JPH05195949A - Reciprocating compressor - Google Patents

Reciprocating compressor

Info

Publication number
JPH05195949A
JPH05195949A JP4008174A JP817492A JPH05195949A JP H05195949 A JPH05195949 A JP H05195949A JP 4008174 A JP4008174 A JP 4008174A JP 817492 A JP817492 A JP 817492A JP H05195949 A JPH05195949 A JP H05195949A
Authority
JP
Japan
Prior art keywords
oil
chamber
compressor
return
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4008174A
Other languages
Japanese (ja)
Inventor
Isato Ikeda
勇人 池田
Hisaya Yokomachi
尚也 横町
Naoto Kawamura
川村  尚登
Tetsuya Takashima
徹也 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP4008174A priority Critical patent/JPH05195949A/en
Publication of JPH05195949A publication Critical patent/JPH05195949A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the appropriate return supply quantity of recovered separated oil without under-over quantity according to the operating state of a reciprocating compressor. CONSTITUTION:An oil separating chamber 32 disposed in a high pressure area in a compressor; a separated oil recovering oil reservoir chamber 40 provided in line with the oil separating chamber 32 ; an oil return hole 42 opened facing a valve seat 41 formed at the bottom part of the oil reservoir chamber 40 so as to communicate the oil reservoir chamber 40 with a low pressure area 8 in the compressor; and a valve means 43 for controlling the flow of the oil return hole 42 according to the differential pressure of both high-low pressure areas, are installed. The return supply of the recovered separated oil corresponding to the operating state of the compressor is thereby attained automatically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧冷媒ガスの油分離
機構を内蔵した往復動型圧縮機の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a reciprocating compressor having a built-in oil separation mechanism for high pressure refrigerant gas.

【0002】[0002]

【従来の技術】主として車両空調用に供される斜板式、
揺動板式等の往復動型圧縮機では、可動部分の潤滑に供
される潤滑油が冷媒ガス中にミスト状に混在されてい
る。したがって、圧縮機から吐出される冷媒ガスと共に
混在油粒がそのまま冷凍回路に吐出循環されると、この
油粒が蒸発器の内壁等に付着して熱交換の効率を低下さ
せる。
2. Description of the Related Art A swash plate type mainly used for vehicle air conditioning,
In a reciprocating compressor such as an oscillating plate type, lubricating oil used for lubricating a movable part is mixed in a refrigerant gas in a mist form. Therefore, when the mixed oil particles are discharged and circulated as they are in the refrigeration circuit together with the refrigerant gas discharged from the compressor, the oil particles adhere to the inner wall of the evaporator or the like to reduce the efficiency of heat exchange.

【0003】このため、従来では、圧縮機から凝縮器に
至る高圧管路中に油分離器を別設して、分離された潤滑
油を還油配管を介して圧縮機内へ戻すように構成したも
のが実用されているが、機器、配管の増設に伴う総合的
な冷凍回路構成の幅輳化に加えて、小径、かつ長尺状に
形成された還油配管に目詰りなどの事故も生じ易いの
で、近時、圧縮機に直接油分離機構を内蔵させた構成の
ものも提案されている。
Therefore, conventionally, an oil separator is separately provided in the high-pressure pipe from the compressor to the condenser, and the separated lubricating oil is returned to the compressor through the return oil pipe. However, in addition to the widening of the refrigeration circuit configuration due to the expansion of equipment and piping, accidents such as clogging of the return oil piping formed in a small diameter and long shape also occur. Since it is easy, it has recently been proposed that the compressor directly incorporates an oil separation mechanism.

【0004】[0004]

【発明が解決しようとする課題】さて、上述した油分離
機構内蔵型の圧縮機では、機内の高圧領域で分離された
分離油を回収する油溜室と、該分離油を還給する低圧領
域(例えば斜板室)とが還油孔によって連通せしめられ
ているが、適正な還油量の保持や、機台停止後の貯溜油
枯渇時、該還油孔を経由して生じる高圧冷媒ガスの逆流
抑制といった点を考慮すれば、該還油孔の通路断面積は
極端に小さく設定せざるを得ない。
In the compressor having the built-in oil separation mechanism described above, the oil reservoir chamber for collecting the separated oil separated in the high pressure area in the machine and the low pressure area for returning the separated oil. (For example, the swash plate chamber) is in communication with the return oil hole. However, when maintaining an appropriate amount of return oil and when the stored oil is depleted after the machine is stopped, the high pressure refrigerant gas generated via the return oil hole Considering the point of suppressing backflow, the passage cross-sectional area of the return oil hole must be set extremely small.

