JPH05200328A - Fuel injector nozzle - Google Patents

Fuel injector nozzle

Info

Publication number
JPH05200328A
JPH05200328A JP3255692A JP3255692A JPH05200328A JP H05200328 A JPH05200328 A JP H05200328A JP 3255692 A JP3255692 A JP 3255692A JP 3255692 A JP3255692 A JP 3255692A JP H05200328 A JPH05200328 A JP H05200328A
Authority
JP
Japan
Prior art keywords
nozzle
ceramic
silicon nitride
ceramics
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3255692A
Other languages
Japanese (ja)
Inventor
Tetsuo Uchiyama
哲夫 内山
Shigeo Inoue
茂夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP3255692A priority Critical patent/JPH05200328A/en
Publication of JPH05200328A publication Critical patent/JPH05200328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To obtain a high pressure fuel injector nozzle for internal combustion engine excellent in wear resistance and having long life by making a nozzle ejector part of a ceramic and providing the injector nozzle with a specific dimensional aperture. CONSTITUTION:In the high pressure fuel injector for internal combustion engine having the injector of <=0.2mm aperture and used at >=150kg/mm<2> injection pressure, at least the nozzle injector 13 part is formed from ceramic. In this case, the ceramic constituting the nozzle injector 13 is a silicon nitride base ceramic having >=99% theoretical density ratio and is a composite ceramic of silicon nitride and silicon carbide and the ratio of silicon carbide is <=40vol.%. And the silicon nitride-silicon carbide composite ceramic constituting the nozzle injector 13 is made of a Si-C-N amorphous powder synthesized by vapor phase reaction of hexamethyl-disilazane with ammonia. Or a zirconia base ceramic having >=99% theoretical density ratio is also used as the ceramic constituting the nozzle injector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料噴射ノズルに関し、
特に耐熱性及び耐摩耗性に優れたセラミックス製の燃料
噴射ノズルに関する。
FIELD OF THE INVENTION The present invention relates to a fuel injection nozzle,
In particular, it relates to a fuel injection nozzle made of ceramics having excellent heat resistance and wear resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ディー
ゼルエンジンは原動機の中で現在最も熱効率が高いとさ
れているが、昨今の環境保護の観点から、その排ガス対
策が重要な課題として取り上げられている。すなわち煤
(パティキュレート)とNOx の発生に対して、触媒作
用を含んだ浄化装置等、種々の対策案が検討されてい
る。その中で、燃料と空気の迅速な混合が、燃焼速度を
上げ、煤の発生を大幅に低減することが明らかにされて
きた。
2. Description of the Related Art Diesel engines are currently said to have the highest thermal efficiency among prime movers, but their exhaust gas countermeasures have been taken up as an important issue from the viewpoint of environmental protection these days. There is. That is, various countermeasures against the generation of soot (particulate) and NO x , such as a purifying device including a catalytic action, are being studied. In it, it has been shown that rapid mixing of fuel and air increases burning rates and significantly reduces soot generation.

【0003】迅速な混合のためには、燃料の高圧噴射が
有効であり、例えば「ACE技術論文集No.1」(1991年
3月発行、(株)新燃焼システム研究所)に報告されて
いるように、280 kg/cm2 という高圧の噴射システムも
試作され、検討されている。
High-pressure fuel injection is effective for rapid mixing, and is reported, for example, in "ACE Technical Papers No. 1" (published in March 1991, New Combustion Systems Laboratory Co., Ltd.). As described above, a high-pressure injection system of 280 kg / cm 2 has been prototyped and is under consideration.

【0004】一般に150 kg/cm2 を超える噴射圧になる
と、燃料噴霧中の燃料は微細な粒子となり、燃料と空気
の混合が改善されることがわかり、さらに噴射装置に見
合う燃焼室、噴射ノズルを選定することにより、NOx
の排出を増やさずに、排出煤を大幅に低減することが確
認された。また、この噴射ノズルは、0.2mm 径以下の小
径の噴射孔であるのが好ましいことも確認されている。
Generally, when the injection pressure exceeds 150 kg / cm 2 , it is found that the fuel in the fuel spray becomes fine particles and the mixing of the fuel and air is improved, and the combustion chamber and the injection nozzle suitable for the injection device are further improved. NO x
It was confirmed that the emission of soot can be significantly reduced without increasing the emission of. It has also been confirmed that this injection nozzle preferably has a small diameter of 0.2 mm or less.

