JPH05200418A - Method for rolling thick plate - Google Patents

Method for rolling thick plate

Info

Publication number
JPH05200418A
JPH05200418A JP4011371A JP1137192A JPH05200418A JP H05200418 A JPH05200418 A JP H05200418A JP 4011371 A JP4011371 A JP 4011371A JP 1137192 A JP1137192 A JP 1137192A JP H05200418 A JPH05200418 A JP H05200418A
Authority
JP
Japan
Prior art keywords
crown
target
rolling
flatness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4011371A
Other languages
Japanese (ja)
Other versions
JP2524672B2 (en
Inventor
Tetsuya Nakano
鉄也 中野
Koji Shudo
公司 首藤
Yuji Honda
祐司 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4011371A priority Critical patent/JP2524672B2/en
Publication of JPH05200418A publication Critical patent/JPH05200418A/en
Application granted granted Critical
Publication of JP2524672B2 publication Critical patent/JP2524672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To keep good flatness on the outlet side of rolling pass by constituting this method of a method for deciding the target mechanical crown, method for deciding manipulated variable of an actuating element for crown control and method for deciding the target sheet crown on the inlet side. CONSTITUTION:Taking the target thickness on the outlet side, target sheet crown on the outlet side, target flatness and target rolling load as given conditions, the target mechanical crown is decided in the range of the max. value and min. value of mechanical crown and in the range of mechanical crown that is determined by the restriction of equipment of a rolling mill and the actuating element for crown control and the manipulated variable for crown control is determined based on the structural formula of mechanical crown that is shown by a formula. On the other hand, draft and thickness on the inlet side are determined from the target rolling load based on a load estimating model and the target sheet crown on the inlet side is decided based on the constituent formula of flatness that is shown by formula. Such operations are started from the target thickness of product at the final pass and repeated till the thickness on the inlet side exceeds the thickness of slab or at the time of completion of edge rolling, and the target crown of product can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、板クラウン及び平坦度
制御の操作端を有するリバース圧延機に於いて、成品目
標クラウンを達成し、かつ各圧延パスの出側平坦度を良
好に保持する圧下スケジュール及びクラウン制御操作量
を決定する厚板圧延方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, in a reverse rolling mill having a plate crown and a flatness control operation end, achieves a product target crown and maintains good outgoing flatness of each rolling pass. The present invention relates to a plate rolling method for determining a rolling schedule and a crown control operation amount.

【0002】[0002]

【従来の技術】一般に厚板圧延に於ける圧下スケジュー
ルは、次の制約条件下で最小圧延パス回数となるように
決定される。 .圧延荷重及び圧延動力(トルク)及び1パス当たり
の圧下量が圧延機の設備仕様から決まる許容最大値を超
えないこと。 .仕上げの平坦度が良好でかつ板クラウンが請求材料
(スラブ)の歩留に応じて適切であること。
2. Description of the Related Art Generally, a rolling schedule in plate rolling is determined so that the number of rolling passes is the minimum under the following constraint conditions. . The rolling load, rolling power (torque), and rolling reduction per pass must not exceed the maximum allowable value determined by the equipment specifications of the rolling mill. . Good finish flatness and plate crown appropriate for the yield of the claimed material (slab).