【0005】したがって、このような微細な還油孔は、
とかく目詰りを生じて還油機能を損ない易く、他方、生
産面においても加工刄具の折損事故が頻発するという不
具合がある。しかも機内の残存油が突沸して冷媒ガスと
共に吐出される圧縮機の起動時には、斜板室内の主要可
動部が一時的な無給油状態に陥って速やかな給油が求め
られるものの、上記微細な還油孔の給油能力では到底満
足すべき対応を期待することが困難である。
Therefore, such fine oil return holes are
Anyway, there is a problem that clogging easily occurs and the return oil function is impaired, and on the other hand, also in terms of production, breakage accidents of the work piece frequently occur. Moreover, when the compressor is started in which the residual oil in the machine is boiled and discharged together with the refrigerant gas, the main movable part in the swash plate chamber temporarily falls into a non-lube state and prompt refueling is required. It is difficult to expect a satisfactory response with the oil supply capability of the oil holes.

【0006】本発明は、圧縮機の稼動状況(高低両圧力
領域の差圧)に応じて過不足のない還油量を確保し、か
つ高圧冷媒ガスの逆流をも一層有効に抑制せんとするこ
とを、解決すべき技術課題とするものである。
The present invention secures a sufficient amount of return oil according to the operating condition of the compressor (the pressure difference between the high pressure region and the low pressure region), and further effectively suppresses the reverse flow of the high pressure refrigerant gas. This is a technical issue to be solved.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題解決の
ため、機内の高圧領域に配設された油分離室と、該油分
離室に連設された分離油回収用の油溜室と、該油溜室の
底部に形成された弁座面に開口して該油溜室と機内の低
圧領域とを連通する還油孔と、上記高低両圧力領域の差
圧に応じて該還油孔の流量を制御する弁手段とを備えた
新規な構成を採用している。
In order to solve the above-mentioned problems, the present invention provides an oil separation chamber arranged in a high-pressure area in the machine, and an oil collection chamber for recovering separated oil, which is connected to the oil separation chamber. A return oil hole that opens in a valve seat surface formed at the bottom of the oil sump chamber to communicate the oil sump chamber with a low pressure region in the machine, and the return oil according to the differential pressure between the high and low pressure regions. It employs a novel configuration with valve means to control the flow rate through the holes.

【0008】[0008]

【作用】機内の高圧領域と低圧領域との差圧が至って小
さい圧縮機の起動時には、還油孔の流量が弁手段によっ
て拡大側に制御されており、とくに含油量の多い初期の
吐出冷媒から分離された回収分離油は、油溜室から所要
の通路断面積をもつ還油孔を介して迅速、かつ潤沢に低
圧領域(斜板室)へ還給される。その後圧縮機が順次定
常運転に移行する段階では、高低両圧力領域の差圧の上
昇に伴って弁手段は徐々に還油孔の流量を縮少すべく制
御し、分離油量と必要給油量との均衡により常に適正な
貯溜油量が確保される。
When the compressor is started with a small differential pressure between the high pressure region and the low pressure region inside the machine, the flow rate of the return oil hole is controlled to the expansion side by the valve means, especially from the initial discharge refrigerant with a large oil content. The separated recovered separated oil is rapidly and satisfactorily returned to the low pressure region (swash plate chamber) from the oil reservoir chamber through the return oil hole having the required passage cross-sectional area. After that, at the stage where the compressor sequentially shifts to steady operation, the valve means controls to gradually reduce the flow rate of the return oil hole as the differential pressure in both the high and low pressure regions rises, and the separation oil amount and the required oil supply amount. By keeping the balance with the above, an appropriate amount of stored oil is always secured.

【0009】そして機台停止後の貯溜油枯渇時、凝縮器
側と蒸発器側との間に残存する差圧によって高圧冷媒ガ
スの逆流を招くような事態が生じたとしても、その差圧
自体が弁手段を介して還油孔の流量を縮少すべく制御し
ているので、異音の発生や蒸発器の昇温といった既往の
不具合は、実質的に無害な程度に抑制される。
When the stored oil is depleted after the machine is stopped, even if a situation in which the high pressure refrigerant gas flows backward due to the differential pressure remaining between the condenser side and the evaporator side, the differential pressure itself Controls the flow rate of the return oil hole through the valve means, so that the existing problems such as the generation of abnormal noise and the temperature rise of the evaporator can be suppressed to a substantially harmless degree.