【0005】しかしながら、このような小径の噴射孔の
ノズルで、高噴射圧で燃料を噴射した場合、従来の金属
ノズルでは噴射孔の摩耗が著しく、比較的短時間で適切
な噴射状態から外れ、かえって排出煤が増加してしまう
という問題がある。
However, when fuel is injected at a high injection pressure with a nozzle having such a small diameter injection hole, the conventional metal nozzle suffers significant wear of the injection hole, and the injection state deviates from an appropriate injection state in a relatively short time. On the contrary, there is a problem that the amount of discharged soot increases.

【0006】したがって、本発明の目的は、耐摩耗性に
優れた、長寿命の内燃機関用の高圧燃料噴射ノズルを提
供することである。
Accordingly, it is an object of the present invention to provide a high pressure fuel injection nozzle for an internal combustion engine which is excellent in wear resistance and has a long life.

【0007】[0007]

【課題を解決するための手段】上記目的に鑑み、0.2mm
径以下の小径の噴射孔で、かつ150 kg/cm2 以上の噴出
圧の内燃機関用高圧燃料噴射ノズルについて種々検討し
た結果、本発明者らは摩耗量を少なくするためには、少
なくともノズルの噴射孔部分を金属よりもセラミックス
製とすればよいことを見出した。
[Means for Solving the Problems] In view of the above purpose, 0.2 mm
As a result of various studies on a high-pressure fuel injection nozzle for an internal combustion engine having an injection hole with a diameter smaller than or equal to the diameter and an ejection pressure of 150 kg / cm 2 or more, the inventors have found that in order to reduce the wear amount, at least the nozzle It has been found that the injection hole portion may be made of ceramic rather than metal.

【0008】セラミックス製の噴射孔部分を用いた場
合、燃料の高圧噴射流による噴射孔の単位時間当りの摩
耗量は、材料の破壊靱性と硬度との積の平方根に反比例
し、下記式(1) V=k/√(Kc・H) ・・・(1) (式中、Vは単位時間当りの摩耗量を示し、Kcはセラ
ミックスの破壊靱性、Hはセラミックスの硬度を示し、
kは定数を示す。)で表される。また、これらの物理特
性の他に微細組織の状態にも大きく依存し、組織(結晶
粒)の細かいものほど耐摩耗性が高いことが知られてい
る。これらのことから、セラミックス製ノズルの噴射孔
の材料としては、破壊靱性及び硬度が高く、また顕微鏡
組織の微細なものを選択すればよく、従って、窒化珪素
系セラミックス、あるいはジルコニア系セラミックスを
用いればよいことを見出した。本発明はこのような知見
に基づき完成したものである。
When a ceramic injection hole portion is used, the amount of wear of the injection hole due to the high-pressure injection flow of fuel per unit time is inversely proportional to the square root of the product of fracture toughness and hardness of the material, and ) V = k / √ (Kc · H) (1) (In the formula, V represents the wear amount per unit time, Kc represents the fracture toughness of ceramics, H represents the hardness of ceramics,
k indicates a constant. ). In addition to these physical properties, it also depends greatly on the state of the fine structure, and it is known that the finer the structure (crystal grains), the higher the abrasion resistance. From these facts, as the material of the injection hole of the ceramic nozzle, one having high fracture toughness and hardness and a fine microstructure may be selected. Therefore, if silicon nitride ceramics or zirconia ceramics is used, I found something good. The present invention has been completed based on these findings.

【0009】すなわち、本発明の内燃機関用高圧燃料噴
射ノズルは、口径 0.2mm以下の噴射孔を有し、150 kg/
mm2 以上の噴射圧で使用するもので、少なくともノズル
噴射孔部分がセラミックスからなることを特徴とする。
That is, the high-pressure fuel injection nozzle for an internal combustion engine of the present invention has injection holes with a diameter of 0.2 mm or less,
It is used with an injection pressure of mm 2 or more, and is characterized in that at least the nozzle injection hole portion is made of ceramics.

【0010】上記ノズル噴射孔を構成するセラミックス
を理論密度比99%以上の窒化珪素系セラミックス、ある
いは理論密度比99%以上のジルコニア系セラミックスと
することにより、一層耐摩耗性に優れた長寿命の高圧燃
料噴射ノズルとすることができる。
By using a silicon nitride ceramics having a theoretical density ratio of 99% or more or a zirconia ceramics having a theoretical density ratio of 99% or more as the ceramics forming the nozzle injection holes, it is possible to further improve wear resistance and long life. It can be a high-pressure fuel injection nozzle.

