
要がある。0.3wt%未満では脱酸不足となり良好
な溶接金属を得ることが出来ない。一方0.8wt%
を超えると溶滴の表面張力が増大し溶滴が大塊化
し、また溶滴表面に酸化物層が形成されアークを
乱すことになる。 ・ Mn:1.0〜3.0wt% MnはSiと同様に適正な範囲内で含有させるこ
とにより、溶滴の表面張力の増大と表面酸化物層
の形成を抑制することが出来る。しかし、1.0wt
%未満では脱酸不足となり溶接金属の衝撃性能が
劣化する。一方3.0wt%を超えるとSi同様に溶滴
の表面張力が増大し、溶滴が大塊化され、また溶
滴表面に酸化物層が形成されアークを乱すことに
なる。 ・ Si,Mn以外の脱酸剤の総量:0.2wt%以下 溶滴表面に形成される酸化物層を抑制するため
には、既述の如くSi量,Mn量を適正範囲内で含
有させるというだけでなく、Si,Mn以外の脱酸
剤の総量を適切に限定する必要がある。即ち、
Si,Mn以外の脱酸剤としてC,A,Mg,Ti,
Zr,Ca等を1種又は2種以上含有させるが、そ
の総量が0.2wt%を超えると溶滴の酸素濃度を減
少させて溶滴を大塊化させアークを不安定にさせ
る。また、Si,Mnよりも酸化物層を溶滴表面に
形成し易く、アークを不安定にするため、Si,
Mn以外の脱酸剤の総量は0.2wt%以下としなけ
ればならない。 以上の様にTiO2,ZrO2,KMg2.5Si4O10F2,Si
量,Mn量及びSi,Mn以外の脱酸剤の総量を規
定することによつて、低電流でのアークが安定で
ビード形状の良好な小脚長のすみ肉溶接金属を与
える複合ワイヤを得る事が出来る。 本発明の基本構成は上記の通りであるが、その
他のスラグ形成剤として、SiO2,A2O3
FeO,Fe2O3,MgO,Na2O,K2Oが例示され、
これらを1種又は2種以上を含有させることでビ
ードをスラグが均一に覆いビード形状を良好にす
ることが出来る。 また合金剤としては、Ni,Cr,V,Nb等の合
金元素の1種又は2種以上を含有させることで、
溶接金属に高靱性や耐候性の性能を与えることが
できる。またBiを含有させることによりスラグ
剥離性の向上も図れ、更に鉄粉を含有させること
で溶着速度の向上も図れる。 更に、充填率は無制限に許される訳ではなく、
ワイヤ全重量に対して10〜25wt%の範囲とする。
充填率が10wt%未満ではアークが不安定でスラ
グの被包性が低下し、アンダーカツトの多い凸型
ビードになり易く、一方25wt%を超えると生成
スラグ量が過大になるため、スラグ巻き込みが発
生し易くまた、伸線時に断線が生じる危険性があ
る。 [実施例] 第7表に試作した複合ワイヤの構成を、第8表
にその試験結果を示す。第7表において、ワイヤ
No.1〜No.17は比較例,No.18〜No.30が本発明例であ
る。いずれの複合ワイヤも軟鋼外皮を用い、電縫
鋼管に特公昭45−30937号公報記載の技術を用い
てフラツクスおよびパイプを振動させながら充填
し、伸線途中段階で650℃の焼鈍を行い、ワイヤ
表面にCuめつきを施して1.2mmφ径に仕上げた。 尚、試験は[作用]の説明において記載した方
法で行い、アーク状態、ビード形状を評価した。
この結果、No.1はTiO2量が少くアーク状態、ビ
ード形状とも不良で、No.2はTiO2量が多く、ア
ーク状態は良好であるが、スラグがビードにかみ
込み良好な溶接ビードが得られなかつた。No.3は
ZrO2量が少くアーク状態が不良でビード形状も
悪かつた。No.4はZrO2量が多くアーク状態は良
好であるが、スラグがビードにかみ込み不良であ
つた。No.5はKMg2.5Si4O10F2量が少いためビー
ドが不揃で表面が凹凸となり、良好な溶接ビード
が得られなかつた。No.6はKMg2.5Si4O10F2量が
多くアーク状態、ビード形状とも不良であつた。
No.7はSi量、No.9はMn量が少いないため、ピツ
ト,ブローホールが発生した。No.8はSi量が、No.
10はMn量が多いため、アーク状態、ビード形状
とも不良であつた。No.11〜No.15はSi,Mn以外の
脱酸剤の総量が本発明の範囲外であり、アーク状
態、ビード形状とも不良であつた。No.16はフラツ
クス充填率が低く、アーク状態、ビード形状とも
不良となつた。No.17はフラツクス充填率が高く、
生成スラグ量が過大となり、スラグ巻き込みが発
生した。 これに対してNo.18〜No.30はTiO2量,ZrO2量,
KMg2.5Si4O10F2量,Si量,Mn量及びSi,Mn以
外の脱酸剤の総量が本発明の範囲内であるため、
低電流でもアークが安定で良好な溶接ビードを得
ることができた。
[Table] Figure 1 shows the appropriate content of TiO 2 ,
If TiO 2 is less than 5.6 wt%, both the arc condition and the bead shape are poor, and if it is 5.6 wt% or more, the arc becomes stable and the bead shape becomes good. However, 8.5wt
If the content exceeds 5%, the slag will get caught in the weld bead, resulting in poor bead shape. That is, it was found that the appropriate range of TiO 2 is 5.6 to 8.5 wt%. Figure 2 is a diagram showing the appropriate content of ZrO 2 ,
When ZrO 2 is 0.4wt%, both the arc condition and the bead shape are poor, and when it exceeds 2.5wt%, the weld bead becomes irregular. In other words, the appropriate range of ZrO 2 is 0.4-2.5wt%
It turned out to be. FIG. 3 is a diagram showing the appropriate content of KMg 2.5 Si 4 O 10 F 2 . Regarding the bead shape, if it is less than 0.2wt%, the bead will be uneven and the surface will be uneven;
If it exceeds %, it will be difficult to weld and the bead will become irregular.
Furthermore, in an arc state, if it exceeds 1.2 wt%, the arc becomes unstable and spatter increases. In other words, the range where the bead shape and arc condition are good is:
It was found to be 0.2-1.2wt%. FIG. 4 is a diagram showing the appropriate content of Si. In an arc state, if it exceeds 0.8 wt%, the droplets become large agglomerates, the arc becomes unstable, and the bead shape becomes poor. In addition, in the bead shape, 0.3wt%
If it is less than that, there will be insufficient deoxidation and pits and blowholes will occur in the bead. In other words, the appropriate range for Si is 0.3~
It was found to be 0.8wt%. FIG. 5 is a diagram showing the appropriate content of Mn,
In the arc state, if it exceeds 3.0wt%, like Si,
The droplets become large clumps, the arc becomes unstable, and the bead shape becomes poor. In addition, regarding the bead shape,
If it is less than 1.0wt%, deoxidation will be insufficient and the bead will become pitted.
A blowhole occurs. That is, it was found that the appropriate range of Mn is 1.0 to 3.0 wt%. Figure 6 is a diagram showing the appropriate content of deoxidizing agents other than Si and Mn, and the total amount of deoxidizing agents other than Si and Mn is
If it exceeds 0.2wt%, the droplets will become large clumps, the arc will become unstable, and the bead shape will also be poor. That is,
