JPH05196741A - Radioactive contamination monitor - Google Patents

Radioactive contamination monitor

Info

Publication number
JPH05196741A
JPH05196741A JP711792A JP711792A JPH05196741A JP H05196741 A JPH05196741 A JP H05196741A JP 711792 A JP711792 A JP 711792A JP 711792 A JP711792 A JP 711792A JP H05196741 A JPH05196741 A JP H05196741A
Authority
JP
Japan
Prior art keywords
radiation
subject
calibration
radiation detector
calibration constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP711792A
Other languages
Japanese (ja)
Inventor
Mitsuo Ishibashi
三男 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP711792A priority Critical patent/JPH05196741A/en
Publication of JPH05196741A publication Critical patent/JPH05196741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize constantly highly accurate radioactive contamination measurement without being influenced by a position of a subject. CONSTITUTION:A detection sensitivity curve indicating sensitivity characteristics of respective radiation detectors 1a to 1c is obtained from counted values when a moving means 14 for moving a radiation source 13 for calibration to respective positions in a measurement area formed by the plurality of radiation detectors 1a to 1c and the radiation source 13 are placed at the respective positions in the measurement area. A radioactive contamination monitor comprises a calibration constant calculating means 10 for determining a calibration constant corresponding to a ratio of an average value wherein an envelope of the above detection sensitivity curve is averaged with radiation source intensity of the radiation source 13 and a correcting means 10 for correcting the counted value wherein radioactive rays from a subject is detected by the respective radiation detectors la to 1c with the calibration constant determined by the calibration constant calculating means 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力施設等で使用され
る放射能汚染モニタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radioactive contamination monitor used in nuclear facilities.

【0002】[0002]

【従来の技術】被検体に付着した汚染源から放出される
放射線を検出し、その検出信号となるパルス信号のパル
ス数を計数し、計数値の大小から放射能汚染の程度を判
断する放射能汚染モニタが知られている。ところで、一
般に放射能汚染モニタの検出器は被検体よりも小さいた
め、複数の検出器により被検体の全体を同時に測定でき
るようになっている。
2. Description of the Related Art Radioactive contamination in which radiation emitted from a contamination source attached to an object is detected, the number of pulses of a pulse signal which is the detection signal is counted, and the degree of radioactive contamination is judged from the magnitude of the counted value. Monitors are known. By the way, since the detector of the radioactive contamination monitor is generally smaller than the subject, a plurality of detectors can simultaneously measure the entire subject.

【0003】例えば、図7に示す放射能汚染モニタは、
3つの放射線検出器1a〜1cを備えている。各放射線
検出器1a〜1cは放射線の入射により出力される検出
信号を、各々対応する測定装置2a〜2cに入力する。
各測定装置2a〜2cは検出信号が入力すると、データ
処理装置3に対してパルス信号を出力し、データ処理装
置3が各検出器のパルス信号を計数する。放射線検出器
1a〜1cは各検出器ごとに検出感度が異なり、かつ経
時変化があるので、定期的に校正する必要がある。
For example, the radioactive contamination monitor shown in FIG.
It is equipped with three radiation detectors 1a to 1c. The radiation detectors 1a to 1c input the detection signals output by the incidence of radiation to the corresponding measuring devices 2a to 2c.
When the detection signal is input, each of the measuring devices 2a to 2c outputs a pulse signal to the data processing device 3, and the data processing device 3 counts the pulse signal of each detector. Since the radiation detectors 1a to 1c have different detection sensitivities and change with time, it is necessary to periodically calibrate.

【0004】そこで従来は、図7に示すように、校正用
の線源5を保持した固定治具6を、校正対象となる放射
線検出器(同図では1bが対象となっている)に取付
け、線源5を検出表面の中心に対向する位置に配置して
いる。
Therefore, conventionally, as shown in FIG. 7, a fixing jig 6 holding a calibration radiation source 5 is attached to a radiation detector to be calibrated (1b is a target in the figure). The radiation source 5 is arranged at a position facing the center of the detection surface.

【0005】このような状態において、放射線検出器1
bから出力される検出信号を計数して、その計数値とそ
のときの線源強度との比から校正定数を求めている。各
放射線検出器1a〜1cに対して同様の感度検出作業を
施し、求めた校正定数を校正定数記憶部4に保存させて
いる。そして実際の測定時に、各放射線検出器1a〜1
cの計数値を、校正定数記憶部4から読出した校正定数
で補正して正確な汚染度を判定している。ところで、放
射線検出器の検出感度は、図8に示すように、検出表面
の中心部で最も高く端部で低くなっている。
In such a state, the radiation detector 1
The detection signals output from b are counted, and the calibration constant is obtained from the ratio of the count value and the radiation source intensity at that time. Similar sensitivity detection work is performed on each of the radiation detectors 1a to 1c, and the obtained calibration constant is stored in the calibration constant storage unit 4. And at the time of actual measurement, each radiation detector 1a-1
The count value of c is corrected by the calibration constant read from the calibration constant storage unit 4 to determine the accurate contamination degree. By the way, as shown in FIG. 8, the detection sensitivity of the radiation detector is highest at the center of the detection surface and low at the ends.