【0003】板クラウン及び平坦度制御手段を持たない
従来の圧延機では、の平坦度良好でかつ板クラウンが
適切となる圧下スケジュールを実現する目的で、パス間
のクラウン比率(板クラウン/板厚)が厳密に一定であ
るか、あるいは平坦度を損なわない限定されたクラウン
比率の許容範囲内で圧延が可能となるように、圧延荷重
に依存して変化する圧延機の撓み量を下流数パスに於い
て軽減する方法が一般的であり、圧延機の撓み量を軽減
する手段として、下流数パスの圧下量を制限して圧延荷
重あるいは圧延トルクを許容最大能力以下に抑える方法
が採用されている(最近の厚板製造技術の進歩(鉄鋼協
会)264頁)。以後、良好な平坦度と適切な板クラウ
ンを確保する目的で圧延荷重、あるいは圧延トルクを軽
減するパスを形状調整パスと称す。
In the conventional rolling mill having neither the plate crown nor the flatness control means, the crown ratio between the passes (plate crown / plate thickness) for the purpose of realizing a rolling schedule in which the flatness is good and the plate crown is appropriate. ) Is strictly constant, or the amount of deflection of the rolling mill that changes depending on the rolling load can be changed by several passes downstream so that rolling can be performed within the allowable range of the limited crown ratio that does not impair the flatness. In general, the method of reducing the bending amount of the rolling mill is to limit the rolling amount of several passes downstream to keep the rolling load or rolling torque below the allowable maximum capacity. (Recent Progress in Plate Manufacturing Technology (The Iron and Steel Institute), p. 264). Hereinafter, a path for reducing the rolling load or the rolling torque for the purpose of ensuring a good flatness and an appropriate plate crown is referred to as a shape adjusting path.

【0004】[0004]

【発明が解決しようとする課題】前記の従来法によれ
ば、平坦度確保の観点から下流数パスに於ける圧延荷重
あるいは圧延トルクを許容最大能力以下に軽減する必要
上、下流数パスに於いて1パス当たりの圧下量が制限さ
れ必要以上のパス回数の増加を来たし、圧延能率の低下
を招く。
According to the above-mentioned conventional method, from the viewpoint of ensuring the flatness, it is necessary to reduce the rolling load or rolling torque in the several downstream passes to the maximum allowable capacity or less, and in the several downstream passes. In addition, the amount of reduction per pass is limited, the number of passes is increased more than necessary, and the rolling efficiency is reduced.

【0005】本発明は、従来法のかかる問題点に着目し
てなされたもので、板クラウン及び平坦度制御手段を有
するリバース圧延機を用いて、良好な平坦度を確保しつ
つ成品目標板厚及び成品目標板クラウンを達成し、かつ
従来法の下流数パスに於ける形状調整パスを撤廃するこ
とでパス回数を減少し、圧延能率の改善を図ることを目
的とした圧下スケジュール及びクラウン制御操作量を簡
便に、かつ自動的に決定する厚板圧延方法を提供するも
のである。
The present invention has been made by paying attention to such problems of the conventional method. A reverse rolling mill having a plate crown and a flatness control means is used to secure a good flatness and achieve a target product thickness. In addition, the rolling schedule and crown control operation aiming at achieving the product target plate crown and reducing the number of passes by eliminating the shape adjustment pass in the downstream few passes of the conventional method and improving the rolling efficiency. It is intended to provide a thick plate rolling method in which the amount is simply and automatically determined.

【0006】[0006]

【課題を解決するための手段】本発明は、板クラウン及
び平坦度制御の手段を有するリバース圧延機による板圧
延に於いて出側目標板厚、出側目標板クラウン、目標平
坦度及び目標圧延荷重を与件として、平坦度許容限界か
ら定まるメカニカルクラウンの最大値及び最小値の範囲
内で、かつ圧延機及びクラウン制御操作端の設備制約か
ら定まるメカニカルクラウンの範囲内で目標メカニカル
クラウンを決定し、後述の(2)式に示すメカニカルク
ラウンの構成式に基づきクラウン制御操作量を求め、一
方目標圧延荷重から荷重予測モデルに基づき圧下率と入
側板厚を求め、後述の(3)式に示す平坦度の構成式に
基づき入側の目標板クラウンを決定し、かかる操作を最
終nパスの成品目標板厚から始めて入側板厚がスラブ厚
あるいは幅出し圧延完了厚を超えるまで繰り返すことに
よって成品目標クラウンを達成し、かつ平坦度良好とな
る圧下スケジュール及び各パスのクラウン制御操作量を
決定するリバース圧延方法である。
DISCLOSURE OF THE INVENTION The present invention is directed to a delivery side target sheet thickness, a delivery side target sheet crown, a target flatness and a target rolling in a sheet rolling by a reverse rolling machine having a sheet crown and flatness control means. With the load as a condition, the target mechanical crown is determined within the range of the maximum and minimum values of the mechanical crown determined by the flatness allowable limit, and within the range of the mechanical crown determined by the equipment restrictions of the rolling mill and crown control operation end. The crown control operation amount is obtained based on the constitutive equation of the mechanical crown shown in the equation (2) described below, while the rolling reduction and the entry side plate thickness are obtained from the target rolling load based on the load prediction model, and shown in the equation (3) described below. The target plate crown on the entry side is determined based on the constitutive equation of flatness, and such an operation is started from the product target plate thickness of the final n-pass, and the entry side plate thickness is the slab thickness or the width drawing pressure. Achieving the finished products target crown by repeating to over completion thickness, and a reverse rolling method for determining the crown control operation amount of reduction schedule and the path to be flatness good.

