JPH05201795A - Production for single crystal grain - Google Patents

Production for single crystal grain

Info

Publication number
JPH05201795A
JPH05201795A JP1155892A JP1155892A JPH05201795A JP H05201795 A JPH05201795 A JP H05201795A JP 1155892 A JP1155892 A JP 1155892A JP 1155892 A JP1155892 A JP 1155892A JP H05201795 A JPH05201795 A JP H05201795A
Authority
JP
Japan
Prior art keywords
single crystal
growth
substrate
crystal grain
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155892A
Other languages
Japanese (ja)
Inventor
Koichi Okura
公一 大倉
Eiji Nozu
栄治 野洲
Shoichi Yoshino
彰一 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1155892A priority Critical patent/JPH05201795A/en
Publication of JPH05201795A publication Critical patent/JPH05201795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a producing method for a single crystal grain able to grow e.g. a large sized single crystal grain such as diamond with a substrate inexpensive and easy to obtain. CONSTITUTION:In the producing method for the single crystal grain by the vapor phase synthesis, after the 1st growth by growing a polycrystalline body on the substrate by the vapor phase synthesis, the single crystal grain 12 is separated from the polycrystalline body and the 2nd growth by growing the single crystal grain 12 on the growing surface in the 1st growth by the vapor phase synthesis is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相合成法による単結
晶粒製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single crystal grains by a vapor phase synthesis method.

【0002】[0002]

【従来の技術】かかる、単結晶粒製造方法では、例え
ば、Si単結晶基板等の半導体単結晶基板上に、高周波
プラズマCVD法あるいはマイクロ波プラズマCVD法
等の気相合成法によりダイヤモンドの単結晶粒を合成す
る方法が考えられている。この方法は、安価で入手の容
易な基板を用いて、ダイヤモンドを合成できるものであ
る。
2. Description of the Related Art In such a single crystal grain manufacturing method, a diamond single crystal is formed on a semiconductor single crystal substrate such as a Si single crystal substrate by a vapor phase synthesis method such as a high frequency plasma CVD method or a microwave plasma CVD method. A method of synthesizing grains has been considered. This method can synthesize diamond using a cheap and easily available substrate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記単
結晶粒製造方法では、単結晶基板上に無数の単結晶粒が
密接し、膜状に成長して多結晶体となるため、夫々の単
結晶粒が互いに成長面に平行な方向への成長を阻害しあ
うことになり、一個の単結晶粒を単独で半導体等に応用
できる程の大きさにまでは成長させることができないと
いう不都合があった。本発明は、上記実情に鑑みてなさ
れたものであって、その目的は、安価で入手の容易な基
板を用いながら、大粒の単結晶粒を成長させることがで
きる単結晶粒製造方法を提供することにある。
However, in the above-described method for producing a single crystal grain, innumerable single crystal grains are brought into close contact with each other on the single crystal substrate and grow into a film form to become a polycrystalline body. Since the grains interfere with each other in the growth in the direction parallel to the growth plane, there is a disadvantage that one single crystal grain cannot be grown alone to a size that can be applied to a semiconductor or the like. .. The present invention has been made in view of the above circumstances, and an object thereof is to provide a single crystal grain manufacturing method capable of growing large single crystal grains while using an inexpensive and easily available substrate. Especially.

【0004】[0004]

【課題を解決するための手段】本発明の単結晶粒製造方
法は、気相合成法によるものであって、その第1特徴
は、基板上に気相合成法により多結晶体を成長する第1
の成長の後、前記多結晶体から単結晶粒を分離し、その
単結晶粒を、前記第1の成長における成長面上にさらに
気相合成法により成長させる第2の成長を行う点にあ
る。本発明の第2特徴は、上記第1特徴の実施態様を限
定するものであって、前記基板がSi単結晶からなり、
その基板の(100)面上にダイヤモンドの多結晶体を
合成する点にある。
The method for producing single crystal grains according to the present invention is based on a vapor phase synthesis method, and the first feature is that a polycrystalline body is grown on a substrate by the vapor phase synthesis method. 1
After the growth of, the single crystal grains are separated from the polycrystal, and the single crystal grains are further grown on the growth surface in the first growth by the vapor phase synthesis method to perform the second growth. .. A second feature of the present invention is to limit the embodiment of the first feature, wherein the substrate is made of Si single crystal,
The point is to synthesize a diamond polycrystal on the (100) plane of the substrate.