【0006】従来の放射線検出器の校正では、検出感度
の高い検出器中央を校正点1a,1b,1cとして、そ
の場所に線源を固定して校正測定を行っていた。ところ
が、実際の汚染測定時は、被検体が検出器中央に配置さ
れるとは限らないため、上記のような校正では実際の汚
染度を測定値が下回る可能性があった。
In the conventional calibration of the radiation detector, the center of the detector having high detection sensitivity is set as the calibration points 1a, 1b, 1c, and the radiation source is fixed at that location to perform the calibration measurement. However, since the subject is not always placed in the center of the detector during the actual measurement of contamination, the measured value may be lower than the actual contamination degree in the above calibration.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の放
射能汚染モニタは、検出感度の高い検出器中央を校正点
として感度校正を行っていたため、実際の汚染度よりも
測定値が低くなり正確な汚染測定がなされない可能性が
あった。
As described above, in the conventional radioactive contamination monitor, the sensitivity is calibrated with the center of the detector having high detection sensitivity as the calibration point, so the measured value becomes lower than the actual contamination degree. There is a possibility that accurate contamination measurement may not be made.

【0008】本発明は以上のような実情に鑑みてなされ
たもので、被検体の配置位置に左右されずに常に精度の
高い放射能汚染測定を可能にする放射能汚染モニタを提
供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a radioactive contamination monitor capable of performing highly accurate radioactive contamination measurement regardless of the position of the subject. To aim.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に第1の発明による放射能汚染モニタは、複数の放射線
検出器で形成される測定エリアに被検体を配置して、該
被検体から放出される放射線を前記各放射線検出器で検
出してパルス信号に変換し、そのパルス信号を計数した
計数値から前記被検体の放射能汚染をモニタする放射能
汚染モニタにおいて、校正用の線源を前記測定エリア内
の各所に移動させる移動手段と、前記移動手段によって
前記線源を前記測定エリア内の各所に配置させたときに
前記各放射線検出器が示す計数値から各放射線検出器の
感度特性を示す検出感度曲線を求め、この検出感度曲線
の包絡線を平均した平均値と前記線源の線源強度との比
に応じて前記各放射線検出器の校正定数を定める校正定
数算出手段と、被検体からの放射線を前記各放射線検出
器で検出して得られた計数値を、前記校正定数算出手段
で定めた校正定数で補正する補正手段と、を具備する構
成とした。
In order to achieve the above object, the radioactive contamination monitor according to the first aspect of the present invention arranges a subject in a measurement area formed by a plurality of radiation detectors, A radiation source for calibration in a radioactive contamination monitor that detects emitted radiation by each of the radiation detectors, converts it into a pulse signal, and monitors the radioactive contamination of the subject from the counted value of the pulse signal. A moving means for moving the radiation source to various places in the measurement area, and the sensitivity of each radiation detector from the count value indicated by each radiation detector when the radiation source is arranged at each place in the measurement area by the moving means. Obtaining a detection sensitivity curve showing characteristics, and a calibration constant calculating means for determining the calibration constant of each radiation detector according to the ratio of the average value of the envelope of the detection sensitivity curve and the source intensity of the radiation source, , Covered The count value obtained by detecting the radiation from the body In each of the radiation detectors and configured to anda correction means for correcting the calibration constants determined in the calibration constant calculating means.

【0010】また、第2の発明による放射能汚染モニタ
は、移動手段によって線源を測定エリア内の各所に配置
させたときに各放射線検出器が示す計数値から各放射線
検出器の感度特性を示す検出感度曲線を求め、該検出感
度曲線を予め定められた範囲で分割し、各分割範囲内で
の検出感度曲線の平均値を求め、その各平均値をさらに
平均した値と前記線源の線源強度との比に応じて前記各
放射線検出器の校正定数を定めるようにした。
Further, in the radioactive contamination monitor according to the second aspect of the invention, the sensitivity characteristic of each radiation detector is obtained from the count value indicated by each radiation detector when the radiation source is arranged at each place in the measurement area by the moving means. Obtain the detection sensitivity curve shown, divide the detection sensitivity curve in a predetermined range, obtain the average value of the detection sensitivity curve in each divided range, the average value of each average value and the radiation source The calibration constant of each radiation detector was determined according to the ratio with the radiation source intensity.

【0011】また第3の発明による放射能汚染モニタ
は、移動手段によって線源を測定エリア内の各所に配置
させたときに各放射線検出器が示す計数値から各放射線
検出器の感度特性を示す検出感度曲線を求め、該検出感
度曲線の包絡線を各放射線検出器毎に分割し、各分割範
囲における前記包絡線の各平均値と前記線源の線源強度
との比に応じて、前記各放射線検出器毎に校正定数を定
めるようにした。
Further, the radioactive contamination monitor according to the third aspect of the present invention shows the sensitivity characteristic of each radiation detector from the count value shown by each radiation detector when the radiation source is arranged at each place in the measurement area by the moving means. Obtaining the detection sensitivity curve, the envelope of the detection sensitivity curve is divided for each radiation detector, according to the ratio of the average value of the envelope in each divided range and the source intensity of the radiation source, The calibration constant was set for each radiation detector.

【0012】また第4の発明による放射能汚染モニタ
は、移動手段によって線源を測定エリア内の各所に配置
させたときに各放射線検出器が示す計数値から各放射線
検出器の感度特性を示す検出感度曲線を求め、該検出感
度曲線を前記各放射線検出器毎に分割し、各分割範囲に
おける検出感度曲線の平均値と前記線源の線源強度との
比に応じて、前記各放射線検出器毎に校正定数を定める
ようにした。
Further, the radioactive contamination monitor according to the fourth aspect of the present invention shows the sensitivity characteristic of each radiation detector from the count value indicated by each radiation detector when the radiation source is arranged at each place in the measurement area by the moving means. Obtaining a detection sensitivity curve, dividing the detection sensitivity curve for each of the radiation detectors, according to the ratio of the average value of the detection sensitivity curve in each divided range and the source intensity of the radiation source, the radiation detection The calibration constant was set for each instrument.