【0011】以下本発明を詳細に説明する。本発明の燃
料噴射ノズルは、少なくともノズル噴射孔がセラミック
スからなる。このセラミックスとしては、上述したよう
に破壊靱性及び硬度が高いものがよいく、特に、窒化珪
素系セラミックス、あるいはジルコニア系セラミックス
を用いるのが好ましい。また、セラミックスの理論密度
比は99%以上であるのが好ましい。理論密度比が99%未
満では、ポアが存在しやすくなり、そこから優先的に粒
子脱落、摩耗等を生じやすくなり、ノズルの長寿命化が
達成できない。
The present invention will be described in detail below. In the fuel injection nozzle of the present invention, at least the nozzle injection hole is made of ceramics. As this ceramic, one having high fracture toughness and high hardness is preferable as described above, and it is particularly preferable to use silicon nitride ceramics or zirconia ceramics. The theoretical density ratio of ceramics is preferably 99% or more. If the theoretical density ratio is less than 99%, pores are likely to exist, particles are likely to drop off from the pores, wear is likely to occur, and the nozzle life cannot be extended.

【0012】窒化珪素系セラミックスとしては、窒化珪
素と焼結助剤とからなるものに限らず、炭化珪素等を配
合した複合セラミックスでもよい。特に硬度の点で窒化
珪素/炭化珪素複合セラミックスが好ましい。
The silicon nitride ceramics are not limited to those composed of silicon nitride and a sintering aid, but may be composite ceramics containing silicon carbide or the like. Silicon nitride / silicon carbide composite ceramics are particularly preferable in terms of hardness.

【0013】窒化珪素/炭化珪素複合セラミックス中の
炭化珪素の含有率は、窒化珪素と炭化珪素との合計を10
0 容量%として40容量%以下であるのが好ましく、特に
15〜35容量%であるのが好ましい。炭化珪素の含有率が
40容量%を超えると、硬度は向上するものの、破壊靱性
が低下し、結果として耐摩耗性が低下するため好ましく
ない。
The content ratio of silicon carbide in the silicon nitride / silicon carbide composite ceramics is 10 in total of silicon nitride and silicon carbide.
0% by volume is preferably 40% by volume or less,
It is preferably from 15 to 35% by volume. The content rate of silicon carbide is
If it exceeds 40% by volume, the hardness is improved, but the fracture toughness is reduced, and as a result, the wear resistance is reduced, which is not preferable.

【0014】炭化珪素粒子を窒化珪素粒子に分散複合す
る方法としては、単にそれぞれの粉末を混合する方法の
他、ヘキサメチルジシラザンとアンモニアとの気相反応
により合成されたSi−C−Nアモルファス粉末を用
い、焼成中にナノサイズの炭化珪素粒子をマトリックス
となる窒化珪素粒子内に分散させる方法等を用いること
ができる。
As a method of dispersing and compounding silicon carbide particles in silicon nitride particles, in addition to a method of simply mixing the respective powders, Si-C-N amorphous synthesized by a gas phase reaction of hexamethyldisilazane and ammonia. It is possible to use a method in which powder is used and nano-sized silicon carbide particles are dispersed in silicon nitride particles serving as a matrix during firing.

【0015】マトリックスを形成する窒化珪素は、いわ
ゆる針状結晶が成長した高靭性、高強度の窒化珪素であ
るのが好ましく、窒化珪素粉末にアルミナ、イットリ
ア、マグネシア等の酸化物系焼結助剤を添加する。
The silicon nitride forming the matrix is preferably silicon nitride having high toughness and high strength in which so-called needle crystals are grown, and silicon nitride powder is added to oxide-based sintering aids such as alumina, yttria and magnesia. Is added.

【0016】焼結助剤の配合量は、用いる焼結助剤の種
類によって多少異なるが、窒化珪素及び焼結助剤の合計
を100 重量%として5〜25重量%程度である。
The blending amount of the sintering aid varies depending on the kind of the sintering aid to be used, but is about 5 to 25% by weight with the total of silicon nitride and the sintering aid being 100% by weight.

【0017】また、ジルコニア系セラミックスにおいて
使用するジルコニアは、安定化剤としてイットリア等を
3モル%以下程度含有するものを含む。またジルコニア
系セラミックスとしては、硬度等の向上を目的として、
アルミナを複合したものが好ましい。
The zirconia used in the zirconia-based ceramics includes those containing yttria or the like as a stabilizer in an amount of about 3 mol% or less. As zirconia-based ceramics, for the purpose of improving hardness,
A composite of alumina is preferable.