It was found that the total amount of deoxidizers other than Si and Mn was less than 0.2wt%. Below, we will discuss the basis for limiting ingredients based on the above findings.・ TiO 2 in the slag forming agent: 5.6 to 8.5 wt% The droplets formed at the tip of the wire tend to become coarser on the one hand due to surface tension, and on the other hand due to the influence of the pinch force caused by the welding current. It is about to be ejected from the tip of the wire. Therefore, if the welding current is too low, the pinching force is insufficient and the force for ejecting the wire from the tip is weak, so the droplet grows rapidly due to surface tension, becomes a large clump, and then falls due to gravity (globulular). transition). Therefore, if the droplets form into large clumps, arc generation will be uneven and the arc will not be stable. In order to improve this, it is necessary to increase the oxygen concentration of the droplets.
The goal is to reduce the surface tension of the droplets and make the droplets finer. TiO 2 is 5.6 to 8.5wt to achieve the above effect.
It is necessary to contain %. TiO 2 is an acidic oxide and is effective in increasing the oxygen concentration of droplets and making them finer. If it is less than 5.6 wt%, it has no effect on arc stability at low currents, and if it exceeds 8.5 wt%, the viscosity of the slag increases, making the weld bead uneven and making the bead surface uneven, which is not preferable. - Among the slag forming agents, ZrO 2 : 0.4 to 2.5 wt% ZrO 2 is an acidic oxide like TiO 2 and is effective in increasing the oxygen concentration of the droplets and making the droplets finer.
In order to exhibit this effect, the content must be 0.4 wt% or more. However, since ZrO 2 has a high solidification temperature, if it exceeds 2.5 wt%, the weld bead will become irregular, similar to TiO 2 , which is not preferable.・KMg 2.5 Si 4 O 10 F 2 among slag forming agents
:0.2~1.2wt% Addition of TiO 2 and ZrO 2 can increase the oxygen concentration of the droplets and make the droplets finer, improving the stability of the arc, but the viscosity of the produced slag is low and fillet The weld bead is irregular and the bead surface tends to become uneven. Furthermore, as a result of various studies to improve the weld bead, we developed a product proposed in JP-A-54-127848 for the purpose of improving the fatigue strength of the weld bead toe of a low-hydrogen coated arc welding rod. was done,
By containing 0.2 to 1.2 wt% of KMg 2.5 Si 4 O 10 F 2 in the composite wire, it was possible to adjust the viscosity of the slag, improve the alignment of the weld bead, and make the bead surface smooth. In addition, K + ions contained in KMg 2.5 Si 4 O 10 F 2 decompose in the arc and have the effect of stabilizing the arc, thereby improving arc stability at low currents. In order to exhibit these effects, it must be contained at 0.2 wt% or more. If it exceeds 1.2wt%, the viscosity of the slag becomes too high, making it difficult to weld and making it difficult to form beads. Furthermore, since a large amount of K + ions are included, the arc length becomes long, which is undesirable because it causes an increase in the amount of spatter and fumes.・Si: 0.3 to 0.8wt% At low currents, the pinch force is insufficient and the force to separate from the wire tip is weak, so the droplet stays at the wire tip for a long time and the reaction time with the deoxidizing agent increases. . Particularly in a situation where an excessive amount of deoxidizer exists, the oxygen concentration of the droplet decreases, the surface tension of the droplet increases, and the droplet becomes a large agglomerate. Furthermore, an oxide layer formed by reaction with the deoxidizing agent is formed on the surface of the droplet and disturbs the arc generation point. In order to prevent these adverse effects, it is necessary to suppress the increase in the surface tension of the droplets and the formation of a surface oxidation layer due to the deoxidizing agent. However, an amount is necessary to maintain good performance of the weld metal. In order to satisfy these requirements, the amount of Si needs to be 0.3 to 0.8 wt%. If it is less than 0.3wt%, deoxidation will be insufficient and a good weld metal cannot be obtained. On the other hand, 0.8wt%
If it exceeds this, the surface tension of the droplet will increase and the droplet will become a large agglomerate, and an oxide layer will be formed on the surface of the droplet, disturbing the arc. - Mn: 1.0 to 3.0 wt% Like Si, by containing Mn within an appropriate range, it is possible to suppress an increase in the surface tension of droplets and the formation of a surface oxide layer. However, 1.0wt