【0013】[0013]

【作用】第1の発明によれば、放射線検出器の感度校正
時に、移動手段によって校正用の線源が測定エリア内の
各所を移動し、この時、各放射線検出器から出力される
パルス信号が計数されてそれぞれの計数値が検出され
る。そして校正定数算出手段により、前記各計数値から
各放射線検出器の感度特性を示す検出感度曲線が求めら
れ、さらに検出感度曲線の包絡線を平均した平均値と、
線源の線源強度との比から各放射線検出器の校正定数が
定められる。
According to the first invention, when the sensitivity of the radiation detector is calibrated, the calibrating radiation source is moved by the moving means to various places in the measurement area, and at this time, the pulse signal output from each radiation detector. Are counted and the respective count values are detected. Then, by the calibration constant calculating means, a detection sensitivity curve showing the sensitivity characteristic of each radiation detector is obtained from each count value, and an average value obtained by averaging the envelopes of the detection sensitivity curve,
The calibration constant of each radiation detector is determined from the ratio of the radiation source to the radiation source intensity.

【0014】次に、被検体の汚染測定時には、被検体か
らの放射線が各放射線検出器で検出され、その計数値が
上記校正定数で補正されて、被検体本来の放射能汚染度
が求められる。
Next, at the time of measuring the contamination of the subject, the radiation from the subject is detected by each radiation detector, the count value is corrected by the above calibration constant, and the original radioactive contamination degree of the subject is obtained. ..

【0015】最も検出感度の高い校正点を使用して校正
定数を定めた場合には検出感度の最大値から最小値まで
の検出誤差が存在することになるが、本発明では検出感
度曲線の包絡線の平均値を用いることにより、検出誤差
がほぼ1/2に縮小される。また第2の発明によれば、
上記第1の発明と同様に、移動手段により校正用の線源
が測定エリア内を移動されて各放射線検出器の検出感度
曲線が求められる。そして検出感度曲線に対して、予め
定められた各分割範囲内で、その検出感度曲線の平均値
が求められ、それら各平均値をさらに平均した値に基づ
いて放射線検出器全体に対する校正定数が定められる。
When the calibration constant is determined using the calibration point with the highest detection sensitivity, there will be a detection error from the maximum value to the minimum value of the detection sensitivity, but in the present invention, the envelope of the detection sensitivity curve is present. By using the average value of the lines, the detection error is reduced to about 1/2. According to the second invention,
Similar to the first aspect of the invention, the radiation source for calibration is moved in the measurement area by the moving means to obtain the detection sensitivity curve of each radiation detector. Then, with respect to the detection sensitivity curve, the average value of the detection sensitivity curve is obtained within each predetermined divided range, and the calibration constant for the entire radiation detector is determined based on the value obtained by further averaging the respective average values. Be done.

【0016】また第3の発明によれば、上記第1の発明
と同様に、移動手段により校正用の線源が測定エリア内
を移動されて各放射線検出器の検出感度曲線が求められ
る。そして検出感度曲線の包絡線に対して、各放射線検
出器毎に対応する包絡線の平均値が求められ、それら各
平均値に基づいて各放射線検出器毎に校正定数が定めら
れる。
According to the third aspect of the invention, similarly to the first aspect of the invention, the radiation source for calibration is moved in the measurement area by the moving means to obtain the detection sensitivity curve of each radiation detector. Then, with respect to the envelope of the detection sensitivity curve, the average value of the envelope corresponding to each radiation detector is obtained, and the calibration constant is determined for each radiation detector based on each average value.

【0017】また第4の発明によれば、上記第1の発明
と同様に、移動手段により校正用の線源が測定エリア内
を移動されて各放射線検出器の検出感度曲線が求められ
る。そして検出感度曲線に対して各放射線検出器毎に分
割範囲を定めてそれら各分割範囲内でその検出感度曲線
の包絡線の平均値が求められる。そしてそれら各平均値
に基づいて各放射線検出器毎に校正定数が定められる。
According to the fourth aspect of the invention, similarly to the first aspect of the invention, the radiation source for calibration is moved in the measurement area by the moving means to obtain the detection sensitivity curve of each radiation detector. Then, a division range is determined for each radiation detector with respect to the detection sensitivity curve, and the average value of the envelope of the detection sensitivity curve is obtained within each division range. Then, a calibration constant is determined for each radiation detector based on the respective average values.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0019】図1には本発明の一実施例に係る放射能汚
染モニタの機能ブロックが示されている。なお、図5に
示すモニタと同一機能を有する部分は同一符号を付し重
複する説明は省略する。
FIG. 1 shows a functional block of a radioactive contamination monitor according to an embodiment of the present invention. The parts having the same functions as those of the monitor shown in FIG.

【0020】本実施例の放射能汚染モニタは、データ処
理装置10を備えており、測定モード時に各測定装置2
a〜2cから送られてくるパルス信号を計数して被検体
の放射能汚染度を判定する機能と、校正モード時に後述
する感度校正演算を実行して校正定数を求める機能とを
有する。
The radioactive contamination monitor of this embodiment is equipped with a data processing device 10, and each measuring device 2 in the measuring mode.
It has a function of determining the degree of radioactive contamination of the subject by counting the pulse signals sent from a to 2c, and a function of executing a sensitivity calibration calculation described later in the calibration mode to obtain a calibration constant.