【0018】分散複合するアルミナの割合はジルコニア
とアルミナとの合計を100 容量%として80容量%以下で
あるのが好ましく、特に20〜70容量%であるのが好まし
い。アルミナの含有量が80容量%を超えると、硬度は向
上するものの、破壊靱性が低下し、結果として耐摩耗性
が低下するため好ましくない。さらに、アルミナ分散系
の場合、その配合量が多くなると、組織の粗大化、すな
わち平均粒径が2μm以上になりやすく、アルミナは、
熱膨張係数の異方性により、比較的大きな結晶粒をもつ
と、結晶粒が容易に脱落するので、破壊靱性の低下以上
に耐摩耗性を低下させる。
The proportion of alumina to be dispersed and composited is preferably 80% by volume or less, and more preferably 20 to 70% by volume, with the total amount of zirconia and alumina being 100% by volume. When the content of alumina exceeds 80% by volume, the hardness is improved, but the fracture toughness is reduced, and as a result, the wear resistance is reduced, which is not preferable. Further, in the case of an alumina dispersion system, when the compounding amount is large, the structure becomes coarse, that is, the average particle size becomes 2 μm or more, and alumina is
Due to the anisotropy of the coefficient of thermal expansion, if relatively large crystal grains are present, the crystal grains will easily fall off, which will reduce wear resistance more than the fracture toughness.

【0019】また、ジルコニア系セラミックスの場合、
マグネシア等の酸化物系焼結助剤を添加することができ
る。
In the case of zirconia-based ceramics,
An oxide-based sintering aid such as magnesia can be added.

【0020】本発明の燃料噴射ノズルの一例を図1に示
す。このノズル1は、全体がセラミックスからなる管状
体であり、この管状体は筒状部11 (内径a)とテーパ状
に径が漸減した先端部12とからなり、先端部12には、口
径bの噴射孔13が形成されている。口径bは0.2 mm以下
であるが、内径aとしては、1〜3mm程度であればよ
い。なお、本発明のノズル1は、本実施例のように、ノ
ズル全体がセラミックスからなるものが好ましいが、本
発明はこれに限定されず、少なくとも噴射孔部分がセラ
ミックス製であればよく、例えば先端部12のみをセラミ
ックスとして、金属等の筒状部材と接合してなるもので
もよい。
An example of the fuel injection nozzle of the present invention is shown in FIG. This nozzle 1 is a tubular body made entirely of ceramics, and this tubular body is composed of a tubular portion 11 (inner diameter a) and a tapered tip portion 12 whose diameter is gradually reduced. Injection holes 13 are formed. The diameter b is 0.2 mm or less, but the inner diameter a may be about 1 to 3 mm. The nozzle 1 of the present invention is preferably one in which the entire nozzle is made of ceramics as in the present embodiment, but the present invention is not limited to this, and at least the injection hole portion may be made of ceramics, for example, the tip. It is also possible that only the portion 12 is made of ceramic and is joined to a tubular member such as a metal.

【0021】[0021]

【作用】上述したように、本発明の燃料噴射ノズルは、
少なくともその噴射孔部分がセラミックスからなるの
で、0.2 mm径以下の小径の噴射孔で、150 kg/cm2 以上
の噴射圧のディーゼルエンジン等の内燃機関用の高圧燃
料ノズルとしたときに長寿命を示し、これにより、排出
煤を極力低減したエンジンシステムを提供することがで
きる。
As described above, the fuel injection nozzle of the present invention is
Since at least the injection hole part is made of ceramics, it has a long life when used as a high-pressure fuel nozzle for internal combustion engines such as diesel engines with injection pressure of 150 kg / cm 2 or more even with small diameter injection holes of 0.2 mm or less. As a result, it is possible to provide an engine system in which exhaust soot is reduced as much as possible.

【0022】[0022]

【実施例】以下の具体的実施例により、本発明をさらに
詳細に説明する。
The present invention will be described in more detail with reference to the following specific examples.

【0023】実施例1及び比較例1 平均粒径0.4 μmのα窒化珪素82.5重量%と、平均粒径
0.4 μmのイットリア15重量%と、平均粒径0.3 μmの
アルミナ2.5 重量%とを十分に混合し、得られた混合粉
から、1780℃、2時間の焼結により、外径8mmφ、長さ
20mmの緻密質 (理論密度比99.5%) の窒化珪素焼結体を
作製し、この焼結体から図1に示すような内径(a) 2m
m、先端孔径(b) 0.15mmのノズルを超音波加工により作
製した。
Example 1 and Comparative Example 1 82.5% by weight of α-silicon nitride having an average particle size of 0.4 μm and an average particle size of
15% by weight of 0.4 μm yttria and 2.5% by weight of alumina with an average particle size of 0.3 μm were sufficiently mixed, and the obtained mixed powder was sintered at 1780 ° C. for 2 hours to give an outer diameter of 8 mmφ and a length of
A 20-mm dense (theoretical density ratio 99.5%) silicon nitride sintered body was prepared, and the inner diameter (a) of 2 m as shown in Fig. 1 was produced from this sintered body.
A nozzle with m and a tip hole diameter (b) of 0.15 mm was produced by ultrasonic processing.

【0024】このようにして得られた窒化珪素セラミッ
クス製ノズルを超高圧噴射装置に装着し、排気量2リッ
トル(ボア135 mm×ストローク140mm)の単気筒自然吸気
式エンジンを用いて、回転数5000rpm 、圧力250MPaで12
0 時間運転して、耐摩耗性の評価を行った。その結果、
先端噴射孔の口径は0.176 mmとなり、摩耗量は0.026mm
であった。
The silicon nitride ceramic nozzle thus obtained was installed in an ultrahigh pressure injection device, and a single cylinder, naturally aspirated engine with a displacement of 2 liters (bore 135 mm × stroke 140 mm) was used to rotate at 5000 rpm. , Pressure 250MPa 12
After running for 0 hours, wear resistance was evaluated. as a result,
The diameter of the tip injection hole is 0.176 mm, and the wear amount is 0.026 mm.
Met.

【0025】また、比較のためにハイス鋼で作製した同
一形状のノズルを用いて、同様の耐摩耗性の評価を行っ
たところ、先端噴射孔の口径が0.334 mmとなり、摩耗量
0.184 mmと大幅に摩耗した。
For comparison, the same wear resistance was evaluated using a nozzle of the same shape made of high-speed steel, and the tip injection hole diameter was 0.334 mm, and the wear amount was
It was significantly worn down to 0.184 mm.

【0026】実施例2〜6 実施例1で作製した焼結助剤(イットリア及びアルミ
ナ)を含有する窒化珪素混合粉末と、平均粒径0.3 mmの
β炭化珪素とを第1表に示す種々の割合で混合した粉末
から、実施例1と同様にして緻密質のセラミックノズル
を作製した。
Examples 2 to 6 Various silicon nitride mixed powders containing the sintering aids (yttria and alumina) prepared in Example 1 and β-silicon carbide having an average particle size of 0.3 mm are shown in Table 1. A dense ceramic nozzle was produced in the same manner as in Example 1 from the powders mixed in the ratio.

【0027】得られたノズルに対して、それぞれ実施例
1と同様の耐摩耗性評価試験を行った。結果をセラミッ
クスの理論密度比とともに第1表に示す。
Each of the obtained nozzles was subjected to the same abrasion resistance evaluation test as in Example 1. The results are shown in Table 1 together with the theoretical density ratio of ceramics.

【0028】 第1表 窒化珪素(1) 炭化珪素 理論密度比 120hr 運転後の先端噴射孔 例No. (容量%) (容量%) (%) 口径(mm) 摩耗量(mm) 実施例2 95 5 99.6 0.178 0.028 実施例3 85 15 99.4 0.170 0.020 実施例4 75 25 99.3 0.163 0.013 実施例5 65 35 99.4 0.165 0.015 実施例6 55 45 98.5 0.218 0.068 注)(1) :実施例1で使用した焼結助剤含有物。The distal injection port of the first table silicon nitride (1) silicon carbide theoretical density ratio 120hr after the operation No. (volume%) (volume%) (%) diameter (mm) wear amount (mm) Example 2 95 5 99.6 0.178 0.028 Example 3 85 15 99.4 0.170 0.020 Example 4 75 25 99.3 0.163 0.013 Example 5 65 35 35 99.4 0.165 0.015 Example 6 55 45 98.5 0.218 0.068 Note) (1): Sintering used in Example 1 Auxiliary material.

【0029】第1表から明らかなように、実施例2〜6
の窒化珪素/炭化珪素複合セラミックス製燃料噴射ノズ
ルは、上述したハイス鋼製の比較例1のノズルよりも摩
耗量が少なかった。特に炭化珪素の配合量が40容量%以
下の実施例2〜5ノズルは、摩耗量が極めて少ないもの
であった。
As is clear from Table 1, Examples 2 to 6
The silicon nitride / silicon carbide composite ceramics fuel injection nozzle of No. 1 had less wear than the nozzle of Comparative Example 1 made of high-speed steel described above. Particularly, the nozzles of Examples 2 to 5 in which the blending amount of silicon carbide was 40% by volume or less had a very small amount of wear.

【0030】実施例7 ヘキサメチルジシラザンとアンモニアとの気相反応によ
り合成されたSi−C−Nアモルファス粉末を原料とし
た窒化珪素/炭化珪素焼結体 (炭化珪素25容量%、理論
密度比99.3%) から、実施例1と同様にして緻密質のセ
ラミックノズルを作製した。
Example 7 A silicon nitride / silicon carbide sintered body (silicon carbide 25% by volume, theoretical density ratio) using Si--C--N amorphous powder as a raw material synthesized by a gas phase reaction of hexamethyldisilazane and ammonia. 99.3%), a dense ceramic nozzle was produced in the same manner as in Example 1.

【0031】得られた窒化珪素/炭化珪素複合セラミッ
クス製ノズルに対して、実施例1と同様の耐摩耗性評価
試験を行っところ、運転時間120 時間後の先端噴射孔の
口径は0.169 mmで、摩耗量は0.019 mmであった。
The silicon nitride / silicon carbide composite ceramics nozzle thus obtained was subjected to the same abrasion resistance evaluation test as in Example 1, and after 120 hours of operation, the diameter of the tip injection hole was 0.169 mm. The amount of wear was 0.019 mm.

【0032】実施例8〜13 イットリアを3モル%含有する平均粒径0.3 μmのジル
コニアと、平均粒径0.3 μmの高純度アルミナとを第2
表に示す割合で混合した粉末から、それぞれ実施例1と
同様にして緻密質のセラミックノズルを作製した。得ら
れたノズルを構成するセラミックスの理論密度比はいず
れも99.0%以上であった。
Examples 8 to 13 Zirconia containing 3 mol% of yttria and having an average particle size of 0.3 μm, and high-purity alumina having an average particle size of 0.3 μm were used as the second material.
Dense ceramic nozzles were produced in the same manner as in Example 1 from the powders mixed in the proportions shown in the table. The theoretical density ratios of the ceramics constituting the obtained nozzles were all 99.0% or more.

【0033】各ノズルに対して、それぞれ実施例1と同
様の耐摩耗性評価試験を行った。結果をセラミックスの
平均粒径とともに第2表に示す。
The same abrasion resistance evaluation test as in Example 1 was conducted for each nozzle. The results are shown in Table 2 together with the average particle size of ceramics.

【0034】 第2表 ジルコニア アルミナ 平均粒径 120hr 運転後の先端噴射孔 例No. (容量%) (容量%) (μm) 口径(mm) 摩耗量(mm) 実施例8 90 10 0.6 0.188 0.033 実施例9 80 20 0.8 0.179 0.029 実施例10 70 30 0.8 0.180 0.030 実施例11 50 50 1.1 0.185 0.035 実施例12 30 70 1.6 0.184 0.034 実施例13 10 90 2.4 0.233 0.083 The distal injection port of the second table of zirconia alumina average particle diameter 120hr after the operation No. (volume%) (volume%) ([mu] m) diameter (mm) wear amount (mm) Example 8 90 10 0.6 0.188 0.033 embodiment Example 9 80 20 0.8 0.179 0.029 Example 10 70 30 0.8 0.180 0.030 Example 11 50 50 1.1 0.185 0.035 Example 12 30 70 1.6 0.184 0.034 Example 13 10 90 2.4 0.233 0.083

【0035】第2表から明らかなように、実施例8〜13
のジルコニア/アルミナ複合セラミックス製燃料噴射ノ
ズルは、ハイス鋼製ノズル (比較例1) よりも摩耗量が
少なかった。特にアルミナの配合量が80容量%以下の場
合 (実施例8〜12) 、摩耗量が著しく少なかった。
As is apparent from Table 2, Examples 8 to 13
The zirconia / alumina composite ceramics fuel injection nozzle of No. 2 had less wear than the high-speed steel nozzle (Comparative Example 1). In particular, when the content of alumina was 80% by volume or less (Examples 8 to 12), the amount of wear was remarkably small.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の燃料噴射ノ
ズルは、すくなくともその噴射孔がセラミックスからな
るので、0.2 mm径以下の小径の噴射孔を有し、150 kg/
cm2 以上の噴射圧で使用するディーゼルエンジン等の内
燃機関用の高圧燃料ノズル等としたときに、長寿命を示
す。特に上記セラミックスとして、破壊靱性及び硬度が
高く、かつ微細な結晶組織を有する窒化珪素系セラミッ
クスやジルコニア系セラミックス等を用れば、一層良好
な耐摩耗性を有する長寿命のノズルとすることができ
る。
As described in detail above, since the fuel injection nozzle of the present invention has at least its injection hole made of ceramics, it has a small injection hole with a diameter of 0.2 mm or less.
When used as a high-pressure fuel nozzle for an internal combustion engine such as a diesel engine used at an injection pressure of cm 2 or more, it has a long life. In particular, if a silicon nitride ceramics or zirconia ceramics having a high fracture toughness and hardness and a fine crystal structure is used as the above ceramics, it is possible to obtain a long-life nozzle having better wear resistance. ..

【0037】このような本発明の燃料噴射ノズルは、排
出煤を極力低減した内燃機関用エンジン、特にディーゼ
ルエンジンに好適である。
The fuel injection nozzle of the present invention as described above is suitable for an internal combustion engine, particularly a diesel engine, in which exhaust soot is reduced as much as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料噴射ノズルの一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a fuel injection nozzle of the present invention.

【符号の説明】[Explanation of symbols]

1・・・燃料噴射ノズル 11・・・筒状部 12・・・先端部 13・・・噴射孔 1 ... Fuel injection nozzle 11 ... Cylindrical part 12 ... Tip part 13 ... Injection hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 口径 0.2mm以下の噴射孔を有し、150 kg
/mm2 以上の噴射圧で使用する内燃機関用高圧燃料噴射
ノズルにおいて、少なくともノズル噴射孔部分がセラミ
ックスからなることを特徴とする燃料噴射ノズル。
1. An injection hole having a diameter of 0.2 mm or less, 150 kg
A high-pressure fuel injection nozzle for an internal combustion engine, which is used at an injection pressure of / mm 2 or more, wherein at least the nozzle injection hole portion is made of ceramics.
【請求項2】 請求項1に記載の燃料噴射ノズルにおい
て、前記ノズル噴射孔を構成するセラミックスが理論密
度比99%以上の窒化珪素系セラミックスであることを特
徴とする燃料噴射ノズル。
2. The fuel injection nozzle according to claim 1, wherein the ceramic forming the nozzle injection hole is silicon nitride ceramics having a theoretical density ratio of 99% or more.
【請求項3】 請求項2に記載の燃料噴射ノズルにおい
て、前記ノズル噴射孔を構成する窒化珪素系セラミック
スが窒化珪素と炭化珪素との複合セラミックスであり、
前記炭化珪素の割合が40容量%以下であることを特徴と
する燃料噴射ノズル。
3. The fuel injection nozzle according to claim 2, wherein the silicon nitride ceramics forming the nozzle injection hole is a composite ceramic of silicon nitride and silicon carbide,
A fuel injection nozzle characterized in that the proportion of the silicon carbide is 40% by volume or less.
【請求項4】 請求項3に記載の燃料噴射ノズルにおい
て、前記ノズル噴射孔を構成する窒化珪素/炭化珪素複
合セラミックスが、ヘキサメチルジシラザンとアンモニ
アとの気相反応により合成されたSi−C−Nアモルフ
ァス粉末から得られたものであることを特徴とする燃料
噴射ノズル。
4. The fuel injection nozzle according to claim 3, wherein the silicon nitride / silicon carbide composite ceramic forming the nozzle injection hole is synthesized by a gas phase reaction of hexamethyldisilazane and ammonia. -N is a fuel injection nozzle obtained from amorphous powder.
【請求項5】 請求項1に記載の燃料噴射ノズルにおい
て、前記ノズル噴射孔を構成するセラミックスが理論密
度比99%以上のジルコニア系セラミックスであることを
特徴とする燃料噴射ノズル。
5. The fuel injection nozzle according to claim 1, wherein the ceramic forming the nozzle injection hole is a zirconia-based ceramic having a theoretical density ratio of 99% or more.
【請求項6】 請求項5に記載の燃料噴射ノズルにおい
て、前記ジルコニア系セラミックスが、ジルコニア/ア
ルミナ複合セラミックスであり、前記アルミナの割合が
80容量%以下で、前記セラミックスの結晶粒径が2μm
以下であることを特徴とする燃料噴射ノズル。
6. The fuel injection nozzle according to claim 5, wherein the zirconia-based ceramics is zirconia / alumina composite ceramics, and the ratio of the alumina is
80% by volume or less, the crystal grain size of the ceramic is 2 μm
A fuel injection nozzle characterized in that:
JP3255692A 1992-01-23 1992-01-23 Fuel injector nozzle Pending JPH05200328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255692A JPH05200328A (en) 1992-01-23 1992-01-23 Fuel injector nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255692A JPH05200328A (en) 1992-01-23 1992-01-23 Fuel injector nozzle

Publications (1)

Publication Number Publication Date
JPH05200328A true JPH05200328A (en) 1993-08-10

Family

ID=12362192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255692A Pending JPH05200328A (en) 1992-01-23 1992-01-23 Fuel injector nozzle

Country Status (1)

Country Link
JP (1) JPH05200328A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343895B2 (en) * 2003-09-26 2008-03-18 Westport Power Inc. Fuel injection system and method of operation for a gaseous fuelled engine with liquid pilot fuel ignition
FR2925375A1 (en) * 2007-12-21 2009-06-26 Bosch Gmbh Robert INJECTOR FOR EJECTING A FLUID IN PARTICULAR IN AN INJECTION FACILITY OR AN EXHAUST GAS SYSTEM AND METHOD OF MAKING SUCH AN INJECTOR
JP2010005495A (en) * 2008-06-24 2010-01-14 Isuzu Motors Ltd Part for high-pressure injection having excellent erosion resistance and fuel injection valve using the same
US7712680B2 (en) 2006-01-30 2010-05-11 Sono-Tek Corporation Ultrasonic atomizing nozzle and method
JP2015013251A (en) * 2013-07-04 2015-01-22 京セラ株式会社 Nozzle and method of manufacturing the same
US9272297B2 (en) 2008-03-04 2016-03-01 Sono-Tek Corporation Ultrasonic atomizing nozzle methods for the food industry
WO2024004765A1 (en) * 2022-06-27 2024-01-04 京セラ株式会社 Nozzle and nozzle unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343895B2 (en) * 2003-09-26 2008-03-18 Westport Power Inc. Fuel injection system and method of operation for a gaseous fuelled engine with liquid pilot fuel ignition
US7712680B2 (en) 2006-01-30 2010-05-11 Sono-Tek Corporation Ultrasonic atomizing nozzle and method
FR2925375A1 (en) * 2007-12-21 2009-06-26 Bosch Gmbh Robert INJECTOR FOR EJECTING A FLUID IN PARTICULAR IN AN INJECTION FACILITY OR AN EXHAUST GAS SYSTEM AND METHOD OF MAKING SUCH AN INJECTOR
US9272297B2 (en) 2008-03-04 2016-03-01 Sono-Tek Corporation Ultrasonic atomizing nozzle methods for the food industry
JP2010005495A (en) * 2008-06-24 2010-01-14 Isuzu Motors Ltd Part for high-pressure injection having excellent erosion resistance and fuel injection valve using the same
JP2015013251A (en) * 2013-07-04 2015-01-22 京セラ株式会社 Nozzle and method of manufacturing the same
WO2024004765A1 (en) * 2022-06-27 2024-01-04 京セラ株式会社 Nozzle and nozzle unit

Similar Documents

Publication Publication Date Title
US6723674B2 (en) Multi-component ceramic compositions and method of manufacture thereof
JP2997899B2 (en) Silicon nitride ceramics and cutting tools made from this
JP4744704B2 (en) Method for manufacturing wear-resistant member
US20060189474A1 (en) Alumina-boron carbide ceramics and methods of making and using the same
Yamai et al. Grain size‐microcracking relation for NaZr2 (PO4) 3 family ceramics
JPH07187845A (en) Ceramic porous body and its production
JPH05200328A (en) Fuel injector nozzle
US5389590A (en) Method of fabricating a sintered ceramic composite
US5502011A (en) Silicon nitride sintered body
EP0607110A1 (en) SiC whisker and particle reinforced ceramic cutting tool material
CN101402528B (en) Method for forming ceramic layer on inner wall of combustion chamber of internal combustion engine
Hirosaki et al. Gas-Pressure Sintering of β-Silicon Nitride Containing Y2O3 and Nd2O3
JPH09208328A (en) Porous silicon nitride-based ceramics having high strength and low thermal conductivity and its production
JPS61101463A (en) High strength zirconia base ceramic engine part
JP3856939B2 (en) Engine parts and manufacturing method thereof
JP3810183B2 (en) Silicon nitride sintered body
JPH08323509A (en) Boron nitride cutting-tool and its manufacture
JPS6330378A (en) Ceramic sintered body for cutting tool
JPH0782047A (en) Sintered ceramic composite
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JPH0274564A (en) Silicon nitride calcined compact
JPH0753256A (en) Aluminous composite sintered compact and its production
JPH10279360A (en) Silicon nitride structural parts and its production
JPH0687671A (en) Alumina based inorganic fiber reinforced ceramic composite material
JP3043028B2 (en) Milling cutter