JPH05195161A - Double layer heat resistant steel pipe excellent in carburization resistance - Google Patents

Double layer heat resistant steel pipe excellent in carburization resistance

Info

Publication number
JPH05195161A
JPH05195161A JP2443092A JP2443092A JPH05195161A JP H05195161 A JPH05195161 A JP H05195161A JP 2443092 A JP2443092 A JP 2443092A JP 2443092 A JP2443092 A JP 2443092A JP H05195161 A JPH05195161 A JP H05195161A
Authority
JP
Japan
Prior art keywords
resistant steel
heat
wall layer
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2443092A
Other languages
Japanese (ja)
Inventor
Teruo Yoshimoto
輝夫 葭本
Makoto Takahashi
誠 高橋
Nobuyuki Sakamoto
伸之 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2443092A priority Critical patent/JPH05195161A/en
Publication of JPH05195161A publication Critical patent/JPH05195161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To improve the carburization resistance of a heat resistant steel pipe reactor for petrochemical industry or the like. CONSTITUTION:A tube wall consists of a double layer structure and the 1st wall layer is formed from a Fe-Cr-Ni base heat resistant steel having a proper chemical composition and the 2nd wall layer in need of carburization resistance is formed from a heat resistant steel containing 0.01-0.5% C, >4% and <7% Si, <=3% Mn, 20-35% Cr, 20-60% Ni, 2-15% Mo and balance substantially Fe. The heat resistant steel of the 2nd wall layer is made by adding, if necessary, one or two or more kinds of elements of (I) 1-10% Ni, (II)>=0.5% Co (where 20-60% Ni+Co), (III) 0.02-1% Al, 0.02-0.5% Ti, <=5% W, 0.001-0.5% CaO, <=0.05% B, <=0.5% Y, <=0.5% Hf.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石油化学工業における
炭化水素類の熱分解・改質反応管等として好適な耐浸炭
性にすぐれた耐熱鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant steel pipe having excellent carburization resistance, which is suitable as a pyrolysis / reforming reaction pipe for hydrocarbons in the petrochemical industry.

【0002】[0002]

【従来の技術】炭化水素類の熱分解・改質反応管、例え
ばエチレン製造用クラッキングチューブは、管内を通過
するナフサ等を高温高圧(温度:約750 〜1050℃,圧
力:約10kgf /cm2 以下)の条件下に熱分解させる反応
器であり、近時は反応の効率化、生産性向上等の要請か
ら、温度約1100℃をこえる高温操業が一般化しつつあ
る。
2. Description of the Related Art Pyrolysis / reforming reaction tubes for hydrocarbons, such as cracking tubes for ethylene production, use naphtha or the like passing through the tubes at high temperature and pressure (temperature: about 750 to 1050 ° C., pressure: about 10 kgf / cm 2). It is a reactor that thermally decomposes under the conditions of (below), and recently, due to demands for efficiency of reaction, improvement of productivity, etc., high temperature operation exceeding a temperature of about 1100 ° C is becoming common.

【0003】上記反応は、反応系からの固形炭素の析出
現象を伴う。析出した炭素は管壁内面に付着し、高温熱
影響下に管壁内部に拡散侵入(浸炭)する。浸炭の発生
・進行は反応管の材質劣化を引起こす。特に延性の低下
は顕著であり、高温操業下、脆化による管体の割れ発生
の原因となる。
The above reaction is accompanied by the precipitation phenomenon of solid carbon from the reaction system. The deposited carbon adheres to the inner surface of the pipe wall and diffuses (carburizes) inside the pipe wall under the influence of high temperature heat. The generation and progress of carburization causes deterioration of the material of the reaction tube. In particular, the ductility is remarkably deteriorated, which causes the tube to crack due to embrittlement during high temperature operation.

【0004】従って、耐浸炭性は、反応管の実使用上極
めて重要な特性である。むろん、耐浸炭性と共に、高温
高圧に耐える強度、耐酸化性等を具備するものであるこ
とを要し、また溶接による配管施工のための溶接性を必
要とすることも言うまでもない。従来よりその反応管と
して、ASTM規格のHP40材(0.4 C−25Cr−35N
i−Fe)や、その改良材(0.4 C−25Cr−35Ni−
Mo,Nb,W−Fe)が使用されてきた。
Therefore, carburization resistance is a very important characteristic in practical use of the reaction tube. Needless to say, it is necessary to have not only carburization resistance but also strength to withstand high temperature and high pressure, oxidation resistance, and the like, and weldability for pipe construction by welding. Conventionally, as the reaction tube, HP40 material of ASTM standard (0.4 C-25Cr-35N
i-Fe) and its improved material (0.4 C-25Cr-35Ni-
Mo, Nb, W-Fe) have been used.

【0005】[0005]

【発明が解決しようとする課題】上記HP40材は、900
℃〜1050℃の温度域で使用される材料であり、それ以上
の温度域では耐浸炭性やクリープ破断強度の不足を免れ
ない。HP改良材は1000℃以上においても良好な耐浸炭
性を示すものの、1100℃を越えると、耐浸炭性やクリー
プ破断強度の低下が大きく、殊に温度1150℃前後におけ
る耐浸炭性の劣化は顕著であり、近時の高温操業に十分
対処し得るものとは言い難い。本発明は上記に鑑みてな
されたものであり、1100℃を越える近時の高温操業にお
いて安定な使用を可能とする耐浸炭性等にすぐれた耐熱
鋼管を提供するものである。
The above HP40 material is 900
It is a material used in the temperature range of ℃ to 1050 ℃, and it is unavoidable that the carburization resistance and creep rupture strength are insufficient in the higher temperature range. The HP-improved material shows good carburization resistance even at 1000 ° C or higher, but if it exceeds 1100 ° C, the carburization resistance and creep rupture strength are greatly reduced, and especially the carburization resistance is significantly deteriorated at a temperature of around 1150 ° C. It is hard to say that it can sufficiently cope with the recent high temperature operation. The present invention has been made in view of the above circumstances, and provides a heat-resistant steel pipe excellent in carburizing resistance and the like that enables stable use in recent high-temperature operations exceeding 1100 ° C.