【0021】データ処理装置10には、上記測定モード
と校正モードの切換信号を入力するための処理モード切
換スイッチ11が接続され、さらに測定開始タイミング
信号を入力するための測定開始スイッチ12が接続され
ている。
The data processing device 10 is connected to a processing mode changeover switch 11 for inputting the measurement mode / calibration mode changeover signal, and further connected to a measurement start switch 12 for inputting a measurement start timing signal. ing.

【0022】また本実施例には、データ処理装置10か
ら駆動制御信号を受けて校正用の線源13を、放射線検
出器1a〜1cからなる測定エリア近傍を移動させて予
め定められた各位置に配置する線源駆動装置14が設け
られている。なお、校正用の線源13は一つの放射線検
出器の検出面上の少なくとも複数箇所に配置されるよう
に設定されている。
Further, in this embodiment, upon receiving a drive control signal from the data processor 10, the calibration radiation source 13 is moved in the vicinity of the measurement area composed of the radiation detectors 1a to 1c, and each position is determined in advance. The radiation source drive device 14 disposed in the position is provided. The calibration radiation source 13 is set so as to be arranged at least at a plurality of positions on the detection surface of one radiation detector.

【0023】また線源13の位置を検出する位置センサ
15が設けられていて、線源13の位置情報をデータ処
理装置10へ逐次入力するようになっている。なお、符
号16は被検体の放射能汚染度を表示する表示部であ
る。次に図3及び図4を参照して4種類の校正定数設定
原理に付いて説明する。
A position sensor 15 for detecting the position of the radiation source 13 is provided so that the position information of the radiation source 13 is sequentially input to the data processing device 10. Reference numeral 16 is a display unit that displays the degree of radioactive contamination of the subject. Next, four types of calibration constant setting principles will be described with reference to FIGS. 3 and 4.

【0024】図3は測定エリア近傍に線源を移動させた
ときの各放射線検出器1a〜1cから出力される検出信
号の計数値を検出感度として示したものである。各放射
線検出器1a〜1cの出力は同図に示すような検出感度
曲線を示す。
FIG. 3 shows, as the detection sensitivity, the count value of the detection signals output from the radiation detectors 1a to 1c when the radiation source is moved to the vicinity of the measurement area. The outputs of the radiation detectors 1a to 1c show detection sensitivity curves as shown in FIG.

【0025】本実施例では、各放射線検出器1a〜1c
の各々の検出感度曲線の包絡線を求める(同図に実線で
示す曲線)。そして包絡線の平均値A1と線源の線源強
度との比から校正定数を定める。この校正定数を放射線
検出器1a〜1cの校正定数として使用する。
In this embodiment, each of the radiation detectors 1a-1c is used.
Then, the envelope of each detection sensitivity curve is obtained (curve shown by a solid line in the figure). Then, the calibration constant is determined from the ratio of the average value A1 of the envelope and the source intensity of the source. This calibration constant is used as a calibration constant for the radiation detectors 1a-1c.

【0026】また、測定エリアにおける各放射線検出器
1a〜1cの守備範囲を図4に示すように予め設定す
る。放射線検出器1aの守備範囲はR1,放射線検出器
1bの守備範囲はR2,放射線検出器1cの守備範囲は
R3である。
Further, the protection range of each radiation detector 1a-1c in the measurement area is preset as shown in FIG. The protection range of the radiation detector 1a is R1, the protection range of the radiation detector 1b is R2, and the protection range of the radiation detector 1c is R3.

【0027】そして守備範囲R1における放射線検出器
1aの検出感度曲線の平均値と、守備範囲R2における
放射線検出器1bの検出感度曲線の平均値と、守備範囲
R3における放射線検出器1cの検出感度曲線の平均値
とをそれぞれ求め、それら各守備範囲の各平均値をさら
に平均した値を求める。そしてその値と線源の線源強度
との比から校正定数を定める。この校正定数を放射線検
出器1a〜1cの校正定数として使用することもでき
る。
The average value of the detection sensitivity curves of the radiation detector 1a in the defensive range R1, the average value of the detection sensitivity curves of the radiation detector 1b in the defensive range R2, and the detection sensitivity curve of the radiation detector 1c in the defensive range R3. , And the average value of each of the defense ranges is further averaged. Then, the calibration constant is determined from the ratio of the value and the source intensity of the source. This calibration constant can also be used as the calibration constant of the radiation detectors 1a to 1c.

【0028】なお、上記設定原理は全ての放射線検出器
1a〜1cに共通の校正定数を設定する場合であるが、
検出感度曲線の平均値を用いて、各放射線検出器1a〜
1c毎に特定の校正定数を定めることができる。
Although the above setting principle is for setting a common calibration constant for all the radiation detectors 1a to 1c,
Using the average value of the detection sensitivity curves, each radiation detector 1a-
A specific calibration constant can be set for each 1c.

【0029】例えば、図3に示す包絡線の放射線検出器
1aの出力に対応する範囲M1における検出感度曲線の
平均値を求め、同様に放射線検出器1b,1cの各出力
にそれぞれ対応する範囲M2,M3における各検出感度
曲線の各平均値を求める。そして範囲M1の平均値から
定めた校正定数を放射線検出器1aに使用し、同様に対
応する範囲M2,M3の平均値から求めた各校正定数を
放射線検出器1b,1cにそれぞれ使用する。
For example, the average value of the detection sensitivity curve in the range M1 corresponding to the output of the radiation detector 1a having the envelope shown in FIG. 3 is obtained, and similarly, the range M2 corresponding to the respective outputs of the radiation detectors 1b and 1c. , M3 for each detection sensitivity curve. Then, a calibration constant determined from the average value of the range M1 is used for the radiation detector 1a, and similarly, each calibration constant obtained from the average value of the corresponding ranges M2 and M3 is used for the radiation detectors 1b and 1c, respectively.

【0030】また、図4に示す守備範囲R1の平均値か
ら定めた校正定数を放射線検出器1aに使用し、守備範
囲R2,R3の平均値からそれぞれの定めた各校正定数
を放射線検出器1b,1cに使用することもできる。
Further, the calibration constants determined from the average value of the defense range R1 shown in FIG. 4 are used for the radiation detector 1a, and the respective calibration constants determined from the average value of the defense ranges R2 and R3 are used in the radiation detector 1b. , 1c can also be used.

【0031】次に、以上のように構成された本実施例の
動作に付いて図2を参照しながら説明する。本実施例
は、処理モード切換スイッチ11によって校正モードに
設定され、続いて測定開始スイッチ12から測定開始タ
イミング信号が入力すると、データ処理装置10から線
源駆動装置14に対して駆動制御信号が出力される。こ
の駆動制御信号によって線源駆動装置14は線源13を
予め決められた測定エリアの各所に順次配置していく。
Next, the operation of this embodiment configured as described above will be described with reference to FIG. In this embodiment, when the calibration mode is set by the processing mode changeover switch 11 and then the measurement start timing signal is input from the measurement start switch 12, the data processing device 10 outputs a drive control signal to the radiation source drive device 14. To be done. With this drive control signal, the radiation source driving device 14 sequentially arranges the radiation source 13 in each of the predetermined measurement areas.

【0032】このときの線源13の移動は、直列に配置
された3つの放射線検出器1a〜1cの各中心部を1ラ
インだけ走査するようにしても良いし、さらに複数ライ
ン走査させるようにしても良い。走査ライン数が増加す
るほど正確な検出感度曲線が得られるようになる。
At this time, the radiation source 13 may be moved by scanning only one line at the central portion of each of the three radiation detectors 1a to 1c arranged in series, or by scanning a plurality of lines. May be. An accurate detection sensitivity curve can be obtained as the number of scanning lines increases.

【0033】データ処理装置10では測定装置2a〜2
cを介して送られて来るパルス信号を計数すると共に、
位置センサ15から送られて来る線源13の位置情報を
取り込み、各放射線検出器の検出感度曲線を求める。
In the data processing device 10, the measuring devices 2a-2
While counting the pulse signals sent via c,
The position information of the radiation source 13 sent from the position sensor 15 is taken in and the detection sensitivity curve of each radiation detector is obtained.

【0034】そして測定エリア上の予め定められた全て
の測定点での測定が終了すると、次に校正定数の算出演
算を実行する。この演算は上記測定によって得られた計
数値を基に、上記した4種類の設定原理のいずれかを実
行する。例えば、検出感度曲線から図3に示す包絡線を
求め、その平均値A1を求める。そして平均値A1と線
源強度との比から校正定数を定める。
When the measurement at all the predetermined measurement points on the measurement area is completed, the calculation calculation of the calibration constant is executed next. This calculation executes one of the above-mentioned four kinds of setting principles based on the count value obtained by the above measurement. For example, the envelope shown in FIG. 3 is obtained from the detection sensitivity curve, and the average value A1 is obtained. Then, the calibration constant is determined from the ratio of the average value A1 and the source intensity.

【0035】校正定数が求められたならば、その値を校
正定数記憶部4に保存する。なお、各放射線検出器1a
〜1c毎に校正定数を定めた場合には、各放射線検出器
1a〜1c毎に保存する。
When the calibration constant is obtained, the value is stored in the calibration constant storage unit 4. In addition, each radiation detector 1a
When the calibration constant is determined for each of the radiation detectors 1c to 1c, the calibration constants are stored for the radiation detectors 1a to 1c.

【0036】次に、処理モード切換スイッチ11によっ
て測定モードに切換えることにより、被検体の放射能汚
染測定が可能になる。すなわち、被検体を測定エリアに
対向させた状態で測定開始スイッチ12から測定開始タ
イミング信号を入力すると、各放射線検出器1a〜1c
の検出信号を取り込んでそれぞれの計数値が求められ
る。そして校正定数記憶部4に保存されている校正定数
を読出し、その計数値にかけることにより、実際の汚染
量が算出される。
Next, by switching to the measurement mode by the processing mode changeover switch 11, the radioactive contamination of the subject can be measured. That is, when the measurement start timing signal is input from the measurement start switch 12 in a state where the subject is opposed to the measurement area, each of the radiation detectors 1a to 1c.
The respective detection values are obtained by taking in the detection signals of. Then, the actual contamination amount is calculated by reading the calibration constant stored in the calibration constant storage unit 4 and multiplying it by the count value.

【0037】この様に本実施例によれば、線源駆動装置
14を設けて校正用の線源13を測定エリア内を自由に
移動させることができるようにして各放射線検出器1a
〜1cの各々の検出感度曲線を求め、さらに検出感度曲
線の包絡線を求めて、その平均値A1と線源の線源強度
との比に基づいて定められた校正定数によって放射線検
出器1a〜1cの出力を補正するようにしたので、従来
のように最も高い検出感度を校正点とした場合に比べ
て、校正による誤差を約1/2に縮小することができ、
測定精度の向上を図ることができる。
As described above, according to this embodiment, the radiation source driving device 14 is provided so that the calibration radiation source 13 can be freely moved within the measurement area.
1a to 1c, the detection sensitivity curve is further calculated, the envelope of the detection sensitivity curve is further calculated, and the radiation detector 1a is determined by a calibration constant determined based on the ratio between the average value A1 and the source intensity of the radiation source. Since the output of 1c is corrected, the error due to the calibration can be reduced to about 1/2 as compared with the conventional case where the highest detection sensitivity is used as the calibration point.
The measurement accuracy can be improved.

【0038】また、本実施例は、測定エリアにおける各
放射線検出器1a〜1cの守備範囲を予め設定し、各守
備範囲における各放射線検出器の検出感度曲線の平均値
をそれぞれ求め、それら各守備範囲の各平均値をさらに
平均した値により校正定数を定めるようにしたので、こ
の場合も最も高い検出感度を校正点とした場合に比べ
て、測定精度を向上できる。
Further, in this embodiment, the protection ranges of the radiation detectors 1a to 1c in the measurement area are set in advance, the average values of the detection sensitivity curves of the radiation detectors in the protection ranges are obtained, and the respective protections are determined. Since the calibration constant is determined by further averaging the average values of the range, the measurement accuracy can be improved in this case as compared with the case where the highest detection sensitivity is used as the calibration point.

【0039】また、本実施例は、前記包絡線の放射線検
出器1aの出力に対応する範囲M1における検出感度曲
線の平均値を求め、同様に放射線検出器1b,1cの各
出力にそれぞれ対応する範囲M2,M3における各検出
感度曲線の各平均値を求めて、範囲M1の平均値から定
めた校正定数を放射線検出器1aに使用し、同様に対応
する範囲M2,M3の平均値から求めた各校正定数を放
射線検出器1b,1cにそれぞれ使用するようにしたの
で、この場合も最も高い検出感度を校正点とした場合に
比べて、測定精度を向上できる。
Further, in the present embodiment, the average value of the detection sensitivity curve in the range M1 corresponding to the output of the radiation detector 1a of the envelope is obtained, and similarly, it corresponds to each output of the radiation detectors 1b and 1c. The average value of each detection sensitivity curve in the ranges M2 and M3 was calculated, the calibration constant determined from the average value of the range M1 was used for the radiation detector 1a, and similarly the average value of the corresponding ranges M2 and M3 was calculated. Since each calibration constant is used for each of the radiation detectors 1b and 1c, in this case as well, the measurement accuracy can be improved as compared with the case where the highest detection sensitivity is used as the calibration point.

【0040】さらに本実施例は、守備範囲R1の平均値
から定めた校正定数を放射線検出器1aに使用し、守備
範囲R2,R3の平均値からそれぞれの定めた各校正定
数を放射線検出器1b,1cに使用するので、この場合
も最も高い検出感度を校正点とした場合に比べて、測定
精度を向上できる。
Further, in this embodiment, the calibration constants determined from the average value of the defense range R1 are used for the radiation detector 1a, and the calibration constants determined respectively from the average value of the defense ranges R2 and R3 are used in the radiation detector 1b. , 1c, the measurement accuracy can be improved in this case as compared with the case where the highest detection sensitivity is used as the calibration point.

【0041】また、線源駆動装置14によって線源13
を移動させるように構成したので、従来のように固定治
具を用いる場合に比べて、校正測定操作が簡単になると
いった利点がある。
Further, the source 13 is driven by the source driver 14.
Since it is configured to be moved, there is an advantage that the calibration measurement operation becomes simpler than in the case where a fixing jig is used as in the related art.

【0042】なお、上記実施例では放射線検出器1a〜
1cを直列に配置する例を示したが、図5(a)に示す
ように平面上に配置したものにも適用できる。この場合
の感度特性は同図(b)に示すような状態になるので、
校正用線源13の移動は少なくとも各検出器中心を1度
は走査するようにする。
In the above embodiment, the radiation detectors 1a ...
Although the example of arranging 1c in series is shown, it is also applicable to those arranged on a plane as shown in FIG. Since the sensitivity characteristic in this case is as shown in FIG.
The calibration radiation source 13 is moved so that the center of each detector is scanned at least once.

【0043】また図6(a)に示すように、放射線検出
器20a〜20dを井戸型に配置したものにも適用でき
る。この場合の感度特性は同図(b)に示すような状態
になるので、校正用線源13の移動は、同図に示すよう
に円を描くように、または上下方向にスパイラル状に移
動させる。
Further, as shown in FIG. 6 (a), the radiation detectors 20a to 20d can be applied to a well type arrangement. Since the sensitivity characteristic in this case is as shown in FIG. 7B, the calibration radiation source 13 is moved in a circle as shown in FIG. ..

【0044】[0044]

【発明の効果】以上詳記したように本発明によれば、被
検体の配置位置に左右されずに常に信頼性の高い放射能
汚染測定を可能にする放射能汚染モニタを提供できる。
As described above in detail, according to the present invention, it is possible to provide a radioactive contamination monitor that enables reliable reliable measurement of radioactive contamination regardless of the position of the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る放射能汚染モニタの機
能ブロック図。
FIG. 1 is a functional block diagram of a radioactive contamination monitor according to an embodiment of the present invention.

【図2】一実施例に係る放射能汚染モニタの校正測定動
作を示す図。
FIG. 2 is a diagram showing a calibration measurement operation of the radioactive contamination monitor according to the embodiment.

【図3】各放射線測定器出力の包絡線を用いた校正定数
設定原理を説明するための図。
FIG. 3 is a diagram for explaining the principle of setting calibration constants using the envelope of the output of each radiation measuring device.

【図4】各放射線測定器の検出感度曲線に守備範囲を定
めて校正定数を設定する原理を説明するための図。
FIG. 4 is a diagram for explaining the principle of defining a defensive range on the detection sensitivity curve of each radiation measuring instrument and setting a calibration constant.

【図5】平面状に配置された放射線検出器及びその感度
特性を示す図。
FIG. 5 is a diagram showing a radiation detector arranged in a plane and its sensitivity characteristics.

【図6】井戸型に配置された放射線検出器及びその感度
特性を示す図。
FIG. 6 is a view showing a radiation detector arranged in a well shape and its sensitivity characteristic.

【図7】従来よりある放射能汚染モニタの機能ブロック
図。
FIG. 7 is a functional block diagram of a conventional radioactive contamination monitor.

【図8】従来より行われている検出感度曲線を用いた校
正定数設定原理を説明するための図。
FIG. 8 is a diagram for explaining a conventional calibration constant setting principle using a detection sensitivity curve.

【符号の説明】[Explanation of symbols]

1a〜1c…放射線検出器、2a〜2c…測定装置、4
…校正定数記憶部、10…データ処理装置、13…校正
用の線源、14…線源駆動装置、15…位置センサ。
1a-1c ... Radiation detector, 2a-2c ... Measuring device, 4
... Calibration constant storage unit, 10 ... Data processing device, 13 ... Calibration radiation source, 14 ... Radiation source driving device, 15 ... Position sensor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の放射線検出器で形成される測定エ
リアに被検体を配置して、該被検体から放出される放射
線を前記各放射線検出器で検出してパルス信号に変換
し、そのパルス信号を計数した計数値から前記被検体の
放射能汚染をモニタする放射能汚染モニタにおいて、 校正用の線源を前記測定エリア内の各所に移動させる移
動手段と、 前記移動手段によって前記線源を前記測定エリア内の各
所に配置させたときに前記各放射線検出器が示す計数値
から各放射線検出器の感度特性を示す検出感度曲線を求
め、この検出感度曲線の包絡線を平均した平均値と前記
線源の線源強度との比に応じて前記各放射線検出器の校
正定数を定める校正定数算出手段と、 被検体からの放射線を前記各放射線検出器で検出して得
られた計数値を、前記校正定数算出手段で定めた校正定
数で補正する補正手段と、を具備したことを特徴とする
放射能汚染モニタ。
1. A subject is placed in a measurement area formed by a plurality of radiation detectors, the radiation emitted from the subject is detected by each of the radiation detectors and converted into a pulse signal, and the pulse is generated. In a radioactive contamination monitor that monitors the radioactive contamination of the subject from the count value obtained by counting the signals, a moving unit that moves a calibration radiation source to various places in the measurement area, and the radiation source by the moving unit. Obtaining a detection sensitivity curve showing the sensitivity characteristics of each radiation detector from the count value shown by each radiation detector when placed at each position in the measurement area, and an average value obtained by averaging the envelopes of this detection sensitivity curve. A calibration constant calculating means for determining the calibration constant of each radiation detector according to the ratio of the radiation source to the radiation source intensity, and a count value obtained by detecting radiation from a subject with each radiation detector. , The calibration A radioactive contamination monitor, comprising: a correction unit that corrects with a calibration constant determined by the number calculation unit.
【請求項2】 複数の放射線検出器で形成される測定エ
リアに被検体を配置して、該被検体から放出される放射
線を前記各放射線検出器で検出してパルス信号に変換
し、そのパルス信号を計数した計数値から前記被検体の
放射能汚染をモニタする放射能汚染モニタにおいて、 校正用の線源を前記測定エリア内の各所に移動させる移
動手段と、 前記移動手段によって前記線源を前記測定エリア内の各
所に配置させたときに前記各放射線検出器が示す計数値
から各放射線検出器の感度特性を示す検出感度曲線を求
め、該検出感度曲線を予め定められた範囲で分割し、各
分割範囲内での検出感度曲線の平均値を求め、その各平
均値をさらに平均した値と前記線源の線源強度との比に
応じて前記各放射線検出器の校正定数を定める校正定数
算出手段と、 被検体からの放射線を前記各放射線検出器で検出して得
られた計数値を、前記校正定数算出手段で定めた校正定
数で補正する補正手段と、を具備したことを特徴とする
放射能汚染モニタ。
2. A subject is placed in a measurement area formed by a plurality of radiation detectors, the radiation emitted from the subject is detected by each of the radiation detectors and converted into a pulse signal, and the pulse signal is generated. In a radioactive contamination monitor that monitors the radioactive contamination of the subject from the count value obtained by counting the signals, a moving unit that moves a calibration radiation source to various places in the measurement area, and the radiation source by the moving unit. Obtaining a detection sensitivity curve showing the sensitivity characteristic of each radiation detector from the count value shown by each radiation detector when arranged at each place in the measurement area, and dividing the detection sensitivity curve in a predetermined range , The calibration constant of each radiation detector is determined according to the ratio of the average value of the detection sensitivity curves in each divided range and the average of the average value and the source intensity of the radiation source. With constant calculation means Radioactivity contamination, comprising: a correction unit that corrects a count value obtained by detecting radiation from a subject with each of the radiation detectors with a calibration constant determined by the calibration constant calculation unit. monitor.
【請求項3】 複数の放射線検出器で形成される測定エ
リアに被検体を配置して、該被検体から放出される放射
線を前記各放射線検出器で検出してパルス信号に変換
し、そのパルス信号を計数した計数値から前記被検体の
放射能汚染をモニタする放射能汚染モニタにおいて、 校正用の線源を前記測定エリア内の各所に移動させる移
動手段と、 前記移動手段によって前記線源を前記測定エリア内の各
所に配置させたときに前記各放射線検出器が示す計数値
から各放射線検出器の感度特性を示す検出感度曲線を求
め、該検出感度曲線の包絡線を各放射線検出器毎に分割
し、各分割範囲における前記包絡線の各平均値と前記線
源の線源強度との比に応じて、前記各放射線検出器毎に
校正定数を定める校正定数算出手段と、 被検体からの放射線を前記各放射線検出器で検出して得
られた計数値を、前記校正定数算出手段で定めた各校正
定数で、各放射線検出器毎に補正する補正手段と、を具
備したことを特徴とする放射能汚染モニタ。
3. A subject is arranged in a measurement area formed by a plurality of radiation detectors, the radiation emitted from the subject is detected by each of the radiation detectors and converted into a pulse signal, and the pulse is generated. In a radioactive contamination monitor for monitoring the radioactive contamination of the subject from the count value obtained by counting the signals, moving means for moving the calibration radiation source to various places in the measurement area, and the radiation source by the moving means. Obtaining a detection sensitivity curve showing the sensitivity characteristic of each radiation detector from the count value shown by each radiation detector when arranged at each place in the measurement area, and the envelope of the detection sensitivity curve for each radiation detector And a calibration constant calculating means for determining a calibration constant for each radiation detector according to a ratio between each average value of the envelope in each divided range and the source intensity of the radiation source, and from the subject. The radiation of A radioactivity, comprising: a correction unit that corrects the count value obtained by detection by each radiation detector with each calibration constant determined by the calibration constant calculation unit, for each radiation detector. Pollution monitor.
【請求項4】 複数の放射線検出器で形成される測定エ
リアに被検体を配置して、該被検体から放出される放射
線を前記各放射線検出器で検出してパルス信号に変換
し、そのパルス信号を計数した計数値から前記被検体の
放射能汚染をモニタする放射能汚染モニタにおいて、 校正用の線源を前記測定エリア内の各所に移動させる移
動手段と、 前記移動手段によって前記線源を前記測定エリア内の各
所に配置させたときに前記各放射線検出器が示す計数値
から各放射線検出器の感度特性を示す検出感度曲線を求
め、該検出感度曲線を前記各放射線検出器毎に分割し、
各分割範囲における検出感度曲線の平均値と前記線源の
線源強度との比に応じて、前記各放射線検出器毎に校正
定数を定める校正定数算出手段と、 被検体からの放射線を前記各放射線検出器で検出して得
られた計数値を、前記校正定数算出手段で定めた各校正
定数で、各放射線検出器毎に補正する補正手段と、を具
備したことを特徴とする放射能汚染モニタ。
4. A subject is placed in a measurement area formed by a plurality of radiation detectors, the radiation emitted from the subject is detected by each of the radiation detectors and converted into a pulse signal, and the pulse signal is generated. In a radioactive contamination monitor that monitors the radioactive contamination of the subject from the count value obtained by counting the signals, a moving unit that moves a calibration radiation source to various places in the measurement area, and the radiation source by the moving unit. Obtaining a detection sensitivity curve showing the sensitivity characteristic of each radiation detector from the count value shown by each radiation detector when arranged at each place in the measurement area, and dividing the detection sensitivity curve for each radiation detector Then
A calibration constant calculating unit that determines a calibration constant for each radiation detector according to the ratio of the average value of the detection sensitivity curve in each divided range and the radiation source intensity of the radiation source, and the radiation from the subject Radioactive contamination, comprising: a correction unit that corrects the count value obtained by detection with the radiation detector, with each calibration constant determined by the calibration constant calculation unit, for each radiation detector. monitor.
JP711792A 1992-01-20 1992-01-20 Radioactive contamination monitor Pending JPH05196741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP711792A JPH05196741A (en) 1992-01-20 1992-01-20 Radioactive contamination monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP711792A JPH05196741A (en) 1992-01-20 1992-01-20 Radioactive contamination monitor