【0010】[0010]

【実施例】以下、本発明を具体化した斜板式圧縮機の実
施例を図1〜図3に基づいて説明する。図は片側5気筒
の斜板式圧縮機を示すもので、前後に対設されたシリン
ダブロック1、2の両端部は前後のバルブプレート3、
4を介してフロント及びリヤのハウジング5、6により
閉鎖され、これらはボルト挿通孔1a、2aに挿通され
た複数本のボルト7によって結合されている。シリンダ
ブロック1、2の結合部分には斜板室8が形成され、そ
こには両シリンダブロック1、2の中心軸孔1b、2b
を貫通する駆動軸9に固定された斜板10が収容されて
いる。上記シリンダブロック1、2には、5対のシリン
ダボア11が、駆動軸9と平行に、かつ駆動軸9を中心
とする放射位置に形成され、各シリンダボア11には両
頭形のピストン12が嵌挿されて、各ピストン12は半
球状のシュー13を介して斜板10に係留されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a swash plate type compressor embodying the present invention will be described below with reference to FIGS. The figure shows a swash plate type compressor with five cylinders on each side. Both ends of cylinder blocks 1 and 2 which are opposed to each other at the front and rear have valve plates 3 at the front and rear, respectively.
It is closed by front and rear housings 5 and 6 via 4, and these are connected by a plurality of bolts 7 inserted into the bolt insertion holes 1a and 2a. A swash plate chamber 8 is formed in the connecting portion of the cylinder blocks 1 and 2, and central shaft holes 1b and 2b of the cylinder blocks 1 and 2 are formed therein.
A swash plate 10 fixed to a drive shaft 9 penetrating therethrough is housed. Five pairs of cylinder bores 11 are formed in the cylinder blocks 1 and 2 in parallel with the drive shaft 9 and at radial positions around the drive shaft 9, and a double-headed piston 12 is inserted into each cylinder bore 11. Thus, each piston 12 is anchored to the swash plate 10 via a hemispherical shoe 13.

【0011】上記フロント及びリヤのハウジング5、6
にはそれぞれ中心側に吸入室14、15が形成され、外
周側に吐出室16、17が形成されている。また、前後
のバルブプレート3、4にはそれぞれ吸入室14、15
から各シリンダボア11内に低圧の冷媒ガスGを吸入す
るための吸入口18、19と、各シリンダボア11から
吐出室16、17内に圧縮された高圧の冷媒ガスGを吐
出するための吐出口20、21とが形成されている。さ
らに、バルブプレート3、4のシリンダブロック1、2
側には吸入弁機構22、23が設けられ、バルブプレー
ト3、4のハウジング5、6側には吐出弁機構24、2
5が設けられている。
The front and rear housings 5 and 6
The suction chambers 14 and 15 are formed on the center side of each of them, and the discharge chambers 16 and 17 are formed on the outer peripheral side thereof. The front and rear valve plates 3 and 4 have suction chambers 14 and 15 respectively.
From each of the cylinder bores 11 into the low pressure refrigerant gas G, and a discharge port 20 from each of the cylinder bores 11 to discharge the compressed high pressure refrigerant gas G into the discharge chambers 16 and 17. , 21 are formed. Furthermore, the cylinder blocks 1, 2 of the valve plates 3, 4
Suction valve mechanisms 22 and 23 are provided on the side, and discharge valve mechanisms 24 and 2 are provided on the sides of the housings 5 and 6 of the valve plates 3 and 4, respectively.
5 are provided.

【0012】図2に示すように、上記リヤ側シリンダブ
ロック2の上部には突出部26が設けられ、この突出部
26には斜板室8に開口する図示しない吸入口が穿設さ
れている。両シリンダブロック1、2における各シリン
ダボア11の狭間には、斜板室8と吸入室14、15と
を連通する複数の吸入通路28、29が形成され、上記
吸入口から斜板室8に吸入された冷媒ガスGがこの吸入
通路28、29を通って吸入室14、15内に導入され
る。
As shown in FIG. 2, a projecting portion 26 is provided on the upper portion of the rear cylinder block 2, and a suction port (not shown) that opens to the swash plate chamber 8 is bored in the projecting portion 26. A plurality of suction passages 28 and 29 that communicate the swash plate chamber 8 with the suction chambers 14 and 15 are formed between the cylinder bores 11 in both cylinder blocks 1 and 2, and the suction passages are sucked into the swash plate chamber 8 through the suction ports. The refrigerant gas G is introduced into the suction chambers 14, 15 through the suction passages 28, 29.