【0005】[0005]

【作用】上記第1特徴によれば、基板上に気相合成法に
より多結晶体を成長した後、例えばプラズマエッチング
やケミカルエッチング等により、基板上の多結晶体を構
成する単結晶粒を、各々の単結晶粒に分離する。この分
離した単結晶粒を、第1の成長における成長面上にさら
に成長する方向に配置して、再び気相合成法により成長
をする。多結晶体のままでの成長では、成長面の法線方
向へは成長するが、成長面に平行な方向への成長は、多
結晶体中の単結晶粒が互いにぶつかり合って成長を阻害
しあうことになるが、上記のように単結晶粒を分離する
ことでその障害をなくすることができて、第1の成長に
おける多結晶状態での成長面を生かしながら、第2の成
長によって、成長面の法線方向での結晶の高さを高くで
きるのはもちろんのこと、成長面の面積を広くできて、
大粒の単結晶粒が得られるのである。第2特徴によれ
ば、第1の成長におけるダイヤモンドの多結晶体を構成
する単結晶粒は逆四角錐状に成長するため、第2の成長
において、効果的に成長面に平行な方向へ成長させるこ
とができる。
According to the first feature described above, after growing a polycrystal on the substrate by the vapor phase synthesis method, single crystal grains forming the polycrystal on the substrate are removed by, for example, plasma etching or chemical etching. Separate into single crystal grains. The separated single crystal grains are arranged on the growth surface in the first growth in the direction of further growth and grown again by the vapor phase synthesis method. In the case of the growth in the polycrystalline body as it is, it grows in the direction normal to the growth surface, but in the growth in the direction parallel to the growth surface, the single crystal grains in the polycrystalline body collide with each other and hinder the growth. As a matter of fact, by separating the single crystal grains as described above, the obstacle can be eliminated, and while utilizing the growth surface in the polycrystalline state in the first growth, by the second growth, Not only can the height of the crystal in the direction normal to the growth surface be increased, but the area of the growth surface can be increased,
Large single crystal grains can be obtained. According to the second feature, the single crystal grains forming the polycrystalline body of diamond in the first growth grow in the shape of an inverted quadrangular pyramid, so that the second growth effectively grows in the direction parallel to the growth plane. Can be made

【0006】[0006]

【発明の効果】本発明は、上記第1特徴によれば、安価
で入手の容易な基板を用いながらも、上記のように大粒
の単結晶粒を合成できるため、単結晶粒の製造コストを
可及的に抑制しながらも、その単結晶粒の半導体等への
応用を図ることが可能となり、又、第2特徴によれば、
ダイヤモンドの多結晶体を構成する単結晶粒の形状を逆
四角錐状にすることができるため単結晶粒の面積を効果
的に大きくできる上、第2の成長の前に単結晶粒を配置
する際、配置する台に例えば凹部を形成しておき、四角
錐の先端をその凹部に挿入するだけで、第1の成長と第
2の成長の成長面を合わせることができ、単結晶粒の合
成作業を容易に行うことができる。
According to the first feature of the present invention, since a large single crystal grain can be synthesized as described above while using an inexpensive and easily available substrate, the manufacturing cost of the single crystal grain can be reduced. While suppressing as much as possible, it becomes possible to apply the single crystal grain to a semiconductor or the like. According to the second feature,
Since the shape of the single crystal grains forming the diamond polycrystal can be made into an inverted quadrangular pyramid shape, the area of the single crystal grains can be effectively increased, and the single crystal grains are arranged before the second growth. At this time, the growth surface of the first growth and the growth surface of the second growth can be matched simply by forming, for example, a recess on the table to be placed and inserting the tip of the quadrangular pyramid into the recess. Work can be performed easily.

【0007】[0007]

【実施例】本発明の実施例を図面に基づいて説明する。
図1に示すマイクロ波プラズマCVD装置は、気相合成
法の一種であるマイクロ波プラズマCVD法により蒸着
を行う装置であり、マイクロ波のエネルギーによってプ
ラズマを発生させて、そのプラズマによって材料ガスを
解離させて、解離したものを基板上に堆積させる装置で
ある。
Embodiments of the present invention will be described with reference to the drawings.
The microwave plasma CVD apparatus shown in FIG. 1 is an apparatus that performs vapor deposition by a microwave plasma CVD method, which is a type of vapor phase synthesis method. Plasma is generated by microwave energy, and the material gas is dissociated by the plasma. This is an apparatus for depositing the dissociated material on the substrate.

