JPH05201736A - Production of porous parent material for quartz glass - Google Patents

Production of porous parent material for quartz glass

Info

Publication number
JPH05201736A
JPH05201736A JP30600192A JP30600192A JPH05201736A JP H05201736 A JPH05201736 A JP H05201736A JP 30600192 A JP30600192 A JP 30600192A JP 30600192 A JP30600192 A JP 30600192A JP H05201736 A JPH05201736 A JP H05201736A
Authority
JP
Japan
Prior art keywords
porous
slurry
base material
quartz glass
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30600192A
Other languages
Japanese (ja)
Inventor
Takeshi Yagi
健 八木
Takayuki Morikawa
孝行 森川
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30600192A priority Critical patent/JPH05201736A/en
Publication of JPH05201736A publication Critical patent/JPH05201736A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To easily and stably produce a porous base material of high quality. CONSTITUTION:Slurry 31 in which quartz glass fine powder is dispersed in solvent is cast into a quartz based tubular porous molding 41 to make a porous layer 32 in the porous molding 41. Thereby, since the prescribed slurry 31 is cast in the tubular porous molding 41 to make the porous layer 32 in the porous molding 41, a quartz glass porous base material of high quality is easily and stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通信、光学の分野で用い
られる石英系光ファイバ、光増幅用の石英系光ファイバ
など、これらの多孔質母材を製造するための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous base materials such as silica-based optical fibers used in the fields of communication and optics and silica-based optical fibers for optical amplification.

【0002】[0002]

【従来の技術】通信、光学の分野において、光ファイバ
母材を作製する際の一手段として、泥漿鋳込法が採用さ
れている。
2. Description of the Related Art In the fields of communication and optics, a slurry casting method has been adopted as one means for producing an optical fiber preform.

【0003】この泥漿鋳込法は、たとえば、特開昭64
−56331号公報に開示されているように、はじめ
に、石英系の微粉末ガラス原料を純水中に分散させてス
ラリーをつくり、つぎに、スラリーを成形型内に流しこ
んで脱水することにより、微粉末ガラス原料による多孔
質ガラス体を形成し、その後、多孔質体を乾燥ならびに
透明ガラス化する。
This sludge pouring method is disclosed, for example, in JP-A-64
As disclosed in Japanese Laid-Open Patent Publication No. 56331, first, a silica-based fine powder glass raw material is dispersed in pure water to form a slurry, and then the slurry is poured into a molding die to be dehydrated. A porous glass body is formed from a fine powder glass raw material, and then the porous body is dried and made into a transparent glass.

【0004】かかる泥漿鋳込法の場合、簡易な設備にて
高品質の多孔質体を高生産することができるが、これ単
独で導波路構造をつくることができない。したがって、
この方法自体を改善するか、あるいは、他の手段の介在
を必要とするが、泥漿鋳込法に関する公知例には、これ
についての技術示唆がない。
In the case of such a slurry casting method, a high quality porous body can be produced in high quantity with simple equipment, but it is not possible to form a waveguide structure by itself. Therefore,
There is no technical suggestion for this in the known examples of the slurry casting method, although this method itself needs to be improved or intervention of other means is required.

【0005】その対策として、押出成形法により多孔質
母材を製造する方法が提案されている。かかる押出成形
法の場合、押出成形装置内に可塑性を有する所定の各成
形材料を供給して、コア用多孔質体、クラッド用多孔質
体をもつ多孔質ガラス母材を押出形成するだけであるか
ら、経済的な設備と簡易な工程にて一挙に良質の多孔質
ガラス母材を得ることができ、その後の工程も多孔質母
材を乾燥し、透明ガラス化するだけとなる。したがっ
て、押出成形法の場合、石英系の多孔質母材を製造する
手段として、かなりの有効性が窺える。
As a countermeasure, a method of manufacturing a porous base material by an extrusion molding method has been proposed. In the case of such an extrusion molding method, each predetermined molding material having plasticity is supplied into the extrusion molding device, and a porous glass base material having a porous body for a core and a porous body for a clad is extruded and formed. Therefore, a good quality porous glass preform can be obtained all at once with economical equipment and a simple process, and in the subsequent process, the porous preform is dried and made into transparent glass. Therefore, in the case of the extrusion molding method, it can be seen that it is considerably effective as a means for producing a quartz-based porous base material.

【0006】[0006]

【発明が解決しようとする課題】しかし、押出成形法の
場合も、以下に述べるように、成形材料の調製に起因し
た技術的課題が残されている。
However, even in the case of the extrusion molding method, there are still technical problems caused by the preparation of the molding material as described below.