If it is less than %, deoxidation will be insufficient and the impact performance of the weld metal will deteriorate. On the other hand, if it exceeds 3.0 wt%, the surface tension of the droplet will increase, similar to Si, and the droplet will become large agglomerates, and an oxide layer will be formed on the surface of the droplet, disturbing the arc.・Total amount of deoxidizers other than Si and Mn: 0.2wt% or less In order to suppress the oxide layer formed on the droplet surface, as mentioned above, the amount of Si and Mn should be contained within the appropriate range. In addition, it is necessary to appropriately limit the total amount of deoxidizers other than Si and Mn. That is,
C, A, Mg, Ti,
One or more types of Zr, Ca, etc. are contained, but if the total amount exceeds 0.2 wt%, the oxygen concentration of the droplets is reduced, the droplets become large agglomerates, and the arc becomes unstable. In addition, Si and Mn tend to form an oxide layer on the surface of the droplet, making the arc unstable.
The total amount of deoxidizers other than Mn must be 0.2wt% or less. As mentioned above, TiO 2 , ZrO 2 , KMg 2.5 Si 4 O 10 F 2 , Si
By specifying the amount of Mn, the amount of Mn, and the total amount of deoxidizing agents other than Si and Mn, it is possible to obtain a composite wire that provides a fillet weld metal with a stable arc at low current and a good bead shape and a short leg length. I can do it. The basic structure of the present invention is as described above, but other slag forming agents include SiO 2 , A 2 O 3 ,
FeO, Fe 2 O 3 , MgO, Na 2 O, K 2 O are exemplified,
By containing one or more of these, the bead can be uniformly covered with slag and the bead shape can be improved. In addition, as an alloying agent, by containing one or more alloying elements such as Ni, Cr, V, and Nb,
It can provide high toughness and weather resistance to weld metal. Furthermore, by containing Bi, the slag removability can be improved, and by further containing iron powder, the welding speed can be improved. Furthermore, the filling rate is not allowed without limit;
It should be in the range of 10 to 25 wt% based on the total weight of the wire.
If the filling rate is less than 10wt%, the arc will be unstable and the slag encapsulation will deteriorate, resulting in a convex bead with many undercuts.On the other hand, if it exceeds 25wt%, the amount of slag produced will be excessive, resulting in slag entrainment. This is likely to occur, and there is a risk of wire breakage occurring during wire drawing. [Example] Table 7 shows the configuration of the prototype composite wire, and Table 8 shows the test results. In Table 7, the wire
No. 1 to No. 17 are comparative examples, and No. 18 to No. 30 are examples of the present invention. All composite wires use a mild steel outer sheath, are filled with flux and the pipe while vibrating using the technology described in Japanese Patent Publication No. 45-30937, and are annealed at 650°C during the wire drawing stage. The surface is Cu plated and finished to a diameter of 1.2mmφ. The test was conducted using the method described in the explanation of [Function], and the arc condition and bead shape were evaluated.
As a result, No. 1 had a small amount of TiO 2 and had a poor arc condition and bead shape, while No. 2 had a large amount of TiO 2 and had a good arc condition, but the slag was caught in the bead and a good weld bead was not obtained. I couldn't get it. No.3 is
The amount of ZrO 2 was small, the arc condition was poor, and the bead shape was also poor. In No. 4, the amount of ZrO 2 was large and the arc condition was good, but the slag was caught in the bead and was poor. In No. 5, since the amount of KMg 2.5 Si 4 O 10 F 2 was small, the bead was irregular and the surface was uneven, and a good weld bead could not be obtained. No. 6 had a large amount of KMg 2.5 Si 4 O 10 F 2 and was poor in arc condition and bead shape.
No. 7 had a small amount of Si, and No. 9 had a small amount of Mn, so pits and blowholes occurred. No. 8 has a Si amount, and No.
Sample No. 10 contained a large amount of Mn, so both the arc condition and bead shape were poor. In No. 11 to No. 15, the total amount of deoxidizer other than Si and Mn was outside the range of the present invention, and both the arc condition and bead shape were poor. No. 16 had a low flux filling rate, resulting in poor arc conditions and bead shape. No.17 has a high flux filling rate,
The amount of slag produced was excessive, and slag entrainment occurred. On the other hand, No. 18 to No. 30 have TiO 2 amount, ZrO 2 amount,
Since the amount of KMg 2.5 Si 4 O 10 F 2 , the amount of Si, the amount of Mn, and the total amount of deoxidizing agents other than Si and Mn are within the scope of the present invention,
Even at low currents, the arc was stable and a good weld bead could be obtained.