【0006】[0006]

【課題を解決するための手段および作用】本発明の耐熱
鋼管は、第1の壁層と第2の壁層とからなり、耐浸炭性
を特に必要としない第1の壁層はFe−Cr−Ni系耐
熱鋼で形成され、耐浸炭性を必要とする第2の壁層は、
C:0.01〜0.5 %,Si:4%超,7%以下,Mn:3
%以下,P:0.03%以下、S:0.03%以下,Cr:20〜
35%,Ni:20〜60%,Mo:2〜15%,残部実質的に
Feである化学組成を有する耐熱鋼で形成された二層積
層管であることを特徴としている。
The heat-resistant steel pipe of the present invention comprises a first wall layer and a second wall layer, and the first wall layer which does not particularly require carburization resistance is Fe-Cr. -The second wall layer formed of Ni-based heat-resistant steel and requiring carburization resistance is
C: 0.01 to 0.5%, Si: more than 4%, 7% or less, Mn: 3
% Or less, P: 0.03% or less, S: 0.03% or less, Cr: 20 to
It is characterized in that it is a two-layer laminated tube made of heat-resistant steel having a chemical composition of 35%, Ni: 20-60%, Mo: 2-15%, and the balance being substantially Fe.

【0007】本発明の耐熱鋼管の第2の壁層を形成する
耐熱鋼は、所望により上記諸元素と共に下記の(i)項
〜(iii)項のいずれか1つの項ないし2以上の項に
記載された元素を含有する化学組成が与えられる。 (i)Nb:1〜10% (ii)Co:0.5 %以上(但し、Co+Ni:20〜60
%) (iii)Al:0.02〜1%,Ti:0.02〜0.5 %,
W:5%以下,Ca:0.001 〜0.5 %,B:0.05%以
下,Y:0.5 %以下,Hf:0.5 %以下の群より選ばれ
る1種ないし2種以上の元素。 以下、本発明の耐熱鋼管について、まず第2の壁層を形
成する改良された耐浸炭性を有する耐熱鋼の成分限定理
由を説明する。
The heat-resisting steel forming the second wall layer of the heat-resisting steel pipe of the present invention, if desired, may be combined with any of the above elements in any one of the following items (i) to (iii) and at least two items. A chemical composition containing the listed elements is provided. (I) Nb: 1-10% (ii) Co: 0.5% or more (however, Co + Ni: 20-60
%) (Iii) Al: 0.02 to 1%, Ti: 0.02 to 0.5%,
One or more elements selected from the group consisting of W: 5% or less, Ca: 0.001 to 0.5%, B: 0.05% or less, Y: 0.5% or less, and Hf: 0.5% or less. Regarding the heat-resistant steel pipe of the present invention, the reasons for limiting the components of the heat-resistant steel having the improved carburization resistance forming the second wall layer will be described below.

【0008】C:0.01〜0.5 % Cは、合金の鋳造性を良好にするほか、Cr,Mo等の
炭化物を形成し、その析出分散強化作用により、高温ク
リープ破断強度を高める。この効果を得るために少くと
も0.01%を必要とする。添加増量により効果を増すが多
量に添加すると、二次炭化物の過剰析出を招き、時効延
性の低下や溶接性の低下をきたすので、0.5 %を上限と
する。
C: 0.01 to 0.5% C improves the castability of the alloy and forms carbides such as Cr and Mo, which enhances the high temperature creep rupture strength by its precipitation dispersion strengthening action. At least 0.01% is required to obtain this effect. The effect is increased by increasing the amount of addition, but if a large amount is added, excessive precipitation of secondary carbides is caused, which causes deterioration of aging ductility and weldability, so the upper limit is 0.5%.

【0009】Si:4%を越え,7%以下 Siは、合金溶湯の脱酸、流動性改善作用をなす元素で
あるが、本発明ではそれにとどまらず、耐浸炭性改善元
素として重要な役割を果たす元素である。すなわち、S
iを多量添加すると、高温加熱により合金表面に形成さ
れる酸化皮膜中に、厚く緻密なSiO2 が生成し、高温
浸炭環境におけるCの拡散を抑制する効果が得られる。
その拡散抑制による浸炭防止効果は顕著である。添加量
の下限を4%を越える量としたのは、1150℃前後の高温
域における浸炭防止効果を十分なものとするためであ
る。添加増量により効果の増大をみるが、反面延性の低
下や溶接性の低下傾向をきたすので、7%を上限とす
る。
Si: more than 4% and less than 7% Si is an element that has the effect of deoxidizing the molten alloy and improving the fluidity. However, in the present invention, it does not stop there, but it also plays an important role as a carburization resistance improving element. It is an element to fulfill. That is, S
When i is added in a large amount, thick and dense SiO 2 is generated in the oxide film formed on the alloy surface by high temperature heating, and the effect of suppressing C diffusion in a high temperature carburizing environment is obtained.
The effect of preventing carburization by suppressing the diffusion is remarkable. The lower limit of the amount added exceeds 4% in order to make the carburizing prevention effect sufficient in the high temperature region around 1150 ° C. Although the effect is increased by increasing the addition amount, the upper limit is 7% because the ductility decreases and the weldability tends to decrease.

【0010】Mn:3%以下 Mnは脱酸作用のほか、有害不純分であるSをMnSと
して固定し、溶接性等の改善に奏効する。この効果は3
%以下の添加により十分に得ることができ、それ以上の
添加を要しないので、3%以下とする。
Mn: 3% or less Mn has a deoxidizing effect and fixes S, which is a harmful impurity, as MnS, and is effective in improving weldability and the like. This effect is 3
%, It is possible to obtain a sufficient amount, and no further addition is required, so the content is made 3% or less.

【0011】P:0.03%以下,S:0.03%以下 PおよびSは、高温強度の低下や、溶接時の高温割れ感
受性の増加等の原因となる有害不純分であるが、それぞ
れ0.03%以下であれば実質的な影響を生じることはな
い。
P: 0.03% or less, S: 0.03% or less P and S are harmful impurities that cause reduction in high temperature strength and increase in hot cracking susceptibility during welding. If it does, there is no substantial impact.

【0012】Cr:20〜35% Crは、高温強度、耐酸化性等を高め、また耐浸炭性を
改善する元素である。特に1150℃前後の高温域での使用
に対するこれらの効果を十分なものとするには、少くと
も20%以上の添加を必要とする。添加増量に伴って効果
を増すが、あまり多くすると、高温使用過程でCr炭化
物の過剰析出を招き、時効延性が低下するので、35%を
上限とする。
Cr: 20-35% Cr is an element that enhances high temperature strength, oxidation resistance and the like and also improves carburization resistance. In particular, in order to make these effects sufficient for use in a high temperature range around 1150 ° C, it is necessary to add at least 20% or more. The effect increases as the amount of addition increases, but if it is too large, it causes excessive precipitation of Cr carbide in the process of use at high temperature and deteriorates the aging ductility. Therefore, the upper limit is 35%.

【0013】Ni:20〜60% Niは、Cr,Fe等と共に安定なオーステナイト基地
を形成し、高温強度、耐酸化性等を高める元素である。
また、基地のC固溶量を低下させ、Cの拡散侵入を抑制
する効果を有する。1150℃前後の高温使用におけるこれ
らの効果を確保するには、少くとも20%の添加を必要と
する。Ni量の増加に伴ってこれらの効果は増大する
が、60%までの添加で十分であり、それをこえる添加は
経済性を損う。
Ni: 20-60% Ni is an element that forms a stable austenite matrix together with Cr, Fe and the like, and enhances high temperature strength, oxidation resistance and the like.
Further, it has the effect of reducing the amount of C solid solution in the matrix and suppressing the diffusion and penetration of C. At least 20% addition is required to ensure these effects at high temperatures around 1150 ° C. These effects increase with an increase in the amount of Ni, but addition up to 60% is sufficient, and addition exceeding this impairs economic efficiency.

【0014】Mo:2%〜15% Moは耐浸炭性の改善に有効な元素であり、殊に、合金
の表面層から内部への拡散を抑制する作用を有する。こ
の効果は2%以上の添加により現れる。添加量の増加に
伴って効果を増し、また高温強度も改善される。しか
し、15%をこえると効果はほぼ飽和し、またそれ以上の
増量は耐酸化性の低下を招く。このため15%を上限とす
る。
Mo: 2% to 15% Mo is an element effective in improving carburization resistance, and particularly has an action of suppressing diffusion of the alloy from the surface layer to the inside. This effect is exhibited by the addition of 2% or more. The effect increases as the addition amount increases, and the high temperature strength is also improved. However, if it exceeds 15%, the effect is almost saturated, and if the amount is further increased, the oxidation resistance is lowered. Therefore, the upper limit is 15%.

【0015】Nb:1〜10% Nbは、粒界に共晶状炭化物を形成し、粒界破壊抵抗を
強め、高温クリープ破断強度を改善する。また、溶接割
れに対する抵抗性を高め、溶接継手品質の安定化に奏効
する。この効果は1%以上の添加により得られるが、多
量に添加すると、延性の低下をきたし、耐酸化性も悪く
なるので、10%を上限とする。
Nb: 1-10% Nb forms eutectic carbides at grain boundaries, strengthens grain boundary fracture resistance, and improves high temperature creep rupture strength. In addition, it improves resistance to weld cracking and is effective in stabilizing the quality of welded joints. This effect can be obtained by adding 1% or more, but if added in a large amount, ductility is deteriorated and oxidation resistance is deteriorated, so the upper limit is 10%.

【0016】Co:0.5 %以上 Coは、前記Niと同様にオーステナイト基地の安定化
に寄与し、また高温強度、耐酸化性の改善効果を有する
元素である。その効果はNiとの相乗作用により高めら
れる。従って、高温強度をより高めることを望む場合に
は、Niの一部を0.5 %以上のCoで置換し、Niと共
存させるのが好ましい。但し、CoとNiは共にオース
テナイト生成元素であるので、他の元素とのバランスを
損なわないように、両元素の含有量の合計は、Coを添
加しない場合のNi量と同じ20〜60%の範囲とする。
Co: 0.5% or More Co is an element that contributes to the stabilization of an austenite matrix like Ni and has the effect of improving high temperature strength and oxidation resistance. The effect is enhanced by the synergistic action with Ni. Therefore, when it is desired to further increase the high temperature strength, it is preferable that a part of Ni is replaced with 0.5% or more of Co so that it coexists with Ni. However, since Co and Ni are both austenite-forming elements, the total content of both elements is 20 to 60%, which is the same as the Ni content when Co is not added, so as not to impair the balance with other elements. Range.

【0017】Al:0.02〜1% Alは耐浸炭性の改善効果を有する。すなわち、Alの
添加により、高温域において合金表面にアルミナが生成
し、この酸化物によりCの拡散侵入が抑制される。ま
た、耐酸化性も向上する。これらの効果は0.02%以上の
添加により得られ、添加量の増加によりその効果を増
す。しかし、多量の添加は、室温伸びの低下、溶接性の
低下等を招くので、1%を上限とする。
Al: 0.02-1% Al has the effect of improving carburization resistance. That is, the addition of Al produces alumina on the surface of the alloy in the high temperature region, and this oxide suppresses the diffusion and penetration of C. Also, the oxidation resistance is improved. These effects are obtained by adding 0.02% or more, and the effects are increased by increasing the addition amount. However, addition of a large amount causes a decrease in room temperature elongation, a decrease in weldability, etc., so the upper limit is 1%.

【0018】Ti:0.02〜0.5 % Tiは、高温域でのCr炭化物の凝集粗大化を抑制遅延
してクリープ破断強度を改善するほか、Alとの相乗効
果により耐浸炭性を強化する。この効果は0.02%以上の
添加により得ることができる。しかし、多量に添加する
と、酸化物系介在物の増量、析出物の粗大化により強度
低下を招く。このため、0.5 %を上限とする。
Ti: 0.02 to 0.5% Ti suppresses and delays agglomeration and coarsening of Cr carbides in a high temperature region to improve creep rupture strength, and strengthens carburization resistance by a synergistic effect with Al. This effect can be obtained by adding 0.02% or more. However, if added in a large amount, the amount of oxide-based inclusions increases and the precipitates become coarse, resulting in a decrease in strength. Therefore, the upper limit is 0.5%.

【0019】W:5%以下 Wはオーステナイト基地に固溶して基地を強化するほ
か、Cの拡散を抑制して耐浸炭性を高める効果を有す
る。しかし、多量の添加は、合金の延性を損うので、5
%以下とする。
W: 5% or less W has the effect of forming a solid solution in the austenite matrix to strengthen the matrix, and suppresses the diffusion of C to enhance the carburization resistance. However, addition of a large amount impairs the ductility of the alloy.
% Or less.

【0020】Ca:0.001 〜0.5 % Caは、高温域において合金表面に酸化物を形成し、C
の拡散侵入を抑制する。この耐浸炭性改善効果は0.001
%以上の添加により得られる。しかし、多量に添加する
と、溶接性等を損うので、0.5 %を上限とする。
Ca: 0.001 to 0.5% Ca forms an oxide on the alloy surface in the high temperature range, and C
Control the spread and invasion of. This carburization resistance improvement effect is 0.001
It is obtained by adding more than 100%. However, if added in a large amount, the weldability is impaired, so 0.5% is made the upper limit.

【0021】B:0.05%以下 Bは、結晶粒界を強化し、高温クリープ破断強度を高め
る。しかし、多量に添加すると、溶接性等が低下するの
で、0.05%以下とする。
B: 0.05% or less B strengthens the grain boundaries and enhances the high temperature creep rupture strength. However, if added in a large amount, the weldability and the like deteriorate, so it is made 0.05% or less.

【0022】Y:0.5 %以下 Yは耐浸炭性の改善効果を有する。この効果は0.5 %以
下の添加で十分に得られ、それを越えて多量に添加する
利益はないので、0.5 %以下とする。
Y: 0.5% or less Y has an effect of improving carburization resistance. This effect is sufficiently obtained with addition of 0.5% or less, and there is no benefit of adding a large amount beyond that, so it is set to 0.5% or less.

【0023】Hf:0.5 %以下 Hfは、前記Yと同様に耐浸炭性の改善に奏効する元素
である。この効果は0.5 %までの添加で十分に確保で
き、それ以上を添加する利益はない。
Hf: 0.5% or less Hf is an element effective in improving the carburization resistance as in the case of Y. This effect can be sufficiently secured by adding up to 0.5%, and there is no benefit of adding more than that.

【0024】本発明の耐熱鋼管は、Fe−Cr−Ni系
耐熱鋼からなる第1の壁層に、改良された耐浸炭性を有
する前記化学組成の耐熱鋼からなる第2の壁層が積層形
成された二層構造を有する。本発明の耐熱鋼管を、二層
積層体としているのは、炭化水素類の熱分解・改質反応
系と接触する側の管表面を第2の管壁材料で形成するこ
とにより、改良された耐浸炭性や耐酸化性等を確保する
と共に、これに積層されるFe−Cr−Ni系耐熱鋼か
らなる第1の管壁で、反応用管として要求される高温強
度を補償しようとするものである。
In the heat-resistant steel pipe of the present invention, the first wall layer made of Fe—Cr—Ni heat-resistant steel is laminated with the second wall layer made of heat-resistant steel having the above chemical composition and having improved carburization resistance. It has a two-layer structure formed. The heat-resistant steel pipe of the present invention is a two-layer laminate, which is improved by forming the pipe surface on the side in contact with the pyrolysis / reforming reaction system of hydrocarbons with the second pipe wall material. In addition to ensuring carburization resistance and oxidation resistance, the first pipe wall made of Fe-Cr-Ni heat-resistant steel laminated on the first pipe wall is intended to compensate for the high temperature strength required as a reaction pipe. Is.

【0025】第1の壁層を形成するFe−Cr−Ni系
耐熱鋼の材種は、管の具体的用途や使用条件に応じて適
宜選択すればよい。エチレンクラッキングチューブとし
て使用する場合は、従来よりその管材料として使用され
てきた代表的な耐熱鋼であるHP40材(0.35〜0.75C−
33〜37Ni−24〜28Cr−Fe)や、これに2%以下の
Nb,2%以下のMo,2%以下のW等の1種ないし2
種以上の元素が添加されたHP改良材等を適用すれば十
分である。またこれに限定されず、所要の高温クリープ
破断強度や耐酸化性、溶接性等を備えた材種を任意に使
用することができる。
The grade of the Fe-Cr-Ni heat-resisting steel forming the first wall layer may be appropriately selected depending on the specific application of the pipe and the use conditions. When used as an ethylene cracking tube, HP40 material (0.35 to 0.75C-
33 to 37Ni-24 to 28Cr-Fe), and 1 to 2 of Nb of 2% or less, Mo of 2% or less, W of 2% or less.
It is sufficient to apply an HP improving material or the like to which one or more elements are added. Further, the material is not limited to this, and a material having required high temperature creep rupture strength, oxidation resistance, weldability, etc. can be arbitrarily used.

【0026】図1は本発明の耐熱鋼管の二層積層構造を
模式に示している。(a)は外側壁層、(b)は内側壁
層である。上記Fe−Cr−Ni系耐熱鋼からなる第1
の壁層と、改良された耐浸炭性を有する前記耐熱鋼から
なる第2の壁層とで形成される管壁の内・外層の位置関
係は管の具体的な使用態様により異なる。通常のエチレ
ンクラッキングチューブは、管の内側空間が反応系とな
るので、内側壁層(b)を第2の壁層として耐浸炭性を
有する耐熱鋼で形成し、外側壁層(a)を第1の壁層と
してFe−Cr−Ni系耐熱鋼で形成した二層構造が与
えられる。管の外側が浸炭環境となる使用態様の場合
は、上記二種の耐熱鋼の内・外壁層に対する適用が上記
とは逆になることは言うまでもない。耐浸炭性改良材か
らなる第2の壁層の層厚は特に限定されないが、これを
内側壁層または外側壁層のいずれとする場合も、浸炭抑
制防止機能の点から、約0.5〜3mm程度の層厚で十分で
あり、敢えてそれを越える厚肉層とする必要はない。
FIG. 1 schematically shows a two-layer laminated structure of the heat resistant steel pipe of the present invention. (A) is an outer side wall layer, (b) is an inner side wall layer. First made of the above Fe-Cr-Ni heat resistant steel
The positional relationship between the inner and outer layers of the pipe wall formed by the above wall layer and the second wall layer made of the above heat-resistant steel having improved carburization resistance varies depending on the specific use mode of the pipe. In a normal ethylene cracking tube, since the inner space of the tube serves as a reaction system, the inner wall layer (b) is formed of heat-resistant steel having carburization resistance as the second wall layer, and the outer wall layer (a) is formed as the second wall layer. As the wall layer of No. 1, a two-layer structure formed of Fe-Cr-Ni heat resistant steel is provided. Needless to say, in the case of a usage mode in which the outside of the pipe is a carburizing environment, the application of the above two kinds of heat resistant steels to the inner and outer wall layers is the reverse of the above. The layer thickness of the second wall layer made of the carburization resistance improving material is not particularly limited, but when it is used as either the inner wall layer or the outer wall layer, it is about 0.5 to 3 mm from the viewpoint of the carburization suppression prevention function. Is sufficient, and it is not necessary to intentionally make the layer thicker than that.

【0027】本発明の耐熱鋼管は、遠心力鋳造法を利用
し、二段階の鋳造操作により製造することができる。管
の内側面が耐浸炭性を必要とする場合は、第1段の鋳造
として、第1の壁層材料であるFe−Cr−Ni系耐熱
鋼の溶湯を遠心鋳造用鋳型内に注入して外側の壁層
(a)を形成し、つぎに第2の壁厚材料である改良され
た耐浸炭性を有する耐熱鋼の溶湯を注入する第2段の鋳
造で内側の壁層(b)を形成することにより目的とする
二層管が得られる。外側の壁層(a)に耐浸炭性が要求
される場合は、上記2種の耐熱鋼溶湯の注入の前後を逆
にすればよい。遠心力鋳造によれば、外側の壁層(a)
と内側の壁層(b)との界面に冶金学的な融着結合状態
を形成することが容易であり、得られる二層管は、積層
構造の堅牢・安定性にすぐれ、また鋳造過程での遠心力
の作用により溶湯中に浮遊する非金属介在物や気泡等が
溶湯との比重差により遠心分離されるので、鋳造品質の
健全性にすぐれている。
The heat-resistant steel pipe of the present invention can be manufactured by a two-stage casting operation using the centrifugal force casting method. When the inner surface of the tube requires carburization resistance, as the first stage casting, a molten metal of Fe-Cr-Ni heat-resisting steel, which is the first wall layer material, is injected into the centrifugal casting mold. The outer wall layer (a) is formed, and then the inner wall layer (b) is formed by the second-stage casting in which a molten second-thickness material of heat-resistant steel having improved carburization resistance is injected. By forming, a desired double-layer tube is obtained. If the outer wall layer (a) is required to have carburization resistance, the injection of the two types of heat-resistant steel melt may be reversed. According to centrifugal casting, the outer wall layer (a)
It is easy to form a metallurgically fusion-bonded state at the interface between the inner wall layer (b) and the inner wall layer (b), and the obtained double-layer pipe has excellent laminated structure robustness and stability, and also in the casting process. The non-metallic inclusions and bubbles floating in the molten metal are centrifugally separated due to the difference in specific gravity from the molten metal due to the action of the centrifugal force, and thus the casting quality is excellent.

【0028】また、本発明の二層構造を有する耐熱鋼管
の製造は、上記鋳造法に限られず、例えば熱間押出し成
形法により製造することもできる。熱間押出し成形法を
適用して、例えば管の内壁面に耐浸炭性が要求される二
層管を製造する場合は、外側層となる第1の壁層材料で
あるFe−Cr−Ni系耐熱鋼のインゴツトと、内側層
となる第2の壁層材料である改良された耐浸炭性耐熱鋼
組成を有する粉末とを用意する。そのインゴツトをくり
抜き加工して外側層となる中空筒体を成形したのち、そ
の中空孔の内側面に、カプセル材を介して内側層となる
耐熱鋼鋼粉末を充填し、熱間静水等方加圧焼結等の焼結
手法を適用して焼結合金を形成する。ついで熱間押出し
形成加工に付して目的とする二層積層管を得る。
The production of the heat-resistant steel pipe having the double-layer structure of the present invention is not limited to the above-mentioned casting method, but it can be produced by, for example, a hot extrusion molding method. When a hot extrusion method is applied to produce, for example, a two-layer pipe in which the inner wall surface of the pipe is required to have carburization resistance, the Fe-Cr-Ni-based material that is the first wall layer material that is the outer layer is used. A heat-resistant steel ingot and a powder having an improved carburization-resistant heat-resistant steel composition, which is a second wall layer material serving as an inner layer, are prepared. After hollowing out the ingot to form a hollow cylindrical body to be the outer layer, the inner surface of the hollow hole is filled with heat-resistant steel powder to be the inner layer through the encapsulant, and hot isostatic pressing is performed. A sintered alloy is formed by applying a sintering method such as pressure sintering. Then, it is subjected to hot extrusion forming processing to obtain an intended two-layer laminated tube.

【0029】なお、エチレンクラッキングチューブの炉
内配管構築には、直管(ストレート管)のほかに、U字
型管やエルボウ管等のベンド管が組込まれる。これらの
ベンド管は、前記遠心力鋳造や熱間押出し成形加工等に
より得られる直管に曲げ加工(高周波曲げ加工等)を加
えて所要形状に成形したものを使用することができる。
In addition to the straight pipes (straight pipes), bend pipes such as U-shaped pipes and elbow pipes are incorporated to construct the ethylene cracking tubes in the furnace. As these bend pipes, straight pipes obtained by centrifugal casting, hot extrusion molding, or the like, which have been subjected to bending (high-frequency bending, etc.) and formed into a desired shape can be used.

【0030】[0030]

【実施例】供試管の製作 高周波溶解炉で、第1の壁層材料である耐熱鋼と、第2
の壁層材料である耐熱鋼(耐浸炭性改良材)とを溶製
し、遠心力鋳造に付し、二段鋳造により二層積層管であ
る供試管(発明例)No. 1およびNo. 2を製作した。い
ずれも、外側壁層aを第1の壁層材とし、内側壁層bを
第2の壁層材料(耐浸炭性改良材)とした。管サイズ
(機械加工後)は、外径:140mm 、壁肉厚:10mm(外側
壁層a:7mm,内側壁層:3mm)、長さ:520 mmであ
る。比較例として、従来の反応管材料であるFe−Cr
−Ni系耐熱鋼からなる単層管(遠心力鋳造)を用意し
た。管サイズ(外径,肉厚,長さ)は上記と同一であ
る。
[Examples] Production of test tubes In a high-frequency melting furnace, heat-resistant steel as the first wall layer material and second
Heat-resistant steel (carburizing resistance improving material), which is the material for the wall layer, is subjected to centrifugal casting and is a two-layer laminated pipe by two-stage casting (Invention Examples) No. 1 and No. I made 2. In both cases, the outer wall layer a was the first wall layer material, and the inner wall layer b was the second wall layer material (carburization resistance improving material). The tube size (after machining) is 140 mm in outer diameter, 10 mm in wall thickness (7 mm in outer wall layer, 3 mm in inner wall layer), and 520 mm in length. As a comparative example, Fe-Cr which is a conventional reaction tube material
A single-layer pipe (centrifugal casting) made of Ni-based heat-resistant steel was prepared. The tube size (outer diameter, wall thickness, length) is the same as above.

【0031】表1に各供試管の壁層構成と化学成分組成
を示す。なお、発明例の二層管(No. 1,2)の外側壁
層の材種、および比較例No. 11,No. 12(単層管)の材
種はいずれも、HP40改良材相当の耐熱鋼である。
Table 1 shows the wall layer composition and chemical composition of each test tube. The grades of the outer wall layers of the two-layer pipes of the invention examples (No. 1 and 2) and the grades of the comparative examples No. 11 and No. 12 (single-layer pipes) were all equivalent to HP40 improved material. It is heat resistant steel.

【0032】高温浸炭試験 各供試管より、図3に示す形状の試験片(試験面は内側
面,仕上表面粗さ:25S。幅w:30mm,長さl:70mm)
を切出して固体浸炭剤(デグサKG30)に埋め込む。こ
れを、850 ℃に加熱し、同温度から30時間を要して1150
℃に昇温し、同温度に18時間保持した後、降温するヒー
トパターンを17回反復実施(試験時間:(30Hr+18H
r)×17回=816 Hr)。試験後、試験面(内側表面)
から、0.5 mmのピッチで、深さ5mmまでの各位置(計10
個所)より切粉を採取して化学分析によりC量を分析
し、分析値から試験前のC量を差し引いて炭素増加量を
求める。表1の右欄に各供試管の炭素増加量(深さ方向
の10個所の各々における炭素増加量の合計値)を示す。
図2は、供試管No. 1,2(発明例)について、試験面
からの深さ方向の炭素増加量の分布を示している。これ
らの試験結果から明らかなように、発明例の供試管No.
1,2は、第2の壁層(この例では内側壁層)による格
段にすぐれた浸炭抵抗性を有し、その炭素増加量は従来
材に比しごく微量で、第1の壁層(外側壁層)への炭素
の拡散侵入はほぼ完全に遮断されていることがわかる。
High-temperature carburizing test From each test tube, a test piece of the shape shown in FIG. 3 (test surface is inner surface, finished surface roughness: 25 S. width w: 30 mm, length 1: 70 mm)
Is cut out and embedded in a solid carburizing agent (Degussa KG30). This is heated to 850 ℃, it takes 1 hour from the same temperature for 30 hours.
The temperature was raised to ℃, held at the same temperature for 18 hours, and then the heat pattern of decreasing temperature was repeated 17 times (test time: (30Hr + 18H
r) × 17 times = 816 Hr). After the test, test surface (inner surface)
To a depth of 5 mm with a pitch of 0.5 mm (total 10
Chips are collected from the location) and the amount of C is analyzed by chemical analysis, and the amount of carbon increase is determined by subtracting the amount of C before the test from the analytical value. The right column of Table 1 shows the carbon increase amount of each test tube (total value of carbon increase amount at each of 10 positions in the depth direction).
FIG. 2 shows the distribution of carbon increase in the depth direction from the test surface for the test tubes No. 1 and 2 (invention example). As is clear from these test results, the sample tube No.
Nos. 1 and 2 have remarkably excellent carburization resistance due to the second wall layer (inner wall layer in this example), and the amount of carbon increase is extremely small compared to the conventional material, and the first wall layer (outer side) It can be seen that the diffusion and penetration of carbon into the wall layer) is almost completely blocked.

【0033】溶接性試験 供試管材の端面にU字開先を形成し、下記条件のGTA
W溶接による突合わせ溶接を行つて管継手を形成した。
各管継手について、初層および最終層の割れの有無をダ
イチエツクにより検査した。発明例の供試管(No. 1,
2)は、従来材である供試管No. 11,No. 12と同様に割
れの発生はなく、健全な溶接品質を有している。 溶接姿勢 下向(ターニングローラによる回転下に溶
接) 溶接棒 0.4 C−1Si−1Mn−25Cr−45Ni−5
Mo 溶接電流:85〜130 A,溶接速度8〜13cm/分 肉盛層数:6層
Weldability test A U-shaped groove was formed on the end surface of the test pipe material, and GTA was used under the following conditions.
Butt welding by W welding was performed to form a pipe joint.
Each pipe joint was inspected by die check for cracks in the first layer and the final layer. Inventive sample tube (No. 1,
No. 2), like the conventional test tubes No. 11 and No. 12, has no cracks and has a good welding quality. Welding position Downward (welding under rotation by turning roller) Welding rod 0.4 C-1Si-1Mn-25Cr-45Ni-5
Mo Welding current: 85 to 130 A, welding speed 8 to 13 cm / min Number of built-up layers: 6 layers

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】第1の壁層と第2の壁層との二層構造を
有する本発明の耐熱鋼管は、従来よりエチレンクラッキ
ングチューブとして使用されている耐熱鋼管に比べて格
段にすぐれた浸炭抵抗性を有している。本発明の耐熱鋼
管は、改良された耐浸炭性等により、石油化学工業用反
応管として近時の高温操業において従来の耐熱鋼製反応
管を凌ぐ安定した使用が可能であり、耐久性の改善、メ
ンテナンスの軽減、反応操業の効率化等の効果をもたら
す。また、本発明の耐熱鋼管は、その他に、例えば鉄鋼
製品熱処理炉のラジアントチューブ等としても有用であ
る。
INDUSTRIAL APPLICABILITY The heat-resistant steel pipe of the present invention having a two-layer structure of the first wall layer and the second wall layer is significantly carburized as compared with the heat-resistant steel pipe conventionally used as an ethylene cracking tube. Has resistance. The heat-resistant steel pipe of the present invention can be used stably as a reaction pipe for the petrochemical industry in the recent high-temperature operation over the conventional heat-resistant steel reaction pipe due to improved carburization resistance and the like, and has improved durability. It also has the effects of reducing maintenance and improving the efficiency of reaction operations. In addition, the heat-resistant steel pipe of the present invention is also useful as, for example, a radiant tube of a heat treatment furnace for steel products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二層耐熱鋼管の二層構造の例を模式的
に示す径方向断面図である。
FIG. 1 is a radial cross-sectional view schematically showing an example of a two-layer structure of a two-layer heat resistant steel pipe of the present invention.

【図2】浸炭試験片の深さ方向における炭素増量の分布
を示すグラフである。
FIG. 2 is a graph showing the distribution of carbon increase in the depth direction of a carburized test piece.

【図3】浸炭試験片の形状説明図である。FIG. 3 is a diagram illustrating the shape of a carburized test piece.

【符号の説明】[Explanation of symbols]

a 外側壁層,b 内側壁層。 a outer wall layer, b inner wall layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Fe−Cr−Ni系耐熱鋼からなる第1
の壁層と、C:0.01〜0.5 %,Si:4%超,7%以
下,Mn:3%以下,P:0.03%以下、S:0.03%以
下,Cr:20〜35%,Ni:20〜60%,Mo:2〜15
%,残部実質的にFeである化学組成を有する耐熱鋼か
らなる第2の壁層との二層積層管であることを特徴とす
る耐浸炭性にすぐれた耐熱鋼管。
1. A first Fe-Cr-Ni heat-resisting steel.
Wall layer of C: 0.01 to 0.5%, Si: more than 4%, 7% or less, Mn: 3% or less, P: 0.03% or less, S: 0.03% or less, Cr: 20 to 35%, Ni: 20 ~ 60%, Mo: 2-15
%, The remainder being a two-layer laminated pipe with a second wall layer made of a heat-resistant steel having a chemical composition of substantially Fe. A heat-resistant steel pipe excellent in carburization resistance.
【請求項2】 第2の壁層をなす耐熱鋼が、1〜10%の
Nbを含有する請求項1に記載の耐熱鋼管。
2. The heat resistant steel pipe according to claim 1, wherein the heat resistant steel forming the second wall layer contains 1 to 10% of Nb.
【請求項3】 第2の壁層をなす耐熱鋼が、0.5 %以上
のCoを含有し、Co+Niは20〜60%である請求項1
または請求項2に記載の耐熱鋼管。
3. The heat resistant steel forming the second wall layer contains 0.5% or more of Co, and Co + Ni is 20 to 60%.
Alternatively, the heat-resistant steel pipe according to claim 2.
【請求項4】 第2の壁層をなす耐熱鋼が、Al:0.02
〜1%,Ti:0.02〜0.5 %,W:5%以下、Ca:0.
001 〜0.5 %,B:0.05%以下,Y:0.5 %以下、およ
びHf:0.5 %以下の群より選ばれる1種ないし2種以
上の元素を含有する請求項1ないし請求項3のいずれか
1つに記載の耐熱鋼管。
4. The heat resistant steel forming the second wall layer is Al: 0.02.
~ 1%, Ti: 0.02 to 0.5%, W: 5% or less, Ca: 0.
Any one of claims 1 to 3 containing one or more elements selected from the group consisting of 001 to 0.5%, B: 0.05% or less, Y: 0.5% or less, and Hf: 0.5% or less. Heat-resistant steel pipe described in one.
JP2443092A 1992-01-13 1992-01-13 Double layer heat resistant steel pipe excellent in carburization resistance Pending JPH05195161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2443092A JPH05195161A (en) 1992-01-13 1992-01-13 Double layer heat resistant steel pipe excellent in carburization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2443092A JPH05195161A (en) 1992-01-13 1992-01-13 Double layer heat resistant steel pipe excellent in carburization resistance

Publications (1)

Publication Number Publication Date
JPH05195161A true JPH05195161A (en) 1993-08-03

Family

ID=12137937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2443092A Pending JPH05195161A (en) 1992-01-13 1992-01-13 Double layer heat resistant steel pipe excellent in carburization resistance

Country Status (1)

Country Link
JP (1) JPH05195161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309475B1 (en) 1998-01-30 2001-10-30 Komatsu Ltd. Rolling element and producing method
KR101018211B1 (en) * 2008-08-13 2011-02-28 주식회사 포스코 Radiant Tube with Excellent High Temperature Properties and Manufacturing Method Thereof
KR101420721B1 (en) * 2007-12-03 2014-07-21 재단법인 포항산업과학연구원 Casting method of the naphata tube bi-metal centrifucal casting
WO2016104417A1 (en) * 2014-12-26 2016-06-30 株式会社クボタ Heat-resistant pipe having alumina barrier layer
CN114561582A (en) * 2022-02-22 2022-05-31 中国长江三峡集团有限公司 Alloy powder material, preparation method thereof and application of alloy powder material in corrosion resistance and rust resistance of bolt

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309475B1 (en) 1998-01-30 2001-10-30 Komatsu Ltd. Rolling element and producing method
KR101420721B1 (en) * 2007-12-03 2014-07-21 재단법인 포항산업과학연구원 Casting method of the naphata tube bi-metal centrifucal casting
KR101018211B1 (en) * 2008-08-13 2011-02-28 주식회사 포스코 Radiant Tube with Excellent High Temperature Properties and Manufacturing Method Thereof
WO2016104417A1 (en) * 2014-12-26 2016-06-30 株式会社クボタ Heat-resistant pipe having alumina barrier layer
JP2016125088A (en) * 2014-12-26 2016-07-11 株式会社クボタ Heat resistant tube having alumina barrier layer
CN114561582A (en) * 2022-02-22 2022-05-31 中国长江三峡集团有限公司 Alloy powder material, preparation method thereof and application of alloy powder material in corrosion resistance and rust resistance of bolt

Similar Documents

Publication Publication Date Title
CA2533946C (en) Ferritic stainless steel welding wire and manufacturing method thereof
JP5177330B1 (en) Carburization-resistant metal material
EP2246454B1 (en) Carburization-resistant metal material
RU2659523C2 (en) Welded joint
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
WO2002090610A1 (en) Ferritic heat-resistant steel
EP0854002A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
US3596053A (en) Consumable welding rod for welding chromium steels and the resultant welds
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP4442331B2 (en) Stainless steel and stainless steel pipe with carburization and caulking resistance
KR20180034646A (en) Wire for submerged arc welding
US3476909A (en) Method of deposit welding chromium steels
JPH05195161A (en) Double layer heat resistant steel pipe excellent in carburization resistance
JP6402581B2 (en) Welded joint and method for producing welded joint
JPH0250976B2 (en)
JPH06235050A (en) Stainless clad steel high in joining strength
JP7436793B2 (en) Manufacturing method of welded joints of ferritic heat-resistant steel
JP2001113389A (en) Heat resistant multilayer metallic tube excellent in coking resistance and producing method
JP4040824B2 (en) Weld metal
JPH06254666A (en) Manufacture of double layered heat resisting
JPH051355A (en) Heat resistant cast steel improved in creep fracture strength
JP2956430B2 (en) Steel plate for building box column with excellent crack resistance in heat affected zone during large heat input welding
JPH0987787A (en) Heat resistant alloy excellent in oxidation resistance, carburization resistance, high temperature creep fracture strength and ductility after aging
JPH07258782A (en) Heat resistant alloy excellent in carburization resistance
JPH05279738A (en) Manufacture of wear resistant steel pipe