【0013】図2及び図3に示すように、上記突出部2
6にはシエル31が取付けられ、その内部にはサイクロ
ン方式の油分離室32が形成されている。該油分離室3
2は有底円孔状の分離部32aと、湾曲した座繰孔に加
工されて該分離部32aの上半部へほぼ接線状に開口す
る誘導部32bとからなり、該誘導部32bの両湾曲端
縁に開口する通孔33はリヤ側シリンダブロック2に形
成された一対の吐出通路34と結ばれて上記吐出室1
6、17に連通され、一方、該分離部32aの底壁周縁
には後述する油溜室へと通じる複数の油孔35が貫設さ
れている。そして上記シエル31を覆閉する蓋板36に
は上記分離部32aの中心部へ突入延在する吐出管37
が固着され、該吐出管37の外端は図示しない外部冷凍
回路と連結されている。
As shown in FIGS. 2 and 3, the protrusion 2 is formed.
A shell 31 is attached to 6, and a cyclone type oil separation chamber 32 is formed inside thereof. The oil separation chamber 3
Reference numeral 2 denotes a bottomed circular hole-shaped separating portion 32a, and a guide portion 32b which is processed into a curved counterbore hole and opens substantially tangentially to the upper half of the separating portion 32a. The through hole 33 that opens to the curved edge is connected to the pair of discharge passages 34 formed in the rear cylinder block 2 and is connected to the discharge chamber 1.
A plurality of oil holes 35 communicating with the oil reservoir chamber described later are provided at the periphery of the bottom wall of the separating portion 32a. The cover plate 36 that covers and closes the shell 31 has a discharge pipe 37 that extends into the center of the separating portion 32a.
Is fixed, and the outer end of the discharge pipe 37 is connected to an external refrigeration circuit (not shown).

【0014】上記油分離室32の下方に位置するリヤ側
シリンダブロック2の突出部26には、分離された潤滑
油0を回収貯溜する油溜室40が凹設され、その底壁の
最深部は比較的浅い斜角の円錐形弁座41に形成される
とともに、該弁座41の中心部には斜板室8に連通する
還油孔42が貫設されている。43は、図4に拡大して
示した流量制御用のフロート弁であって、該フロート弁
43は円形状のばね用鋼板からなり、周縁に複数個(図
は4個)の角状突起43aが形成されている。したがっ
て、これが上記弁座41上に載置された状態において、
機内の高圧領域に属する油分離室32と同じく低圧領域
に属する斜板室8との差圧が零若しくは比較的小さい場
合には、フロート弁43は上記突起43aの外端縁のみ
によって弁座41に着座し、弧状周面43bは遊離した
弁座41面との間に適度の空隙を形成して応分な貯溜油
の流動を許容する。そして上記高低両圧力領域の差圧が
増大するにつれ、突起43aは弁座41面に随従密合す
る優先的な弾性変形を生じて、上記弧状周面43bと弁
座41面との間の空隙を徐々に縮小し、両面43b、4
1がほぼ線当り状に接触するに至って、貯溜油の通過流
量は最少限に規制されるよう構成されている(図4
(B))。なお、44は弁座41の上方を覆閉すべく装
着されて、フロート弁43の過度の遊動を防止する網状
部材である。
An oil storage chamber 40 for collecting and storing the separated lubricating oil 0 is provided in the protruding portion 26 of the rear cylinder block 2 located below the oil separation chamber 32, and the deepest portion of the bottom wall thereof is provided. Is formed on a conical valve seat 41 having a relatively shallow angle, and a return oil hole 42 communicating with the swash plate chamber 8 is provided at the center of the valve seat 41. Reference numeral 43 denotes a float valve for flow rate control, which is enlarged and shown in FIG. 4, and the float valve 43 is made of a circular spring steel plate, and has a plurality of (four in the figure) angular protrusions 43a on its periphery. Are formed. Therefore, in the state where it is placed on the valve seat 41,
When the differential pressure between the oil separation chamber 32 belonging to the high pressure region in the machine and the swash plate chamber 8 belonging to the low pressure region is zero or relatively small, the float valve 43 is attached to the valve seat 41 only by the outer edge of the projection 43a. When seated, the arcuate peripheral surface 43b forms an appropriate space between the arcuate peripheral surface 43b and the surface of the released valve seat 41 to allow a proper flow of the stored oil. Then, as the pressure difference between the high and low pressure regions increases, the protrusion 43a is elastically deformed preferentially to closely fit the surface of the valve seat 41, and the gap between the arcuate peripheral surface 43b and the surface of the valve seat 41 is generated. Is gradually reduced to both sides 43b, 4
1 comes into contact with each other almost linearly, and the flow rate of the stored oil is regulated to the minimum (Fig. 4).
(B)). Reference numeral 44 is a mesh member that is mounted so as to cover and close the upper portion of the valve seat 41, and prevents excessive float movement of the float valve 43.

【0015】本実施例は上述のように構成されており、
駆動軸9の回転により斜板10が回転されると、各ピス
トン12がシリンダボア11内で往復動され、それによ
って冷媒ガスGの吸入、圧縮及び吐出が行われる。圧縮
された高圧の冷媒ガスGは吐出室16、17から吐出通
路34及び通孔33を経て油分離室32に導入される。
すなわち、通孔33から誘導部32bの両端部分に導か
れた冷媒ガスGは、該誘導部32bに形成された湾曲壁
の案内によりほぼ接線方向から円弧状の分離部32a内
に流入し、図2及び図3に示す回転流によって与えられ
た遠心力により冷媒ガスG中の混在油粒は有効に分離さ
れる。なお、このような油分離の過程を経ることによ
り、冷媒ガスGの脈動も物理的に鎮静化されるので、き
わめて安定した状態で冷凍回路へと送給され、一方、冷
媒ガスGから分離された油粒は分離部32aの周壁を流
下し、同底壁に貫設された油孔35から滴落して油溜室
40内に回収貯溜される。
This embodiment is constructed as described above,
When the swash plate 10 is rotated by the rotation of the drive shaft 9, each piston 12 is reciprocated in the cylinder bore 11, whereby the refrigerant gas G is sucked, compressed and discharged. The compressed high-pressure refrigerant gas G is introduced into the oil separation chamber 32 from the discharge chambers 16 and 17 through the discharge passage 34 and the through hole 33.
That is, the refrigerant gas G guided from the through hole 33 to both end portions of the guiding portion 32b flows into the arc-shaped separating portion 32a from a substantially tangential direction by the guide of the curved wall formed in the guiding portion 32b. The mixed oil particles in the refrigerant gas G are effectively separated by the centrifugal force given by the rotating flow shown in FIGS. Since the pulsation of the refrigerant gas G is physically calmed down through such an oil separation process, the refrigerant gas G is sent to the refrigeration circuit in an extremely stable state, while being separated from the refrigerant gas G. The oil particles flow down the peripheral wall of the separating portion 32a, drop from the oil hole 35 penetrating the bottom wall, and are collected and stored in the oil reservoir 40.

【0016】したがって、機台の運転が開始された直後
の状態では、高圧領域に属する油分離室32と低圧領域
に属する斜板室8との差圧は至って小さく、フロート弁
43の突起43aに差圧に基づく微小な変形は生じるも
のの、弧状周面43bは遊離した弁座41面との間に適
正な導通空隙を確保している。その結果、起動に伴う機
内残存油の突沸により、とくに含油率の高い初期の冷媒
ガスGから分離された回収分離油0は、油溜室40から
上記導通空隙及び所要の通路断面積をもつ還油孔42を
介して迅速、かつ潤沢に斜板室8へと供給され、斜板1
0、シュ−13等主要可動部分の潤滑に供される。
Therefore, in the state immediately after the operation of the machine base is started, the differential pressure between the oil separation chamber 32 belonging to the high pressure region and the swash plate chamber 8 belonging to the low pressure region is extremely small, and the difference in the protrusion 43a of the float valve 43 is small. Although a slight deformation occurs due to the pressure, the arcuate peripheral surface 43b secures an appropriate conduction gap between the arcuate peripheral surface 43b and the free valve seat 41 surface. As a result, the recovered separated oil 0 separated from the initial refrigerant gas G having a particularly high oil content due to the bumping of the residual oil in the machine at the time of start-up is returned from the oil reservoir 40 with the above-mentioned communication gap and the required passage cross-sectional area. The swash plate 1 is quickly and amply supplied to the swash plate chamber 8 through the oil hole 42.
It is used for lubrication of the main movable parts such as 0 and shoe 13.

【0017】その後圧縮機が順次定常運転に移行する段
階では、油分離室32と斜板室8との差圧の上昇に伴っ
て、フロート弁43の突起43aが弁座41面に随従密
合しながら優先的に変形の度を増し、上記導通空隙を介
した還油量を徐々に縮少すべく制御して定常運転に適合
した油量を斜板室8へ還給する。この場合、起動初期の
必要還油量と定常運転時の必要還油量との間には大きな
格差があり、上記高低両圧力領域の差圧に基づくフロー
ト弁43の変形特性及びこれに付随する導通空隙の変化
幅は、油分離手段の分離能力、必要還油量、貯溜油量等
各因子の調和を条件に設定される。
Thereafter, at the stage where the compressor sequentially shifts to the steady operation, the projection 43a of the float valve 43 is closely fitted to the surface of the valve seat 41 as the differential pressure between the oil separation chamber 32 and the swash plate chamber 8 increases. However, the degree of deformation is preferentially increased, and the amount of oil returned through the communication gap is controlled to be gradually reduced to return the amount of oil suitable for steady operation to the swash plate chamber 8. In this case, there is a large disparity between the required return oil amount at the initial stage of startup and the required return oil amount at the time of steady operation, and the deformation characteristics of the float valve 43 based on the pressure difference between the high and low pressure regions and the accompanying characteristics. The change width of the communication gap is set on the condition that the separation capacity of the oil separating means, the required amount of returned oil, the amount of stored oil, and other factors are harmonized.

【0018】なお、機台の停止後、還油孔42を経由し
た還油の継続により回路内圧力が平衡する以前に貯溜油
0が枯渇し、凝縮器側と蒸発器側とに残存する差圧によ
って高圧冷媒ガスGの逆流を招くような事態が生じたと
しても、その差圧自体がフロート弁43を介して導通空
隙を縮小すべく制御しているので、異音の発生や蒸発器
の昇温といった既往の不具合は、実質的に無害な程度に
抑制される。
It should be noted that, after the machine stand is stopped, the stored oil 0 is exhausted before the pressure in the circuit is equilibrated due to the continuation of the returned oil via the return oil hole 42, and the difference remaining between the condenser side and the evaporator side. Even if the pressure causes a backflow of the high-pressure refrigerant gas G, the differential pressure itself is controlled via the float valve 43 so as to reduce the conduction gap, so that abnormal noise is generated and the evaporator is cooled. Past problems such as temperature rise are suppressed to a substantially harmless degree.

【0019】図5は弁手段の他の実施例を示すもので、
本実施例では還油孔42が開口する弁座51を平坦面に
形成し、該弁座51上にあらかじめ還油孔42の開度を
最大限に保つように湾曲させたリ−ド弁50を固着した
ものである。ばね用鋼板からなる該リ−ド弁50の変形
特性は上述したフロート弁43と同様の条件の下に設定
されるが、高低両圧力領域の差圧の増大により、上記還
油孔42の開口が閉止される程度にリ−ド弁50の変形
が進んだ場合でも、例えば図に示す開口周辺の積極的な
粗面化加工Rにより、必要最少限の還油量が保たれるよ
う配慮することが望ましい。
FIG. 5 shows another embodiment of the valve means.
In the present embodiment, the valve seat 51 in which the oil return hole 42 is opened is formed in a flat surface, and the lead valve 50 is curved on the valve seat 51 in advance so as to keep the opening of the oil return hole 42 to the maximum. Is fixed. The deformation characteristics of the lead valve 50 made of a spring steel plate are set under the same conditions as those of the float valve 43 described above, but the opening of the return oil hole 42 is increased due to the increase of the differential pressure in both the high and low pressure regions. Even if the lead valve 50 is deformed to such an extent that it is closed, consideration is given to maintain the minimum required amount of returned oil by, for example, the positive roughening R around the opening shown in the figure. Is desirable.

【0020】図6に示すさらに他の実施例は、図5に示
す粗面化加工Rに代え、弁座51の開口周辺を段差状H
に削成して、同様に最少還油量の確保を図ったものであ
る。なお、油分離機構の具体的構成については、上記実
施例に示すサイクロン方式に限るものでなく、随意に異
なった態様で実施しうることは勿論である。
In yet another embodiment shown in FIG. 6, instead of the roughening R shown in FIG. 5, a stepped shape H is formed around the opening of the valve seat 51.
In addition, it was designed to secure the minimum amount of returned oil. The specific configuration of the oil separation mechanism is not limited to the cyclone system shown in the above embodiment, and it goes without saying that the oil separation mechanism can be implemented in different modes.

【0021】[0021]

【発明の効果】以上、詳述したように本発明は、特許請
求の範囲に記載した構成を有するものであるから、次に
掲記した優れた効果を奏する。 (1)機内の高低両圧力領域の差圧に応動する弁手段に
より、低圧領域(斜板室)に対する回収貯溜油の還給量
を自動的に制御しうるので、多量の給油を必要とする起
動時並びに起動時に比して格段に少量の給油で足りる定
常運転時のいずれの状況においても、過不足のない適量
の給油が確保でき、とくに起動時における主要可動部分
の潤滑を確実に保障することができる。
As described above in detail, since the present invention has the constitution described in the claims, it has the following excellent effects. (1) Since the valve means that responds to the differential pressure in both the high and low pressure regions in the machine can automatically control the amount of recovered stored oil returned to the low pressure region (swash plate chamber), a start requiring a large amount of oil supply It is possible to secure an adequate amount of oil supply without excess or deficiency, and to ensure the lubrication of the main moving parts especially at the time of start-up and in any situation during steady operation where a remarkably small amount of oil is sufficient compared to the time of start You can

【0022】(2)還油孔の通路断面積それ自体が還油
流量を制御するものでないため、極端な小径化を強いら
れることがなく、加工刃具の折損などに対する懸念は完
全に解消される。 (3)機台停止後においても、回路内圧力に差圧が残存
する間、弁手段は還油孔を介した低圧領域への流通度を
制御すべく動作しているので、高圧冷媒ガスの逆流、吹
き抜けによる低圧系への悪影響は良好に防止される。
(2) Since the passage cross-sectional area of the return oil hole itself does not control the return oil flow rate, the diameter of the return oil hole is not forced to be extremely small, and the concern about breakage of the processing blade is completely eliminated. .. (3) Even after the machine stand is stopped, while the differential pressure remains in the circuit pressure, the valve means operates to control the degree of flow to the low pressure region through the oil return hole, so that the high pressure refrigerant gas The adverse effects on the low-pressure system due to backflow and blow-by are well prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る圧縮機の全容を示す断
面図
FIG. 1 is a cross-sectional view showing the entire structure of a compressor according to an embodiment of the present invention.

【図2】とくに油分離と分離油の還給構成を示す要部断
面図
FIG. 2 is a cross-sectional view of the essential part showing the oil separation and the return structure of the separated oil.

【図3】とくに油分離室を示す平面図FIG. 3 is a plan view particularly showing an oil separation chamber

【図4】フロート弁の一実施例を示すもので、(A)は
平面図、(B)変形時の断面図
4A and 4B show an embodiment of a float valve, FIG. 4A is a plan view, and FIG.

【図5】リ−ド弁の一実施例を示す断面図FIG. 5 is a sectional view showing an embodiment of a lead valve.

【図6】リ−ド弁の他の実施例を示す断面図FIG. 6 is a sectional view showing another embodiment of the lead valve.

【符号の説明】[Explanation of symbols]

8は斜板室、32は油分離室、40は油溜室、41、5
1は弁座、42は還油孔、43、50は弁手段
8 is a swash plate chamber, 32 is an oil separation chamber, 40 is an oil reservoir chamber, 41, 5
1 is a valve seat, 42 is an oil return hole, 43 and 50 are valve means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 徹也 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuya Takashima 2-chome Toyota-cho, Kariya city, Aichi stock company Toyota Industries Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機内の高圧領域に配設された油分離室と、
該油分離室に連設された分離油回収用の油溜室と、該油
溜室の底部に形成された弁座面に開口して該油溜室と機
内の低圧領域とを連通する還油孔と、上記高低両圧力領
域の差圧に応じて該還油孔の流量を制御する弁手段とを
備えてなる往復動型圧縮機。
1. An oil separation chamber disposed in a high pressure region of the machine,
An oil sump chamber for recovering separated oil, which is connected to the oil separation chamber, and a return valve which opens to a valve seat surface formed at the bottom of the oil sump chamber to communicate the oil sump chamber with a low pressure region in the machine. A reciprocating compressor comprising an oil hole and valve means for controlling the flow rate of the oil return hole in accordance with the pressure difference between the high and low pressure regions.
JP4008174A 1992-01-21 1992-01-21 Reciprocating compressor Pending JPH05195949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4008174A JPH05195949A (en) 1992-01-21 1992-01-21 Reciprocating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4008174A JPH05195949A (en) 1992-01-21 1992-01-21 Reciprocating compressor

Publications (1)

Publication Number Publication Date
JPH05195949A true JPH05195949A (en) 1993-08-06

Family

ID=11685963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4008174A Pending JPH05195949A (en) 1992-01-21 1992-01-21 Reciprocating compressor

Country Status (1)

Country Link
JP (1) JPH05195949A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636974A (en) * 1995-06-08 1997-06-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating piston type compressor with an oil separator for removing lubricating oil from discharged high pressure refrigerant gas
US5718566A (en) * 1995-05-25 1998-02-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Drive shaft lubrication arrangement for a swash plate type refrigerant compressor
US5768974A (en) * 1995-03-22 1998-06-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
EP0911519A2 (en) 1997-10-21 1999-04-28 Calsonic Corporation Housing for the valve plate assembly of a swash plate compressor
US6095030A (en) * 1997-10-21 2000-08-01 Calsonic Corporation Swash plate variable displacement compressor
US6120259A (en) * 1997-10-21 2000-09-19 Calsonic Corporation Swash plate type compressor
US6158325A (en) * 1997-10-21 2000-12-12 Calsonic Corporation Swash plate type variable displacement compressor
US6162025A (en) * 1997-10-21 2000-12-19 Calsonic Kansei Corporation Variable displacement swash plate type compressor
US6179571B1 (en) 1997-10-21 2001-01-30 Calsonic Kansei Corporation Swash plate type compressor
WO2005066492A1 (en) * 2004-01-07 2005-07-21 Valeo Thermal Systems Japan Corporation Variable displacement compressor
US7841840B2 (en) 2005-10-17 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Double-headed piston type compressor
US8202062B2 (en) 2006-08-25 2012-06-19 Kabushiki Kaisha Toyota Jidoshokki Compressor and method for operating the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768974A (en) * 1995-03-22 1998-06-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
US5718566A (en) * 1995-05-25 1998-02-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Drive shaft lubrication arrangement for a swash plate type refrigerant compressor
US5636974A (en) * 1995-06-08 1997-06-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating piston type compressor with an oil separator for removing lubricating oil from discharged high pressure refrigerant gas
US6146110A (en) * 1997-10-21 2000-11-14 Calsonic Corporation Swash plate type compressor
US6095030A (en) * 1997-10-21 2000-08-01 Calsonic Corporation Swash plate variable displacement compressor
US6120259A (en) * 1997-10-21 2000-09-19 Calsonic Corporation Swash plate type compressor
EP0911519A2 (en) 1997-10-21 1999-04-28 Calsonic Corporation Housing for the valve plate assembly of a swash plate compressor
US6158325A (en) * 1997-10-21 2000-12-12 Calsonic Corporation Swash plate type variable displacement compressor
US6162025A (en) * 1997-10-21 2000-12-19 Calsonic Kansei Corporation Variable displacement swash plate type compressor
US6179571B1 (en) 1997-10-21 2001-01-30 Calsonic Kansei Corporation Swash plate type compressor
WO2005066492A1 (en) * 2004-01-07 2005-07-21 Valeo Thermal Systems Japan Corporation Variable displacement compressor
US7841840B2 (en) 2005-10-17 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Double-headed piston type compressor
US8202062B2 (en) 2006-08-25 2012-06-19 Kabushiki Kaisha Toyota Jidoshokki Compressor and method for operating the same

Similar Documents

Publication Publication Date Title
JP3085514B2 (en) Compressor
US7040880B2 (en) Horizontal rotary compressor
JP2000080983A (en) Compressor
JPH05195949A (en) Reciprocating compressor
US3008628A (en) Compressor
JP3120697B2 (en) Swash plate compressor
US5062773A (en) Swash plate type refrigerant compressor with a separator of refrigerant gas and lubricant oil
JP2001173563A (en) Compressor
JP3120537B2 (en) Reciprocating compressor
JP3838186B2 (en) 2-stage compressor
JPH0968161A (en) Compressor
JP3632448B2 (en) Compressor
JP2583944B2 (en) Compressor
JP3084934B2 (en) Compressor oil separator
JPH04175492A (en) Compressor
JPS6310315B2 (en)
WO2014073620A1 (en) Compressor
JP2760056B2 (en) Swash plate compressor
JP3144616B2 (en) Swash plate compressor
CN218542607U (en) Oil return structure of compressor, compressor and air conditioner
JPH0311167A (en) Reciprocating movement type compressor
CN214403986U (en) Oil circuit structure, horizontal scroll compressor and refrigeration equipment
JP2560857B2 (en) Scroll type fluid machine
JP2526028Y2 (en) Rotary compressor
KR100312777B1 (en) Oil separator embeded in compressor