【表】【table】

【表】 ※は比較例
[Table] *Comparative examples

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 以上の様に本発明によれば、低電流でのアーク
が安定で、ビード形状が良好な小脚長のすみ肉溶
接金属を得ることができる。
[Table] [Effects of the Invention] As described above, according to the present invention, it is possible to obtain a fillet weld metal with a small leg length and a stable arc at low current and a good bead shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTiO2量とアーク状態及びビード形状
の関係を示した図、第2図はZrO2量とアーク状
態及びビード形状の関係を示した図、第3図は
KMg2.5Si4O10F2量とアーク状態及びビード形状
の関係を示した図、第4図はSi量とアーク状態及
びビード形状の関係を示した図、第5図はMn量
とアーク状態及びビード形状の関係を示した図、
第6図はSi,Mn以外の脱酸剤の総量とアーク状
態及びビード形状の関係を示した図である。
Figure 1 shows the relationship between the amount of TiO 2 and the arc state and bead shape. Figure 2 shows the relationship between the amount of ZrO 2 and the arc state and bead shape. Figure 3 shows the relationship between the amount of ZrO 2 and the arc state and bead shape.
KMg 2.5 Si 4 O 10 F Figure 4 shows the relationship between the amount of Si 4 O 10 F 2 and the arc state and bead shape. Figure 4 shows the relationship between the amount of Si and the arc state and bead shape. Figure 5 shows the relationship between the amount of Mn and the arc state. and a diagram showing the relationship between bead shapes,
FIG. 6 is a diagram showing the relationship between the total amount of deoxidizing agents other than Si and Mn, the arc state, and the bead shape.

Claims (1)

【特許請求の範囲】[Claims] 1 ワイヤ全重量に対してスラグ形成剤として
TiO2:5.6〜8.5wt%、ZrO2:0.4〜2.5wt%、
KMg2.5Si4O10F2(カリ四ケイ素雲母):0.2〜1.2wt
%、脱酸剤としてSi:0.3〜0.8wt%、Mn:1.0〜
3.0wt%、を含み、Si、Mn以外の脱酸剤の総量:
0.2wt%以下に制限され、その他、スラグ形成剤、
合金剤、鉄粉及び不可避不純物よりなるフラツク
スを、ワイヤ全重量に対して10〜25wt%充填し
てなることを特徴とするガスシールドアーク溶接
用複合ワイヤ。
1 As a slag forming agent based on the total weight of the wire
TiO2 : 5.6-8.5wt%, ZrO2 : 0.4-2.5wt%,
KMg 2.5 Si 4 O 10 F 2 (potassium tetrasilicon mica): 0.2~1.2wt
%, Si as deoxidizer: 0.3~0.8wt%, Mn: 1.0~
Total amount of deoxidizing agent other than Si and Mn, including 3.0wt%:
Limited to 0.2wt% or less, other slag forming agents,
A composite wire for gas-shielded arc welding, characterized in that it is filled with flux consisting of an alloying agent, iron powder, and unavoidable impurities in an amount of 10 to 25 wt% based on the total weight of the wire.
JP2269189A 1989-02-02 1989-02-02 Composite wire for gas shielded arc welding Granted JPH02205299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269189A JPH02205299A (en) 1989-02-02 1989-02-02 Composite wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269189A JPH02205299A (en) 1989-02-02 1989-02-02 Composite wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH02205299A JPH02205299A (en) 1990-08-15
JPH0520200B2 true JPH0520200B2 (en) 1993-03-18

Family

ID=12089900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269189A Granted JPH02205299A (en) 1989-02-02 1989-02-02 Composite wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPH02205299A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235713C (en) * 1996-11-11 2006-01-11 日铁溶接工业株式会社 Single-side welding apparatus and method for bent plate

Also Published As

Publication number Publication date
JPH02205299A (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JP5968855B2 (en) Ni-based alloy flux cored wire
KR100733804B1 (en) Cored electrode, method of forming a weld bead, and arc stabilizing component
US7829820B2 (en) Flux cored electrode with fluorine
MXPA05013178A (en) Cored electrode for reducing diffusible hydrogen.
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP2002103084A (en) Flux cored wire for gas shielded arc welding
JPS6233093A (en) Flux cored wire for welding
JPH05329684A (en) Basic flux cored wire for gas shielded arc welding
JPH0520200B2 (en)
JPH02274395A (en) Combined wire for gas shielded arc welding
JP2674854B2 (en) Flux-cored wire for gas shielded arc welding
JP2528341B2 (en) Solid wire for gas shield arc welding
JP2608616B2 (en) Flux-cored wire for gas shielded arc welding
JPH03169485A (en) High current density welding method and flux-cored wire
JPS62110897A (en) Iron power flux cored wire
JP2528311B2 (en) Wire with flux for gas shield welding
JPH04356397A (en) Self-shielded arc welding composite wire
JP2614892B2 (en) Gas shielded arc welding method
JPH01262096A (en) Flux cored wire for gas shielded arc welding
JPH0565277B2 (en)
JPH0214158B2 (en)
JPS6316239B2 (en)
JPS63154294A (en) Composite wire for gas shielded arc welding
JPH08309582A (en) Two-electrode, high-speed, horizontal fillet gas shielded arc welding method
JP2003311403A (en) Gas-shielded arc welding method of thin steel sheet