Publications (1)

Publication Number Publication Date
JPH05196741A true JPH05196741A (en) 1993-08-06

Family

ID=11657148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP711792A Pending JPH05196741A (en) 1992-01-20 1992-01-20 Radioactive contamination monitor

Country Status (1)

Country Link
JP (1) JPH05196741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107360A (en) * 2008-10-30 2010-05-13 Aloka Co Ltd Calibrator for use of radioactive contamination monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107360A (en) * 2008-10-30 2010-05-13 Aloka Co Ltd Calibrator for use of radioactive contamination monitor

Similar Documents

Publication Publication Date Title
JPH03123811A (en) Sheet thickness measuring instrument
EP0674345A2 (en) Wafer notch dimension measuring apparatus
JPS62145125A (en) Scan type radiation thermometer
JPH05196741A (en) Radioactive contamination monitor
JP2921923B2 (en) Radiation detector sensitivity calibration device
JPH05249247A (en) Scintillation detector
JPS63243896A (en) Radial rays measuring instrument
JP2000258146A (en) Radiation thickness measurement device
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
JPS62121383A (en) Radiant ray measuring instrument
JP3599295B2 (en) Optical dimension measuring device
JPH0371044B2 (en)
JPS58182544A (en) Roentgen-ray analyzer
JPH0499925A (en) Infrared radiation measuring apparatus
JPH0443765Y2 (en)
JPH034885Y2 (en)
GB2110125A (en) Machine tool straightness calibration
JPS623609A (en) Range finder
KR0181992B1 (en) Method and apparatus for measuring geometrical distortion of cathode ray tube monitor
JPH0449885B2 (en)
JPS6040904A (en) Length measuring device
JPH0763853A (en) Device of measuring distance
JPH0355048Y2 (en)
SU1511594A1 (en) Radiation thickness meter
JPH042929A (en) Infrared detector