【0008】図1において、反応管1には、基板支持台
2が配置され、この基板支持台2の近傍には、マイクロ
波発振器3で発生し導波管4によって導かれたマイクロ
波が供給される。さらに反応管1には、ガスボンベ5,
6,7から、材料ガスであるメタンガス、プラズマを発
生させる水素ガス及びアルゴンガスが夫々供給され、反
応管1内は排気口8から真空ポンプ9によって排気され
る。
In FIG. 1, a substrate support 2 is arranged in a reaction tube 1, and a microwave generated by a microwave oscillator 3 and guided by a waveguide 4 is supplied to the vicinity of the substrate support 2. To be done. Further, in the reaction tube 1, a gas cylinder 5,
Methane gas as a material gas, hydrogen gas for generating plasma, and argon gas are supplied from 6 and 7, respectively, and the inside of the reaction tube 1 is exhausted from an exhaust port 8 by a vacuum pump 9.

【0009】上記のマイクロ波プラズマCVD装置によ
って、ダイヤモンドの単結晶粒を製造する工程を以下に
説明する。先ず、基板としてのSi単結晶基板10を、
(100)面が成長面となるように基板支持台2上に載
置し、反応管1内を真空ポンプ9によって排気する。そ
の後、必要に応じてガスボンベ7からアルゴンガスを混
合しながら、ガスボンベ5,6からメタンガス及び水素
ガスを反応管1内に導入する。反応管1内のガス圧が所
定値に達した時点で、所定電力のマイクロ波を反応管1
に供給してプラズマを発生させる。このプラズマによっ
てメタンガスが解離して、炭素がSi単結晶基板10上
に堆積して図2に示すような断面を有する膜状の多結晶
体としての多結晶ダイヤモンド11として第1の成長を
する。このとき、Si単結晶基板10は、マイクロ波に
よって加熱されるため、他に特別の加熱手段を必要とは
しないが、成長条件の設定のために必要であれば、基板
支持台2内にヒーターを設けてSi単結晶基板10を加
熱するようにしてもよい。
The process of producing single crystal grains of diamond by the above microwave plasma CVD apparatus will be described below. First, the Si single crystal substrate 10 as a substrate is
The reaction tube 1 is placed on the substrate support 2 so that the (100) surface becomes the growth surface, and the inside of the reaction tube 1 is evacuated by the vacuum pump 9. Thereafter, methane gas and hydrogen gas are introduced into the reaction tube 1 from the gas cylinders 5 and 6 while mixing the argon gas from the gas cylinder 7 as needed. When the gas pressure in the reaction tube 1 reaches a predetermined value, microwaves of predetermined power are supplied to the reaction tube 1
To generate plasma. The methane gas is dissociated by this plasma, carbon is deposited on the Si single crystal substrate 10, and the first growth is performed as the polycrystalline diamond 11 as a film-shaped polycrystalline body having a cross section as shown in FIG. At this time, since the Si single crystal substrate 10 is heated by the microwave, no special heating means is required, but if necessary for setting growth conditions, a heater is provided in the substrate support base 2. May be provided to heat the Si single crystal substrate 10.

【0010】次に、Si単結晶基板10上の多結晶ダイ
ヤモンド11にN2 を主体とする空気プラズマエッチン
グを施し、成長基板表面上のグラファイトや質の良くな
いダイヤモンドを除去する。このエッチング作業は、上
記のマイクロ波プラズマCVD装置にN2 ガスボンベと
2 ガスボンベを付加して、マイクロ波プラズマCVD
装置によって行っても良いし、別の装置で行っても良
い。
Next, the polycrystalline diamond 11 on the Si single crystal substrate 10 is subjected to air plasma etching mainly containing N 2 to remove graphite and poor quality diamond on the surface of the growth substrate. This etching work is performed by adding a N 2 gas cylinder and an O 2 gas cylinder to the microwave plasma CVD apparatus described above and performing microwave plasma CVD.
It may be performed by a device or another device.