【0007】[0007]

【作用】まず、この発明の理解を助けるために上述した
板クラウン(Ci)、メカニカルクラウン(CMi)、
及び平坦度の関係を表わすモデル式について説明する。
すなわち、板クラウンCiの構成式 Ci=(1−η)・CMi+η・(1−ri)・Ci−1 (1) η:クラウン遺伝係数 CMi:メカニカルクラウ
ン r:圧下率 メカニカルクラウンCMiの構成式 CMi=Cp・Pi+Cr+Cx・xi (2) Cp:圧延荷重のクラウン影響係数 Pi:圧延荷重 Cr:ロールプロフィールのクラウン影響項 Cx:クラウン制御操作手段のクラウン制御量影響係数 xi:クラウン制御操作量 平坦度fiの構成式 fi=ξ(Ci/hi−Ci−1/hi−1+α) (3) h:板厚 ξ:形状変化係数(クラウン比率変化の平坦度に及ぼす
影響) α:幅方向メタルフロー影響項 ここで、Cp,ξ,η,αは板厚、板幅、ロールディメ
ンジョンにより決定されるモデルパラメータであり、サ
フィックスiは任意iパスを示す。
First, in order to help understanding of the present invention, the above-mentioned plate crown (Ci), mechanical crown (CMi),
And a model formula representing the relationship between the flatness will be described.
That is, the constitutive formula of plate crown Ci Ci = (1-η) · CMi + η · (1-ri) · Ci-1 (1) η: Crown genetic coefficient CMi: Mechanical crown r: Reduction ratio Constitutive formula of mechanical crown CMi CMi = Cp * Pi + Cr + Cx * xi (2) Cp: Crown influence coefficient of rolling load Pi: Rolling load Cr: Crown influence term of roll profile Cx: Crown control amount influence coefficient of crown control operating means xi: Crown control operation amount Flatness fi Constitutive formula of fi = ξ (Ci / hi-Ci-1 / hi-1 + α) (3) h: Plate thickness ξ: Shape change coefficient (influence of crown ratio change on flatness) α: Width direction metal flow influence term Here, Cp, ξ, η, α are model parameters determined by the plate thickness, plate width, and roll dimension, and the suffix i is arbitrary. Indicates i-pass.

【0008】上述の(1)〜(3)式に示す関係式を基
礎式として本発明の目的とする圧下スケジュール及び各
パスのクラウン制御操作量を以下のとおり決定する。ま
ず第一に任意iパスにおける出側目標板クラウンC
* 、出側目標平坦度fi* (f=0のときフラット)
を与件として、(1),(3)式から出側目標メカニカ
ルクラウンCi* を次式で求める(図1の符号1)。
Based on the relational expressions shown in the above formulas (1) to (3) as basic formulas, the rolling schedule and the crown control operation amount of each pass, which are the objects of the present invention, are determined as follows. First, the outgoing target plate crown C in an arbitrary i-path
i * , outgoing target flatness fi * (flat when f = 0)
As a condition, the output side target mechanical crown Ci * is obtained from the equations (1) and (3) by the following equation (reference numeral 1 in FIG. 1).