【0007】一般に、多孔質母材を押出成形するための
材料は、主原料たる石英系ガラス微粉末に可塑性を付与
するため、これにバインダが添加されている。バインダ
に含まれる有機成分、金属不純物は、成形後の多孔質母
材を脱脂処理や精製処理にかけることにより取り除かれ
るが、これらの処理が完全に行われないと、母材中に不
純物が残留する。特に、母材の要部となるコア用多孔質
体の場合は、クラッド用多孔質体で覆われているため
に、上記の処理ガスが内部にまで十分に到達せず、不純
物が残留しがちとなる。それゆえ、押出成形法を介して
多孔質母材を全合成し、これを光ファイバにまで仕上げ
た場合、光ファイバの特性に許容値以上のバラツキが生
じ、良品の歩留りを低下させる虞がある。
In general, a material for extruding a porous base material is added with a binder in order to impart plasticity to the silica-based glass fine powder which is a main raw material. The organic components and metallic impurities contained in the binder are removed by subjecting the molded porous base material to degreasing and refining treatments, but if these treatments are not performed completely, impurities will remain in the base material. To do. In particular, in the case of the core porous body that is the main part of the base material, since the above-mentioned process gas does not reach the inside sufficiently because it is covered with the clad porous body, impurities tend to remain. Becomes Therefore, when the porous base material is wholly synthesized through the extrusion molding method and finished into an optical fiber, variations in the characteristics of the optical fiber beyond the allowable value may occur, and the yield of non-defective products may be reduced. ..

【0008】もちろん、石英系ガラス微粉末に純水だけ
を加え、バインダを用いない成形材料も考えられている
が、このような成形材料は、バインダを用いるものと比
べて成形性が大きく劣り、たとえば、成形時における材
料流れの悪さから母材に歪が生じたり、はなはだしいと
きは、母材にクラックが発生する。
Of course, a molding material in which only pure water is added to the silica-based glass fine powder and no binder is used has been considered, but such a molding material is much inferior in moldability to a material using a binder, For example, the base material is distorted due to a poor material flow during molding, or cracks are generated in the base material when the material is in a disproportionate state.

【0009】本発明はこのような技術的課題に鑑み、高
品質の多孔質母材を簡易かつ安定して製造することので
きる方法を提供しようとするものである。
In view of such technical problems, the present invention aims to provide a method capable of easily and stably producing a high-quality porous base material.

【0010】[0010]

【課題を解決するための手段】本発明に係る石英系ガラ
ス用多孔質母材の製造方法は、所期の目的を達成するた
めに、石英系ガラス微粉末を主原料とする泥漿を、石英
系ガラス粉末からなる管状の多孔質成形体内に鋳込ん
で、その管状多孔質成形体内に別の多孔質層を形成する
こと特徴とする。本発明における泥漿としては、つぎに
例示するものが用いられる。その一つは、シリカ粒子が
純水中に分散しているもの、他の一つは、純水の一部ま
たは全部が屈折率を制御するための元素および/または
機能性を付与するための元素を含む溶液で置換された溶
媒中にシリカ粒子が分散しているもの、さらに、他の一
つは、屈折率を制御するための元素を含む化合物および
/または機能性を付与するための元素を含む化合物と、
シリカ粒子とが、純水中に分散しているものである。こ
れら以外の一つは、所定のゲル状物を仮焼かつ粉砕して
得た粉末が純水中に分散しているものである。この場合
のゲル状物は、屈折率を制御するための元素および/ま
たは機能性を付与するための元素を含む溶液中でシリコ
ンのアルコキサイドを加水分解することにより得られ
る。
In order to achieve the intended purpose, a method for producing a porous base material for quartz-based glass according to the present invention uses a silica-based glass fine powder as a main raw material, and It is characterized in that it is cast into a tubular porous molded body made of glass powder to form another porous layer in the tubular porous molded body. The following examples are used as the slurry in the present invention. One is that silica particles are dispersed in pure water, and the other is that part or all of pure water imparts an element and / or functionality for controlling the refractive index. Those in which silica particles are dispersed in a solvent substituted with a solution containing an element, and yet another is a compound containing the element for controlling the refractive index and / or an element for imparting functionality. A compound containing
The silica particles are dispersed in pure water. One other than these is that the powder obtained by calcining and crushing a predetermined gel-like substance is dispersed in pure water. The gel-like material in this case is obtained by hydrolyzing the alkoxide of silicon in a solution containing an element for controlling the refractive index and / or an element for imparting functionality.

【0011】[0011]

【作用】本発明における管状の多孔質成形体はクラッド
用のガラスとなるものであり、これは押出成形法、静水
圧成形法、泥漿鋳込法などを介して作製できる。管状の
多孔質成形体を、たとえば、押出成形法により作製する
とき、その成形材料が可塑性を保持するためにバインダ
を含んでいても問題はない。その一つの理由は、多孔質
成形体が自明の管状であるため、有機成分、金属不純物
などを取り除く際の処理において、処理ガスが管の肉厚
内によく浸透し、これらの不純物が効率よく除去される
からである。他の一つの理由は、仮に、多孔質成形体に
不純物が残留していたとしても、この管そのものはクラ
ッド用であり、光ファイバ(コア)のごとき最終製品の
特性に影響を与えることが殆どないからである。さら
に、静水圧成形法、泥漿鋳込法による多孔質成形体を用
いる場合、これらがバインダを含む成形材料から作製さ
れたものであっても、上記と同様に問題ない。
The tubular porous molded article in the present invention serves as a glass for clad and can be produced by an extrusion molding method, a hydrostatic molding method, a slurry casting method and the like. When a tubular porous molded article is produced by, for example, an extrusion molding method, there is no problem even if the molding material contains a binder for maintaining plasticity. One of the reasons is that since the porous molded body has a self-evident tubular shape, the processing gas penetrates well into the wall thickness of the tube in the process of removing organic components, metal impurities, etc. This is because it will be removed. Another reason is that even if impurities remain in the porous molded body, this tube itself is for cladding, and it almost affects the characteristics of the final product such as an optical fiber (core). Because there is no. Furthermore, in the case of using the porous molded body by the hydrostatic molding method or the slurry casting method, even if these are manufactured from a molding material containing a binder, there is no problem as in the above case.

【0012】本発明において用いられる泥漿は、コア用
ガラスをつくるためのものである。この泥漿は、主原料
である石英系ガラス微粉末を溶媒中に分散させたスラリ
ーからなり、これにバインダが添加されていないので、
有害な有機成分、金属不純物などを含まない。
The slurry used in the present invention is for making core glass. This slurry consists of a slurry in which silica-based fine glass powder, which is the main raw material, is dispersed in a solvent, and since no binder is added to this slurry,
Does not contain harmful organic components or metallic impurities.

【0013】上述した泥漿を管状の多孔質成形体内に鋳
込んだとき、泥漿(スラリー)中の水分が多孔質成形体
の毛細管現象(吸水性ないし脱水性)により除去されて
石英系ガラス微粉末間の距離が次第に小さくなり、つい
には、石英系ガラス微粉末相互が絡まり合って多孔質層
となる。かくて作製された石英系ガラス用多孔質母材の
場合、クラッド用多孔質成形体をつくる工程とコア用多
孔質層をつくる工程とが互いに独立しているので、それ
ぞれの工程において、管状多孔質成形体、多孔質層の材
質を選定し、これらのガラス特性たとえば屈折率が異な
るようにすることで、所要の導波路構造をもつ母材を得
ることができ、さらには、かかる材質の選定において特
定の希土類元素を添加することにより、光増幅用光ファ
イバの母材を得ることができる。
When the above-mentioned sludge is cast into a tubular porous compact, the water content in the slurry (slurry) is removed by the capillarity (water absorption or dehydration) of the porous compact and the silica-based glass fine powder is removed. The distance between them gradually becomes smaller, and finally, the silica-based glass fine powders are entangled with each other to form a porous layer. In the case of the porous base material for quartz glass thus produced, the step of forming the porous molded body for cladding and the step of forming the porous layer for core are independent from each other. It is possible to obtain the base material with the required waveguide structure by selecting the material for the high-quality molded body and the porous layer and making these glass characteristics, for example, the refractive index different, and further selecting such material. By adding a specific rare earth element in (1), the base material of the optical fiber for optical amplification can be obtained.

【0014】[0014]

【実施例】図1、図2には、本発明に係る石英系ガラス
用多孔質母材の製造方法が、これに用いられる装置と共
に略示されている。図1、図2において、パイプ支持具
11は上面に凹所12を備えており、その凹所12の上
位に泥漿供給系21の吐出口22が配置されている。
1 and 2, a method of manufacturing a porous preform for quartz glass according to the present invention is schematically shown together with an apparatus used for the method. In FIG. 1 and FIG. 2, the pipe support 11 is provided with a recess 12 on the upper surface, and the discharge port 22 of the slurry supply system 21 is arranged above the recess 12.

【0015】パイプ支持具11は、吸水性、脱水性のご
とき水切り効果をもつ硬質体からなり、これの一例とし
て、合成樹脂あるいは合成石英微粉末(ヒュームドシリ
カ)を素材として形成された連続気孔を有する容器をあ
げることができる。
The pipe support 11 is made of a hard material having a water draining effect such as water absorbency and dewatering property. As an example of this, continuous pores made of synthetic resin or synthetic quartz fine powder (fumed silica) are used. A container having a can be mentioned.

【0016】泥漿供給系21は、図示しない泥漿タンク
に配管が接続され、その配管の適所にポンプ(またはス
クリュウコンベア)、流量計、バルブ、その他が備えら
れたものであり、タンク内には泥漿が収容されている。
The sludge supply system 21 is such that a pipe is connected to a sludge tank (not shown), and a pump (or a screw conveyor), a flow meter, a valve, etc. are provided at appropriate places in the pipe, and the sludge is supplied in the tank. Is housed.

【0017】図1、図2に示す泥漿31は、石英系ガラ
ス微粉末を主原料とし、これを溶媒中に分散させてスラ
リーとしたものであり、これは、後述の多孔質層32を
形成するために用いられる。泥漿31は、一例として、
シリカ粒子(=SiO2 粉末)を純水中に分散させたも
のである。泥漿31中には、屈折率制御用元素(Ge、
P、Ti、Alなど)および/または機能性付与元素
(希土類など)をも含有させることができ、このような
場合は、つぎのようにして泥漿31をつくる。その一例
として、上記元素を含む酢酸塩、硝酸塩、アルコキサイ
ドのごとき溶液で純水の一部または全部が置換された溶
媒中をつくり、その溶媒中にシリカ粒子を分散させる。
別の一例として、シリカ粒子と、屈折率制御用の粒子
(GeO2 、P25 、TiO2 、Al23 など)お
よび/または機能性付与粒子(Er23 などの希土類
酸化物)のごとき化合物粉末とを、純水中に分散させ
る。その他の例として、屈折率制御用元素(Ge、P、
Ti、Alなど)および/または機能性付与元素(希土
類など)を含む溶液中でシリコンのアルコキサイドを加
水分解してゲル状物をつくり、そのゲル状物を仮焼かつ
粉砕した後、当該粉末を純水中に分散させる。泥漿31
中の粉末粒径は、多孔質成形体41の気孔径よりも大き
いことが、その多孔質成形体41側への拡散を防止する
上で望ましい。
The slurry 31 shown in FIGS. 1 and 2 is made of silica glass fine powder as a main raw material and dispersed in a solvent to form a slurry, which forms a porous layer 32 described later. It is used to The slurry 31 is, for example,
Silica particles (= SiO 2 powder) are dispersed in pure water. In the slurry 31, a refractive index controlling element (Ge,
P, Ti, Al, etc.) and / or a function-imparting element (rare earth, etc.) can also be contained. In such a case, the slurry 31 is prepared as follows. As an example, a solution in which a part or all of pure water is replaced with a solution such as acetate, nitrate, or alkoxide containing the above elements is prepared, and silica particles are dispersed in the solvent.
As another example, silica particles and particles for controlling the refractive index (GeO 2 , P 2 O 5 , TiO 2 , Al 2 O 3 and the like) and / or functionalization particles (Er 2 O 3 and other rare earth oxides). Compound powder such as) is dispersed in pure water. As another example, the refractive index controlling elements (Ge, P,
(Ti, Al, etc.) and / or a function-imparting element (rare earth, etc.) is used to hydrolyze the alkoxide of silicon to form a gel, and the gel is calcined and crushed. Disperse in pure water. Sludge 31
It is desirable that the particle diameter of the powder inside is larger than the pore diameter of the porous molded body 41 in order to prevent the diffusion to the porous molded body 41 side.

【0018】図1、図2に示す多孔質成形体41も石英
系からなり、この多孔質成形体41の場合は、一例とし
て、可塑性を有する成形材料を押出成形機にかけ、その
押出成形品を乾燥し、または、乾燥および脱脂すること
により得られる。この場合の成形材料は、主原料である
SiO2 粉末に成形助剤または純水を含む成形助剤が添
加されて、これらが均質に混練されたものであり、かか
る調製により可塑性が付与される。成形助剤としては、
ポリビニルアルコール、ポリビニルブチラール、ポリエ
チレングリコール、メチルセルロース、カルボキシメチ
ルセルロース、エチルセルロース、ヒドロキシプロピル
セルロース、グリセリンのごとき有機物が適宜採用され
る。多孔質成形体41の成形材料についても、屈折率制
御用の添加物として、主原料のSiO2 にB23 、F
のごとき化合物が添加されることがある。これら化合物
の添加手段としては、粉末で混合する方法、酢酸塩、硝
酸塩、アルコキサイドのごとき溶液で添加する方法のほ
か、気相法を介して化合物の添加されたシリカ粉末を合
成する方法などが採用される。多孔質成形体41の成形
機械としては、伝動手段を備えた原動機、ホッパを有す
る一次混練室、真空室、二次混練室が順次連結されて構
成された真空押出成形機をあげることができる。その
他、多孔質成形体41は、公知ないし周知の静水圧成形
法、泥漿鋳込法を主体にして成形されたものでもよい。
The porous molded body 41 shown in FIGS. 1 and 2 is also made of quartz, and in the case of this porous molded body 41, as an example, a molding material having plasticity is put into an extrusion molding machine, and the extrusion molded product is obtained. Obtained by drying or by drying and degreasing. The molding material in this case is obtained by adding a molding aid or a molding aid containing pure water to the SiO 2 powder, which is the main raw material, and then kneading the mixture homogeneously. Plasticity is imparted by such preparation. .. As a molding aid,
Organic substances such as polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, methyl cellulose, carboxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, and glycerin are appropriately adopted. As for the molding material of the porous molded body 41, SiO 2 as a main raw material, B 2 O 3 , and F are used as additives for controlling the refractive index.
Compounds such as As a means for adding these compounds, a method of mixing with a powder, a method of adding with a solution such as an acetate, a nitrate, and an alkoxide, and a method of synthesizing a silica powder to which a compound is added through a gas phase method are adopted. To be done. Examples of the molding machine for the porous molded body 41 include a vacuum extruder having a prime mover equipped with a transmission means, a primary kneading chamber having a hopper, a vacuum chamber, and a secondary kneading chamber which are sequentially connected. In addition, the porous molded body 41 may be molded mainly by a known or well-known hydrostatic molding method or sludge casting method.

【0019】図1、図2において、多孔質成形体41内
に多孔質層32を形成するとき、はじめ、パイプ支持具
11の凹所12内に多孔質成形体41を立て、つぎに、
泥漿供給系21の吐出口22から多孔質成形体41内
に、所定量の泥漿31を注入する。このようにして時間
の経過を待つと、泥漿31中の水分が多孔質成形体41
を浸透して外部へ排除されるので、多孔質成形体41内
に多孔質層32が形成される。
1 and 2, when the porous layer 32 is formed in the porous molded body 41, first, the porous molded body 41 is set up in the recess 12 of the pipe support 11, and then,
A predetermined amount of slurry 31 is injected into the porous molded body 41 from the discharge port 22 of the slurry supply system 21. When the time elapses in this way, the water content in the slurry 31 is reduced to the porous molded body 41.
The porous layer 32 is formed in the porous molded body 41 because the porous layer 32 penetrates and is discharged to the outside.

【0020】かくて作製された石英系ガラス用多孔質母
材は、これを乾燥機内に入れて多孔質層32、多孔質成
形体41を乾燥する。この際に用いられる乾燥機として
は、電熱ヒータを備えた筒形の電気炉、赤外線ヒータを
備えた筒形の赤外線加熱機、電熱ヒータとブロワーとを
備えた温風乾燥機、前記ヒータと吸引系とを備えた真空
乾燥機などをあげることができる。
The thus prepared porous base material for quartz glass is placed in a dryer to dry the porous layer 32 and the porous molded body 41. As the dryer used at this time, a cylindrical electric furnace having an electric heater, a cylindrical infrared heater having an infrared heater, a warm air dryer having an electric heater and a blower, the heater and suction Examples thereof include a vacuum dryer equipped with a system.

【0021】乾燥後の多孔質母材は、これを公知ないし
周知の手段で脱水ならびに透明ガラスして、たとえば、
光ファイバ用の石英系ガラス母材とする。
The dried porous base material is dehydrated and transparent glass by a known or well-known means, for example,
A quartz glass base material for optical fibers.

【0022】図1、図2を参照して述べた事項に基づく
本発明方法の具体例1〜3を以下に説明する。
Specific examples 1 to 3 of the method of the present invention based on the matters described with reference to FIGS. 1 and 2 will be described below.

【0023】具体例1 平均粒径8μmのシリカ微粒子100部に、バインダと
してメチルセルロース3部、純水22部を加え、さら
に、界面活性剤(SNウエット366:サンノプコ社
製)を0.3部加え、これらを均質に混練して多孔質成
形体41用の可塑性成形材料をつくった。この成形材料
を真空押出成形機にかけて、外径65mmφ、内径4m
mφ、長さ約500mmの多孔質成形体41を押出成形
した。こうして得られた多孔質成形体41を110℃で
乾燥し、さらに、空気中において500℃、4時間をか
けて脱脂した。これらの処理を終えた多孔質成形体41
の気孔径は、約1.2μmである。
Example 1 To 100 parts of silica fine particles having an average particle size of 8 μm, 3 parts of methyl cellulose as a binder and 22 parts of pure water were added, and 0.3 part of a surfactant (SN wet 366: manufactured by San Nopco) was added. Then, these were uniformly kneaded to prepare a plastic molding material for the porous molded body 41. This molding material is applied to a vacuum extrusion molding machine to have an outer diameter of 65 mmφ and an inner diameter of 4 m.
A porous molded body 41 having mφ and a length of about 500 mm was extruded. The porous molded body 41 thus obtained was dried at 110 ° C. and further degreased in air at 500 ° C. for 4 hours. Porous molded article 41 after these treatments
Has a pore diameter of about 1.2 μm.

【0024】火炎加水分解法で合成した平均粒径4μm
のシリカ微粒子(ただし、屈折率高上用のドーパント
3.5wt%のGeO2 を含む)100部に、純水30
部を加え、これらを均質に攪拌して泥漿31を調製し
た。
Average particle size 4 μm synthesized by flame hydrolysis method
100 parts of silica fine particles (however, including GeO 2 with 3.5 wt% dopant for increasing the refractive index), 30 parts of pure water
Parts were added, and these were uniformly stirred to prepare a slurry 31.

【0025】パイプ支持具11を介して垂直状態に保持
された多孔質成形体41内に、泥漿31を注入し、約6
時間放置したたところ、泥漿31の水分が除去され、体
積の収縮した多孔質層32が多孔質成形体41に形成さ
れた。
The sludge 31 is poured into the porous molded body 41 which is held in a vertical state through the pipe support tool 11 and about 6
When left standing for a time, the water content of the sludge 31 was removed, and the porous layer 32 having a contracted volume was formed on the porous molded body 41.

【0026】その後、多孔質層32、多孔質成形体41
を110℃で乾燥し、これらを常法により脱水(120
0℃のCl2 、He雰囲気)かつ透明ガラス化(160
0℃のHe雰囲気)して、光ファイバ用の石英系ガラス
母材とした。
After that, the porous layer 32 and the porous molded body 41 are formed.
Are dried at 110 ° C. and dehydrated (120
Cl 2 at 0 ° C., He atmosphere) and transparent vitrification (160
He atmosphere (0 ° C.) was used to obtain a silica-based glass preform for an optical fiber.

【0027】さらに、その後、上記母材を周知の加熱延
伸法により線引きして、外径125μmφのシングクモ
ード型光ファイバをつくり、その線引き直後の光ファイ
バ外周に、紫外線硬化性樹脂による外径400μmφの
被覆層を施した。上記具体例1の被覆光ファイバは、こ
れの伝送特性が、従来の全合成VAD法を主体にして得
られる光ファイバと同等以上であった。
Further, thereafter, the above-mentioned base material is drawn by a well-known heat drawing method to form a Sinkk mode type optical fiber having an outer diameter of 125 μmφ, and an outer diameter made of an ultraviolet curable resin is provided on the outer circumference of the optical fiber immediately after the drawing. A coating layer of 400 μmφ was applied. The transmission characteristics of the coated optical fiber of the specific example 1 are equal to or higher than those of the optical fiber obtained by mainly using the conventional full-synthesis VAD method.

【0028】具体例2 多孔質成形体41については、これを具体例1と同様に
して作製し、泥漿31については、火炎加水分解法で合
成した平均粒径4μmの純粋なシリカ微粒子とエルビウ
ム粉末(Er23 )との混合粉末100部に純水30
部を加え、これらを均質に攪拌して調製した。
SPECIFIC EXAMPLE 2 The porous molded body 41 was produced in the same manner as in the specific example 1, and the slurry 31 was pure silica fine particles having an average particle diameter of 4 μm and erbium powder synthesized by the flame hydrolysis method. 100 parts of mixed powder with (Er 2 O 3 ) was added with 30 parts of pure water
Parts were added and they were prepared by homogeneous stirring.

【0029】以下、具体例1と同様にして、上記泥漿3
1を多孔質成形体41内に鋳込み、さらに、これを具体
例1と同様の手順で脱水、透明ガラス化して、光増幅用
の石英系光ファイバ母材とした。
Thereafter, in the same manner as in Example 1, the slurry 3 was used.
1 was cast into the porous molded body 41, and then dehydrated and transparent vitrified in the same procedure as in Example 1 to obtain a silica-based optical fiber preform for optical amplification.

【0030】かかる光ファイバ母材について、これを既
述の加熱延伸法により線引きして光増幅用の光ファイバ
をつくり、その光増幅特性を測定したところ、波長1.
55μm帯の光増幅に有効であることが確認された。
With respect to such an optical fiber preform, an optical fiber for optical amplification was prepared by drawing the optical fiber by the above-mentioned heating and drawing method, and its optical amplification characteristics were measured.
It was confirmed to be effective for optical amplification in the 55 μm band.

【0031】具体例3 多孔質成形体41については、これを具体例1と同様に
して作製し、泥漿31については、これを以下のように
して調製した。塩化エルビウム(ErCl3 )の水溶液
をテトラエトキシシラン(TEOS)のエタノール溶液
に加えてこれらを触媒アンモニアにより加水分解すると
き、その溶液中にヒュームドシリカ(表面積100m2
/g)をも添加し、かかる加水分解によりErを含むシ
リカゲルを得た。かくて得られたシリカゲルは、これを
70℃で乾燥した後、空気中またはO2中で700℃に
加熱して余分の有機物を除去し、引き続き、空気中で8
00℃に加熱して仮焼した。さらに、仮焼後のシリカゲ
ルを粉砕して粉末となし、その粉末100部に対して純
水30部を加え、これらを均質に攪拌して泥漿31を調
製した。
Concrete Example 3 The porous molded body 41 was prepared in the same manner as in Concrete Example 1, and the slurry 31 was prepared as follows. When an aqueous solution of erbium chloride (ErCl 3 ) is added to an ethanol solution of tetraethoxysilane (TEOS) to hydrolyze them with catalytic ammonia, fumed silica (surface area 100 m 2
/ G) was also added, and the silica gel containing Er was obtained by such hydrolysis. The silica gel thus obtained was dried at 70 ° C. and then heated to 700 ° C. in air or in O 2 to remove excess organic matter, and subsequently, dried in air at 8 ° C.
It was heated to 00 ° C. and calcined. Further, the silica gel after calcination was pulverized to form a powder, 30 parts of pure water was added to 100 parts of the powder, and these were homogeneously stirred to prepare a slurry 31.

【0032】以下、具体例1と同様にして、上記泥漿3
1を多孔質成形体41内に鋳込み、さらに、これを具体
例1と同様の手順で脱水、透明ガラス化して、光増幅用
の石英系光ファイバ母材とした。かかる光ファイバ母材
から得られる光増幅用の光ファイバも、具体例2と同様
に、波長1.55μm帯の光増幅に有効であることが確
認された。
Thereafter, in the same manner as in Example 1, the slurry 3 was used.
1 was cast into the porous molded body 41, and then dehydrated and transparent vitrified in the same procedure as in Example 1 to obtain a silica-based optical fiber preform for optical amplification. It has been confirmed that the optical fiber for optical amplification obtained from such an optical fiber preform is also effective for optical amplification in the wavelength band of 1.55 μm, as in Example 2.

【0033】[0033]

【発明の効果】本発明に係る石英系ガラス用多孔質母材
の製造方法は、所定の泥漿を管状の多孔質成形体内に鋳
込んで、その多孔質成形体内に多孔質層を形成するか
ら、高品質の多孔質母材を簡易かつ安定して製造するこ
とができる。
According to the method for producing a porous preform for quartz glass according to the present invention, a predetermined sludge is cast into a tubular porous molded body to form a porous layer in the porous molded body. Therefore, a high-quality porous base material can be manufactured easily and stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例を略示した断面図であ
る。
FIG. 1 is a sectional view schematically showing an embodiment of the method of the present invention.

【図2】本発明方法の一実施例を略示した平面図であ
る。
FIG. 2 is a plan view schematically showing an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

11 パイプ支持具 12 パイプ支持具の凹所 21 泥漿供給系 22 泥漿供給系の吐出口 31 泥漿 32 多孔質層 41 管状の多孔質成形体 11 Pipe Support Tool 12 Recess of Pipe Support Tool 21 Sludge Supply System 22 Discharge Port of Sludge Supply System 31 Sludge 32 Porous Layer 41 Tubular Porous Molded Body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuaki Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 石英系ガラス微粉末を主原料とする泥漿
を、石英系ガラス粉末からなる管状の多孔質成形体内に
鋳込んで、その管状多孔質成形体内に別の多孔質層を形
成すること特徴とする石英系ガラス用多孔質母材の製造
方法。
1. A sludge containing quartz glass fine powder as a main raw material is cast into a tubular porous compact made of quartz glass powder to form another porous layer in the tubular porous compact. A method for producing a porous base material for quartz glass, which is characterized in that
【請求項2】 シリカ粒子が純水中に分散しているもの
を泥漿として用いる請求項1記載の石英系ガラス用多孔
質母材の製造方法。
2. The method for producing a porous base material for silica glass according to claim 1, wherein silica particles dispersed in pure water are used as a slurry.
【請求項3】 純水の一部または全部が屈折率を制御す
るための元素および/または機能性を付与するための元
素を含む溶液で置換された溶媒中をつくり、その溶媒中
にシリカ粒子が分散しているものを泥漿として用いる請
求項1記載の石英系ガラス用多孔質母材の製造方法。
3. A solvent in which pure water is partially or wholly replaced with a solution containing an element for controlling the refractive index and / or an element for imparting functionality, and silica particles are contained in the solvent. The method for producing a porous preform for quartz glass according to claim 1, wherein a material in which is dispersed is used as a slurry.
【請求項4】 屈折率を制御するための元素を含んだ化
合物および/または機能性を付与するための元素を含ん
だ化合物とシリカ粒子とが純水中に分散しているものを
泥漿として用いる請求項1記載の石英系ガラス用多孔質
母材の製造方法。
4. A slurry containing a compound containing an element for controlling a refractive index and / or a compound containing an element for imparting functionality and silica particles dispersed in pure water is used as a slurry. The method for producing a porous base material for quartz glass according to claim 1.
【請求項5】 屈折率を制御するための元素および/ま
たは機能性を付与するための元素を含む溶液中でシリコ
ンのアルコキサイドを加水分解して得たゲル状物を仮焼
かつ粉砕して粉末をつくり、その粉末が純水中に分散し
ているものを泥漿として用いる請求項1記載の石英系ガ
ラス用多孔質母材の製造方法。
5. A gel-like material obtained by hydrolyzing alkoxide of silicon in a solution containing an element for controlling a refractive index and / or an element for imparting functionality is calcined and ground to obtain a powder. The method for producing a porous base material for silica glass according to claim 1, wherein the powder is dispersed in pure water and used as a slurry.
JP30600192A 1991-10-25 1992-10-19 Production of porous parent material for quartz glass Pending JPH05201736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30600192A JPH05201736A (en) 1991-10-25 1992-10-19 Production of porous parent material for quartz glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-306837 1991-10-25
JP30683791 1991-10-25
JP30600192A JPH05201736A (en) 1991-10-25 1992-10-19 Production of porous parent material for quartz glass