【0011】そして、エッチング処理の終了したSi単
結晶基板10を、フッ酸と硝酸とを混合したエッチャン
トつけて、Si単結晶基板10をエッチング除去する。
この結果、Si単結晶基板10上に成長した多結晶ダイ
ヤモンド11がばらばらに分離して、単結晶粒としての
ダイヤモンド単結晶粒12が得られる。このダイヤモン
ド単結晶粒12の形状は、図3に示すような、第1の成
長における成長面を底面とする四角錐となっている。
Then, the Si single crystal substrate 10 that has been subjected to the etching treatment is attached with an etchant containing a mixture of hydrofluoric acid and nitric acid to remove the Si single crystal substrate 10 by etching.
As a result, the polycrystalline diamonds 11 grown on the Si single crystal substrate 10 are separated into pieces, and diamond single crystal grains 12 as single crystal grains are obtained. The shape of the diamond single crystal grains 12 is a quadrangular pyramid whose bottom surface is the growth surface in the first growth as shown in FIG.

【0012】次に、このダイヤモンド単結晶粒12を、
図3に示す如く、支持台13に設けた細穴14に、第1
の成長における成長面すなわち四角錐の底面を上にし
て、四角錐の先端を挿入して、支持台13に載置する。
この支持台13の細穴14は一般的なエッチング技術で
容易に作成できる。このように配置した、ダイヤモンド
単結晶粒12と支持台13とを再びマイクロ波プラズマ
CVD装置の基板支持台2上に、図3に示す矢印15の
方向に成長材料が供給されるように載置して、第1の成
長と同様にしてダイヤモンド単結晶粒上に第2の成長を
行う。この第2の成長によって、ダイヤモンド単結晶粒
12は、成長面の法線方向に成長するのはもちろんのこ
と、成長を阻害する要因がないため成長面に平行な方向
へも成長する。このようにして、半導体への利用の可能
な大粒の単結晶のダイヤモンドが得られるのである。
Next, the diamond single crystal grains 12 are
As shown in FIG.
With the growth surface in the growth of 1, ie, the bottom surface of the quadrangular pyramid facing upward, the tip of the quadrangular pyramid is inserted and placed on the support base 13.
The small holes 14 of the support base 13 can be easily formed by a general etching technique. The diamond single crystal grains 12 and the support 13 arranged in this way are placed again on the substrate support 2 of the microwave plasma CVD apparatus so that the growth material is supplied in the direction of arrow 15 shown in FIG. Then, similarly to the first growth, the second growth is performed on the diamond single crystal grain. By this second growth, the diamond single crystal grains 12 grow not only in the direction normal to the growth surface but also in the direction parallel to the growth surface because there is no factor that hinders the growth. In this way, large-grain single-crystal diamond that can be used as a semiconductor is obtained.

【0013】〔別実施例〕上記実施例では、基板10と
してSi単結晶基板を用い、(100)面を成長面とし
たが、ニッケル、サファイア等の他の材料でも良いし、
他の結晶面を成長面として用いても良い。又、ダイヤモ
ンドの成長に用いる装置としては、上記実施例のマイク
ロ波プラズマCVD装置以外に、高周波プラズマCVD
装置、熱フィラメントCVD装置あるいはイオンビーム
蒸着装置等を用いても良い。上記実施例では、ダイヤモ
ンドの単結晶粒の製造について説明したが、本発明は、
CBN、ルビー等のダイヤモンド以外の単結晶粒の製造
に適用できる。
[Other Embodiments] In the above embodiment, the Si single crystal substrate was used as the substrate 10 and the (100) plane was used as the growth surface. However, other materials such as nickel and sapphire may be used.
Other crystal planes may be used as the growth plane. In addition to the microwave plasma CVD apparatus of the above embodiment, a high frequency plasma CVD apparatus is used as an apparatus used for growing diamond.
An apparatus, a hot filament CVD apparatus, an ion beam vapor deposition apparatus, or the like may be used. In the above examples, the production of single crystal grains of diamond was described, but the present invention is
It can be applied to the production of single crystal grains other than diamond, such as CBN and ruby.

【0014】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかるマイクロ波CVD装置
の概略構成図
FIG. 1 is a schematic configuration diagram of a microwave CVD apparatus according to an embodiment of the present invention.