【0009】 CMi* =Ci* −η/(1−η)・(fi* /ξ−α) (4) 同様に下記(5)式に示す平坦度許容限界値fiL ,f
U から当該圧延パスにおけるメカニカルクラウンの許
容限界値が求められる(図1の符号2)。 平坦度許容限界 fiL ≦fi* ≦fiU ,fnL ≦fnU ≦fn* (5) L:下限(中波限界) U:上限(耳波限界) n:最終圧延パス すなわち、平坦度の許容限界内で取り得るメカニカルク
ラウンの最大値をCMimax1、最小値をCMimin1とす
ると平坦度から決まるメカニカルクラウンの許容範囲と
して(6)式を得る。
CMi * = Ci * −η / (1−η) · (fi * / ξ−α) (4) Similarly, the flatness allowable limit values fi L and f shown in the following equation (5)
The allowable limit value of the mechanical crown in the rolling pass is obtained from i U (reference numeral 2 in FIG. 1). Flatness allowable limit fi L ≦ fi * ≦ fi U , fn L ≦ fn U ≦ fn * (5) L: Lower limit (medium wave limit) U: Upper limit (ear wave limit) n: Final rolling pass, that is, flatness When the maximum value of the mechanical crown that can be taken within the allowable limit is CMi max1 and the minimum value is CMi min1 , the formula (6) is obtained as the allowable range of the mechanical crown determined by the flatness.

【0010】 CMimin1≦CMi* ≦CMmax1, CMnmin1=CMnmax1=CMn* (6) ここで、 CMimin1=Ci* −η/(1−η)・(fiL /ξ−α) (7) CMimax1=Ci* −η/(1−η)・(fiU /ξ−α) (8) 一方、圧延機の最大圧延荷重の範囲内で目標圧延荷重P
* が与えられると、下記(9)式に示すクラウン制御
操作量の範囲内で取り得るメカニカルクラウンの許容限
界値が求められる(図1の符号3)。 クラウン制御操作量限界 xL ≦xi≦xU (9) すなわち、クラウン制御操作量の範囲内で取り得るメカ
ニカルクラウンの許容最大値をCMimax2,最小値をC
Mimin2とすると、クラウン制御操作量から決まるメカ
ニカルクラウンの許容範囲として(10)式を得る。
CMi min1CMi * ≤ CM max1 , CMn min1 = CMn max1 = CMn * (6) where CMi min1 = Ci * -η / (1-η) · (fi L / ξ-α) (7) ) CMi max1 = Ci * -η / (1-η) · (fi U / ξ-α) (8) On the other hand, within the range of the maximum rolling load of the rolling mill, the target rolling load P
Given i *, the allowable limit value of the mechanical crown that can be taken within the range of the crown control manipulated variable shown in the following equation (9) is obtained (reference numeral 3 in FIG. 1). Crown control manipulated variable limit x L ≤ xi ≤ x U (9) That is, the maximum allowable mechanical crown value within the range of the crown control manipulated variable is CMi max2 , and the minimum value is C min.
If Mi min2 , the formula (10) is obtained as the allowable range of the mechanical crown determined by the crown control operation amount.

【0011】 CMimin2≦CMi* ≦CMimax2 (10) ここで、 CMimin2=Cp・Pi* +Cr+Cx・xL (11) CMimax2=Cp・Pi* +Cr+Cx・xU (12) したがって、上述の(6)式及び(10)式から平坦度
の許容限界内で、かつクラウン制御操作手段の設備上実
現可能なメカニカルクラウンの範囲は次のようになる
(図1の符号4)。
CMi min2 ≤ CMi * ≤ CMi max2 (10) where CMi min2 = Cp · Pi * + Cr + Cx · x L (11) CMi max2 = Cp · Pi * + Cr + Cx · x U (12) Therefore, the above ( From equations (6) and (10), the range of the mechanical crown that can be realized within the allowable limit of flatness and on the equipment of the crown control operating means is as follows (reference numeral 4 in FIG. 1).

【0012】本発明では、このメカニカルクラウン範囲
の最大値CMimax を許容最大メカニカルクラウン、最
小値CMimin を許容最小メカニカルクラウンと称す。
許容最大メカニカルクラウン範囲 CMimin ≦CMi* ≦CMimax (13) ここで、 CMimin =max〔CMimin1,CMimin2〕 (14) CMimax =min〔CMimax1,CMimax2〕 (15) このとき、(4)式で求めた目標メカニカルクラウンC
* が(13)式に示す許容限界の範囲内であれば、図
1の符号5の手段により目標メカニカルクラウンCMi
* をCMimax 、あるいはCMimin で置換した後、
(2)式によりクラウン制御操作量xiを次のように求
める(図1の符号6)。すなわち、 xi={CMi* −(Cp・Pi* +Cr)}/Cx (16) 次に、上述の目標圧延荷重Pi* に基づき荷重予測モデ
ルから圧下率riを求め、圧下率の定義式に基づき入側
板厚hi−1を求める(図1の符号7)。圧下率の定義
式 ri=(hi−1−hi)/hi−1 (17) 最後に、与件として与えた出側目標板厚hi* 、目標平
坦度fi* 、出側目標板クラウンCi* 、(17)式で
算出される入側板厚hi−1に基づき(2)式から入側
の目標板クラウンCi−1* が次のように求められる
(図1の符号8)。
In the present invention, the maximum value CMi max of this mechanical crown range is called an allowable maximum mechanical crown, and the minimum value CMi min is called an allowable minimum mechanical crown.
Allowable maximum mechanical crown range CMi min ≤CMi * ≤CMi max (13) where CMi min = max [ CMi min1 , CMi min2 ] (14) CMi max = min [CMi max1 , CMi max2 ] (15) At this time, Target mechanical crown C calculated by equation (4)
If i * is within the permissible limit shown in the equation (13), the target mechanical crown CMi is obtained by the means indicated by reference numeral 5 in FIG.
After replacing * with CMi max or CMi min ,
The crown control manipulated variable xi is obtained from the equation (2) as follows (reference numeral 6 in FIG. 1). That is, xi = {CMi * -(Cp · Pi * + Cr)} / Cx (16) Next, the rolling reduction ratio ri is calculated from the load prediction model based on the above-described target rolling load Pi *, and based on the definition equation of the rolling reduction ratio. The entrance side plate thickness hi-1 is obtained (reference numeral 7 in FIG. 1). Definition equation of rolling reduction ri = (hi-1-hi) / hi-1 (17) Finally, the output target plate thickness hi * , the target flatness fi * , and the output target plate crown Ci * given as conditions. , The target plate crown Ci-1 * on the input side is obtained from the formula (2) based on the input plate thickness hi-1 calculated by the formula (17) as follows (reference numeral 8 in FIG. 1).

【0013】 Ci−1* ={Ci* /hi* −(fi* /ξ−α)}・hi−1(18) ここで、出側目標板クラウンCi* は(13)式によっ
て目標メカニカルクラウンCMi* がCMimin あるい
はCMimax によって置換された場合は(4)式により
修正計算がなされているものとする。
Ci−1 * = {Ci * / hi * − (fi * / ξ−α)} · hi-1 (18) Here, the output side target plate crown Ci * is the target mechanical crown by the formula (13). When CMi * is replaced by CMi min or CMi max , it is assumed that the correction calculation is performed according to the equation (4).

【0014】以上に述べた演算を最終nパスからはじめ
て入側板厚hi−1がスラブ厚または幅出し圧延完了厚
を超えるまで繰り返し行うことにより、本発明の目的と
する成品目標板クラウンを達成し、かつ平坦度良好とな
る圧下スケジュール及び各パスのクラウン制御操作量を
求めることができる。
By repeating the above-mentioned calculation from the last n passes until the entrance side plate thickness hi-1 exceeds the slab thickness or the tenter rolling completion thickness, the product target plate crown which is the object of the present invention is achieved. In addition, it is possible to obtain the rolling schedule and the amount of crown control operation for each pass that achieves good flatness.

【0015】更に、この方法によれば、クラウン制御手
段のクラウン制御能力が十分大きい場合は、全圧延パス
において圧延機の許容最大荷重を目標圧延荷重として採
用することも可能であり、従来法に於ける形状調整パス
を撤廃して圧延能率の飛躍的向上をもたらすものであ
る。
Further, according to this method, when the crown control capability of the crown control means is sufficiently large, it is possible to adopt the maximum allowable load of the rolling mill as the target rolling load in all rolling passes, which is a conventional method. By eliminating the shape adjustment path in the above, the rolling efficiency is dramatically improved.

【0016】表1に示すように、本発明の方法を実機に
適用した結果、従来法と比較してパス回数が減少し圧延
能率が向上した。
As shown in Table 1, as a result of applying the method of the present invention to an actual machine, the number of passes was reduced and the rolling efficiency was improved as compared with the conventional method.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【実施例】本発明による圧下スケジュール及びクラウン
制御操作量の決定方法を、表2に示す仕様の厚板圧延機
に適用した実施例について説明する。
EXAMPLE An example in which the rolling schedule and crown control operation amount determining method according to the present invention are applied to a plate rolling mill having specifications shown in Table 2 will be described.

【表2】 [Table 2]

【0019】図2は本発明を表3に示す圧延サイズとス
ラブサイズの圧延に適用した場合で、幅出し圧延完了後
最終パスまでの圧下スケジュールを示す。図中実線が本
発明の方法により得られる圧下スケジュールで、点線は
従来法によるものであるが、従来法と比較してパス回数
が2パス減少しており、圧延時間にして約30sec の短
縮効果がある。
FIG. 2 shows the rolling schedule when the present invention is applied to rolling of the rolling size and the slab size shown in Table 3 and after the completion of tenter rolling to the final pass. The solid line in the figure is the rolling schedule obtained by the method of the present invention, and the dotted line is that by the conventional method, but the number of passes is reduced by 2 compared to the conventional method, and the rolling time is shortened by about 30 seconds. There is.

【0020】[0020]

【表3】 [Table 3]

【0021】なお、本発明を適用した厚板圧延機は許容
最大荷重が8000ton であるが、圧延過程で発生する
板厚誤差あるいは温度誤差に起因する過荷重を防止する
目的で、この実施例ではあえて最終パス目標圧延荷重を
6500ton に抑えているが、これを許容最大荷重とし
て圧下スケジュールを作成することももちろん可能であ
る。
Although the maximum allowable load of the thick plate rolling machine to which the present invention is applied is 8000 tons, in this embodiment, in order to prevent overload due to plate thickness error or temperature error occurring in the rolling process, The final pass target rolling load is intentionally kept at 6500 tons, but it is of course possible to create a rolling schedule with this as the allowable maximum load.

【0022】図3及び図4は、成品目標板クラウンCn
* を40μm、目標平坦度fn* を0%として、本発明
の方法により図2の圧下スケジュールと同時に算出され
る各パスの目標板クラウンとクラウン制御操作量の計算
例である。
3 and 4 show the product target plate crown Cn.
3 is an example of calculation of a target plate crown and a crown control operation amount of each pass calculated at the same time as the rolling schedule of FIG. 2 by the method of the present invention, where * is 40 μm and target flatness fn * is 0%.

【0023】なお、図4に示すクラウン制御操作量は、
図5に示す形状のイニシャルクラウンを付与した上下作
業ロールを用いて、互いに軸方向に相対移動させてクラ
ウンを制御する場合の相対移動量を示すものであるが、
例えばペアクロス圧延であればクロス角度として算出さ
れるべき量であり、クラウンを積極的に制御する手段で
あれば、どのような方法でも本発明の本質を逸脱するも
のではない。
The crown control operation amount shown in FIG.
FIG. 6 shows the relative movement amount when the upper and lower work rolls provided with the initial crown having the shape shown in FIG. 5 are relatively moved in the axial direction to control the crown.
For example, in the case of pair cross rolling, the amount should be calculated as a cross angle, and any method that positively controls the crown does not depart from the essence of the present invention.

【0024】[0024]

【発明の効果】本発明の方法によると、板クラウン及び
クラウン制御の手段を有するリバース圧延機に於いて、
成品目標板クラウンを達成しかつ各圧延パスの出側形状
を良好に保持する圧下スケジュール及びクラウン制御操
作量を決定することができる。また、この方法によれ
ば、クラウン制御手段のクラウン制御能力が十分大きい
場合には、全圧延パスにおいて圧延機の許容最大荷重を
目標圧延荷重として採用することも可能であり、従来法
に於ける形状調整パスを撤廃して圧延能率の飛躍的向上
をもたらすものである。
According to the method of the present invention, in a reverse rolling machine having a plate crown and means for controlling the crown,
It is possible to determine a rolling schedule and a crown control operation amount that achieve the product target plate crown and well maintain the exit shape of each rolling pass. Further, according to this method, when the crown control capability of the crown control means is sufficiently large, it is also possible to adopt the maximum allowable load of the rolling mill as the target rolling load in all rolling passes, and in the conventional method. By eliminating the shape adjustment path, the rolling efficiency is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するブロック図である。FIG. 1 is a block diagram illustrating an operation of the present invention.

【図2】本発明を適用した圧下スケジュールの算出例の
図表である。
FIG. 2 is a chart of a calculation example of a rolling schedule to which the present invention is applied.

【図3】本発明を適用した目標板クラウンの算出例の図
表である。
FIG. 3 is a chart of a calculation example of a target plate crown to which the present invention is applied.

【図4】本発明を適用したクラウン制御操作量の算出例
の図表である。
FIG. 4 is a chart of an example of calculating a crown control operation amount to which the present invention is applied.

【図5】本発明の実施例に於いて用いたクラウン制御手
段の説明図である。
FIG. 5 is an explanatory diagram of crown control means used in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板クラウン及び平坦度制御の手段を有す
るリバース圧延機による板圧延に於いて、出側目標板
厚、出側目標板クラウン、目標平坦度及び目標圧延荷重
を与件として、平坦度許容限界から定まるメカニカルク
ラウンの最大値及び最小値の範囲内で、かつ圧延機及び
クラウン制御操作手段の設備制約から定まるメカニカル
クラウンの許容範囲内で目標メカニカルクラウンを決定
する方法と、目標メカニカルクラウン決定手段からの出
力からクラウン制御操作端の操作量を決定する方法と、
前記目標圧延荷重から荷重予測モデルに基づき圧下率を
求め、圧下率から入側板厚を算出し、前記の出側目標板
厚、出側目標板クラウン及び目標平坦度から入側目標板
クラウンを決定する方法とから構成され、かかる操作を
最終nパスからはじめて入側板厚がスラブ厚あるいは幅
出し圧延完了厚まで繰り返すことによって成品目標クラ
ウンを達成し、かつ平坦度良好となる圧下スケジュール
及びクラウン制御操作量を決定することを特徴とする厚
板圧延方法。
1. In plate rolling by means of a reverse rolling machine having means for controlling a plate crown and flatness, a flatness is obtained with a target output plate thickness, a target target plate crown, a target flatness and a target rolling load as conditions. Of the target mechanical crown within the range of the maximum and minimum values of the mechanical crown determined by the tolerance limit of the rolling mill, and within the allowable range of the mechanical crown determined by the equipment constraints of the rolling mill and the crown control operation means, and the target mechanical crown. A method of determining the operation amount of the crown control operation end from the output from the determination means,
The reduction rate is calculated from the target rolling load based on a load prediction model, the entry side sheet thickness is calculated from the reduction rate, and the entry side target sheet crown is determined from the exit side target sheet thickness, the exit side target sheet crown, and the target flatness. A rolling schedule and crown control operation that achieves the target crown of the product and achieves good flatness by repeating such an operation from the final n passes to the slab thickness or the tentering and rolling completion thickness, starting from the last n passes. A method for rolling a plate, characterized in that the amount is determined.
JP4011371A 1992-01-24 1992-01-24 Plate rolling method Expired - Lifetime JP2524672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011371A JP2524672B2 (en) 1992-01-24 1992-01-24 Plate rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011371A JP2524672B2 (en) 1992-01-24 1992-01-24 Plate rolling method

Publications (2)

Publication Number Publication Date
JPH05200418A true JPH05200418A (en) 1993-08-10
JP2524672B2 JP2524672B2 (en) 1996-08-14

Family

ID=11776160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011371A Expired - Lifetime JP2524672B2 (en) 1992-01-24 1992-01-24 Plate rolling method

Country Status (1)

Country Link
JP (1) JP2524672B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271622A (en) * 1999-03-26 2000-10-03 Sumitomo Metal Ind Ltd Method and device for calculating rolling condition of rolling mill
JP2001191103A (en) * 1999-12-28 2001-07-17 Sumitomo Metal Ind Ltd Method for controlling reversing rolling mill
JP2003326304A (en) * 2002-05-14 2003-11-18 Kobe Steel Ltd Method for deciding condition setting of rolling pass in reversing rolling mill
JP2014030848A (en) * 2012-08-06 2014-02-20 Kobe Steel Ltd Method for determining rolling pass schedule
JP2019022899A (en) * 2017-07-24 2019-02-14 Jfeスチール株式会社 Method for rolling of thick steel plate, and method for production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271622A (en) * 1999-03-26 2000-10-03 Sumitomo Metal Ind Ltd Method and device for calculating rolling condition of rolling mill
JP2001191103A (en) * 1999-12-28 2001-07-17 Sumitomo Metal Ind Ltd Method for controlling reversing rolling mill
JP2003326304A (en) * 2002-05-14 2003-11-18 Kobe Steel Ltd Method for deciding condition setting of rolling pass in reversing rolling mill
JP2014030848A (en) * 2012-08-06 2014-02-20 Kobe Steel Ltd Method for determining rolling pass schedule
JP2019022899A (en) * 2017-07-24 2019-02-14 Jfeスチール株式会社 Method for rolling of thick steel plate, and method for production thereof

Also Published As

Publication number Publication date
JP2524672B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP3251763B1 (en) Strip profile control method of hot finishing tandem rolling mill and hot finishing tandem rolling mill
CN110366456B (en) Method and apparatus for cooling steel sheet, and method for manufacturing steel sheet
JPH02124B2 (en)
JP2524672B2 (en) Plate rolling method
CN112916614B (en) Flat rolling method for 7-8mm steel plate with limited length
JP2968332B2 (en) Control method of crown in continuous rolling mill
US20230118015A1 (en) Method Of Controlling Flatness Of Strip Of Rolled Material, Control System And Production Line
JP4617929B2 (en) Hot rolled steel sheet rolling method
JPH0824932B2 (en) Method for manufacturing steel sheet having plate thickness inclination in the width direction
JP2013111649A (en) Method of rolling metal strip
JP5862247B2 (en) Metal strip rolling method
JP2607012B2 (en) Method for determining reverse rolling schedule
JP2714118B2 (en) Shape control method and device in rolling mill
JPH0615321A (en) Shape control method in thick plate rolling
JP6699628B2 (en) Rolling method for metal strip and control device for cooling equipment
JP3067913B2 (en) Warpage control method in rolling
JP2003326304A (en) Method for deciding condition setting of rolling pass in reversing rolling mill
SU1045961A1 (en) Method of producing t-beams
JP2001269703A (en) Method for deciding pass schedule of thickness adjustment in thick plate rolling
JP2696071B2 (en) Sheet rolling shape control method
JPS62161412A (en) Initial setting method for continuous caliber rolling
JPH0261844B2 (en)
JPH08300005A (en) Method for rolling taper plate
JPH04270005A (en) Method for rolling thick plate on pair cross rolling mill
CN117380758A (en) Rolling method of thin-specification steel plate of medium plate production line

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402