Publications (1)

Publication Number Publication Date
JPH05201736A true JPH05201736A (en) 1993-08-10

Family

ID=26564536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30600192A Pending JPH05201736A (en) 1991-10-25 1992-10-19 Production of porous parent material for quartz glass

Country Status (1)

Country Link
JP (1) JPH05201736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098219C (en) * 2000-01-25 2003-01-08 华东理工大学 Refractory vagcor product and its preparing process
WO2006125614A1 (en) * 2005-05-26 2006-11-30 Heraeus Quarzglas Gmbh & Co. Kg A method for the production of solid quartz glass bodies
JP2018030759A (en) * 2016-08-25 2018-03-01 株式会社トクヤマ Irregularly shaped silica powder, method for producing the same, and resin composition containing the same
EP3315466B1 (en) * 2015-06-23 2023-11-29 AGC Inc. Sintered formed body material, pre-sintering formed body and manufacturing method thereof, and manufacturing method of sintered formed body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098219C (en) * 2000-01-25 2003-01-08 华东理工大学 Refractory vagcor product and its preparing process
WO2006125614A1 (en) * 2005-05-26 2006-11-30 Heraeus Quarzglas Gmbh & Co. Kg A method for the production of solid quartz glass bodies
JP2006327880A (en) * 2005-05-26 2006-12-07 Shinetsu Quartz Prod Co Ltd Manufacturing method of quartz glass body
EP3315466B1 (en) * 2015-06-23 2023-11-29 AGC Inc. Sintered formed body material, pre-sintering formed body and manufacturing method thereof, and manufacturing method of sintered formed body
JP2018030759A (en) * 2016-08-25 2018-03-01 株式会社トクヤマ Irregularly shaped silica powder, method for producing the same, and resin composition containing the same

Similar Documents

Publication Publication Date Title
US5185020A (en) Method for manufacturing a silica-base material for optical fiber
JP2663275B2 (en) Method for producing fused silica glass article
JP2001072427A (en) Sintered material
KR100229884B1 (en) Method for making silica glass
KR100357638B1 (en) Ultrasonic dispersion device for silica sol
JPH05201736A (en) Production of porous parent material for quartz glass
US5169421A (en) Method of manufacturing silica glass optical waveguide preform
JP3406297B2 (en) Method for producing high purity silica glass using sol-gel method
KR19990030074A (en) Process for producing silica products by sol-gel extrusion molding
JP2818707B2 (en) Method for producing quartz glass base material
JPH05345685A (en) Production of siliceous porous material
KR100487194B1 (en) Colloidal silica composition and method for fabricating thereof
JP2818708B2 (en) Method for producing quartz-based porous glass base material
JP2857242B2 (en) Method for producing quartz glass base material
KR100337703B1 (en) Composition for making silica glass with sol-gel process
JPH054833A (en) Production of quartz-based glass preform
KR100312230B1 (en) Manufacture method of metal doped silica glass
JPH04124044A (en) Production of quartz-based glass preform
KR100258217B1 (en) Fabricaion method of silica glass by sol-gel process
KR100330212B1 (en) Fabrication method of doped silica glass by extrusion
JPH05254849A (en) Production of quartz glass preform
KR100346121B1 (en) Fabrication method of crack-free silica glass using sol-gel process
KR20000060200A (en) Manufacturing method of silica glass for sol-gel process
JPS62187132A (en) Production of glass for optical fiber
JPS61106433A (en) Production of optical fiber base material