【図2】本発明の実施例にかかる多結晶ダイヤモンドの
成長断面を示す図
FIG. 2 is a diagram showing a growth cross section of a polycrystalline diamond according to an example of the present invention.

【図3】本発明の実施例にかかるダイヤモンド単結晶粒
の配置を示す図
FIG. 3 is a diagram showing the arrangement of diamond single crystal grains according to an example of the present invention.

【符号の説明】[Explanation of symbols]

10 基板 11 多結晶体 12 単結晶粒 10 substrate 11 polycrystal 12 single crystal grain

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相合成法による単結晶粒製造方法であ
って、 基板(10)上に気相合成法により多結晶体(11)を
成長する第1の成長の後、前記多結晶体(11)から単
結晶粒(12)を分離し、その単結晶粒(12)を、前
記第1の成長における成長面上にさらに気相合成法によ
り成長させる第2の成長を行う単結晶粒製造方法。
1. A method for producing single crystal grains by a vapor phase synthesis method, the method comprising the steps of: first growing a polycrystalline body (11) on a substrate (10) by the vapor phase synthesis method; Single crystal grain (12) separated from (11), and the single crystal grain (12) is further grown on the growth surface in the first growth by vapor phase synthesis method. Production method.
【請求項2】 前記基板(10)がSi単結晶からな
り、その基板(10)の(100)面上にダイヤモンド
の多結晶体(11)を合成する請求項1記載の単結晶粒
製造方法。
2. The method for producing single crystal grains according to claim 1, wherein the substrate (10) is made of Si single crystal, and a polycrystalline diamond body (11) is synthesized on the (100) plane of the substrate (10). ..
JP1155892A 1992-01-27 1992-01-27 Production for single crystal grain Pending JPH05201795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155892A JPH05201795A (en) 1992-01-27 1992-01-27 Production for single crystal grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155892A JPH05201795A (en) 1992-01-27 1992-01-27 Production for single crystal grain

Publications (1)

Publication Number Publication Date
JPH05201795A true JPH05201795A (en) 1993-08-10

Family

ID=11781272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155892A Pending JPH05201795A (en) 1992-01-27 1992-01-27 Production for single crystal grain

Country Status (1)

Country Link
JP (1) JPH05201795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543923A (en) * 2015-09-23 2017-05-03 Element Six Tech Ltd Method of fabricating a plurality of single crystal cvd synthetic diamonds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543923A (en) * 2015-09-23 2017-05-03 Element Six Tech Ltd Method of fabricating a plurality of single crystal cvd synthetic diamonds
US10590563B2 (en) 2015-09-23 2020-03-17 Element Six Technologies Limited Method of fabricating a plurality of single crystal CVD synthetic diamonds
GB2543923B (en) * 2015-09-23 2020-04-15 Element Six Tech Ltd Method of fabricating a plurality of single crystal cvd synthetic diamonds

Similar Documents

Publication Publication Date Title
US6096129A (en) Method of and apparatus for producing single-crystalline diamond of large size
US4539068A (en) Vapor phase growth method
EP0442304B1 (en) Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
US7736435B2 (en) Method of producing single crystal
JPH0477711B2 (en)
EP1164211A1 (en) Method for growing single crystal of silicon carbide
JPH06216050A (en) Manufacture of wafer with single crystal silicon carbide layer
US5110405A (en) Method of manufacturing single-crystal diamond particles
US20200362455A1 (en) Method of diamond nucleation and structure formed thereof
US5366579A (en) Industrial diamond coating and method of manufacturing
JPH05201795A (en) Production for single crystal grain
JP2798576B2 (en) Silicon film growth method
JPH05315269A (en) Forming method for thin film
JPH03141193A (en) Coating of diamond film
JPH05201794A (en) Production for diamond semiconductor
JP2559703B2 (en) Method for epitaxial growth of wiring film
JPS54104488A (en) Production of silicon carbide crystal layer
JPH08143397A (en) Production of silicon carbide single crystal wafer and device therefor
JP3219832B2 (en) Manufacturing method of silicon carbide thin film
JPH0597582A (en) Method for depositing thin film of diamond
JPS59177919A (en) Selective growth of thin film
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JPH03153599A (en) Production of thin film of cubic boron nitride
JPH05345697A (en) Production of diamond film
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor