JPH0519500B2 - - Google Patents
Info
- Publication number
- JPH0519500B2 JPH0519500B2 JP28656187A JP28656187A JPH0519500B2 JP H0519500 B2 JPH0519500 B2 JP H0519500B2 JP 28656187 A JP28656187 A JP 28656187A JP 28656187 A JP28656187 A JP 28656187A JP H0519500 B2 JPH0519500 B2 JP H0519500B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- calcium silicate
- weight
- inorganic binder
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011230 binding agent Substances 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 239000000378 calcium silicate Substances 0.000 claims description 17
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 17
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 16
- 229910052796 boron Inorganic materials 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 10
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 239000002893 slag Substances 0.000 description 25
- 239000004568 cement Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000292 calcium oxide Substances 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
〔産業上の利用分野〕
本発明は無機質結合剤に関する。更に言えば、
硼素成分含有珪酸カルシウム系微粉末と活性シリ
カ微粉末とを含有してなる無機質結合剤に係るも
ので、水硬性とゼラミツク性を同時に具備する特
徴的な無機質結合剤に関する。
〔従来の技術〕
高炉スラグ、フエロアロイスラグあるすは金属
マグネシウムスラグ等の各種治金スラグは塩基性
珪酸カルシウムを主組成とするものであり、その
粉末、特に、水砕スラグ粉末は潜在水硬性がある
ため、高炉セメント材として利用されるようにセ
メント材として利用されていることは周知であ
る。
しかし、通常、係るスラグはそれ自体水硬反応
が遅いため、単味では実用されていないのが現状
である。
従つて、係るスラグをセメント材として使用す
る場合には、ポルトランドセメント、アルミナセ
メント等のセメントと共にあるいは生石灰、消石
灰、アルカリ金属化合物等のアルカリ刺激剤、石
膏、塩化カルシウム、硫酸塩、その他の補助剤等
と併用して使用されており、係るセメント組成物
に関しては極めて多様で多くの提案がなされてお
り且つ実用されている。
〔発明が解決しようとする問題点〕
従来、代表的な高炉スラグのセメント材への利
用において、該スラグと他の成分との併用におけ
るセメント組成物は多くの場合複合による欠点も
あつて、一般的にはポルトランドセメントと比較
して特徴的なものは少なく、性能も劣つている。
ところで、本発明者らは製鋼スラグのいわゆる
粉化問題に関連して該スラグの改質を目的として
含硼素ガラスをスラグ溶融体に添加することによ
りスラグの著しい改質があることかを知見し、セ
メントへの利用の道を開くことに成功した(特願
昭61−312481号)。
しかし、このものの水硬性は強度的にも不充分
で改良しなければならない点がある。
更に、スラグの改質によるセメント材の開発は
経済的見地からみると、最も好ましいことではあ
るが、その工程上の必然的理由により組成に著し
いバラツキが生じ、安定した組成のものが得られ
ない欠点がある。
〔問題点を解決するための手段〕
叙上の点に鑑み、更に改良すべく鋭意硼素成分
含有珪酸カルシウム系微粉末の水硬性を研究して
いたところ、これに活性シリカ微粉末を配合した
組成物が水硬性と同時に耐火性も著しく改善する
ことを知見し、本発明を完成した。
すなわち、本発明は
塩基度=(CaO+MgO+M2O)/(SiO2+Al2O3+B2O3)
(重量比)
(式中、Mはアルカリ金属を表す)が1.3〜3.0
の範囲にあり且つ硼素成分をB2O3換算で0.1〜5.0
重量%含有する珪酸カルシウム系微粉末と活性シ
リカ微粉末とよりなることを特徴とする無機質結
合剤に係る。
〔作 用〕
本発明に係る無機質結合剤の成分の1つである
珪酸カルシウム系微粉末は硼素成分含有のもの
で、上記の組成を有することが重要であり、これ
自体で水硬性を有するものである。
係る微粉末は硼素含有物を製鋼スラグ等の溶融
物に添加して改質されたものが有利に用いられる
が、その組成が上記のような塩基度を有していな
ければならない。
また、本発明においては、改質スラグに係るも
のではなく、上記組成となるような合成物であつ
てもよい。
すなわち、含カルシウム物質、珪酸物質、硼素
含有物質、その他、アルミナ、マグネシア、含フ
ツ素物質を所定の配合で溶融後、冷却・粉砕した
ものが用いられる。
このように、珪酸カルシウム系微粉末はその履
歴が溶融体を経たものでなければならず、焼結体
程度の熱履歴は適当でない。
また、溶融後は徐冷したものの微粉末であつて
結晶性でなければならない。
このように上記で定義した塩基度の範囲外にあ
つてはいずれも水硬性の発現がなく、また、発現
しても不充分で強度がなく、実用性に欠けると共
に結晶性でないものは耐火性に欠ける。
なお、改質スラグ粉末としては例えばステンレ
ス鋼などの製鋼スラグ、フエロクロムスラグ等が
好適であるが、これに限定されるものではない。
珪酸カルシウム系微粉末は上記塩基度のほかに
硼素成分がB2O3として0.1〜5重量%、更に好ま
しくはフツ素成分もFとして3〜10重量%含有し
ていることが特に推奨される。
硼素成分は少量であつても、珪酸カルシウムの
物性に対する改質が著しく、水硬性、耐火性への
物性改善に不可であるが、硼素含量が上述の範囲
外にあつては改質が不充分であるか、または耐火
性を逆に劣化させるので不適当である。
従つて、多くの場合、硼素含量はB2O3として
0.3〜1重量%の範囲が最も好ましい。
このように、本発明においては、高塩基度の珪
酸カルシウム系物質に少量の硼素成分を均一組織
において含有して改質してなるものを結合剤の一
成分とすることが特徴の1つになつている。
一般に、高塩基性珪酸カルシウムは例えば溶融
スラグにみられるように徐冷すると粉化現象を生
ずるが、硼素成分で改質されたものはその現象が
阻止されると同時に水硬性が生じて改質効果を認
めることができる。
なお、上記の珪酸カルシウム系微粉末はブレー
ン比表面積で1500〜10000m2/gの範囲にあれば
よいが、多くの場合、2000〜6000m2/gが実用的
で好適である。
次に、本発明に係る無機質結合剤の他の成分と
しては活性シリカ微粉末があるが、これは結合剤
の物性改善のために不可欠である。
ここに、活性シリカとは硼素成分含有珪酸カル
シウム系微粉末中のカルシウムなどの塩基度成分
と中和反応いわゆるホゾラン反応を水の存在下で
生ぜしめるシリカ原料のことをいい、例えばフエ
ワロリコンダスト、ヒユームドシリカ、シリカゾ
ル、活性白土等が挙げられるが、特に、フエロシ
リコンダスト、ヒユームドシリカの如き超微粉シ
リカが好適である。
これら2つの成分の配合は結合剤の用途目的あ
るいは珪酸カルシウム系微粉末の組成や活性シリ
カの種類等によつて設定する必要があるが、多く
の場合、珪酸カルシウム系微粉末100重量部当た
り活性シリカが5〜50重量部の範囲にあり、好ま
しくは7〜30重量%の範囲にある。
なお、当然のことながら、本発明に係る結合剤
の使用においては、例えば、砂、珪石粒、ろう
石、砕石粒、シヤモツトの如き耐火物粒、スラグ
粗砕粒等の骨材、カーボン繊維、有機合成繊維、
ガラス繊維などの各種の短繊維あるいは着色剤を
適宜用いて所望の補強材、成形体を得ることがで
きる。
本発明に係る無機質結合剤は水硬性であるか
ら、その意味では1種のセメントのカテゴリーに
属すると言うことができるけれども、通常のセメ
ント組成物とは異なり、一般的な蒸気養生を必要
とせず、水硬・脱型後、大気中養を行なうだけで
良く且つ水和熱も著しく小さい特徴を有してい
る。水硬の際、水とセメントの比いわゆるw/c
は当然ながら小さい方が強度増強には好ましい
が、本発明に係るものは、このw/cが通常のセ
メントに比べて小なのが特徴である。例えば、水
の量は結合剤100重量部当たり5〜40重量部、多
くの場合6〜25重量部が適当である。
なお、水よる混練に当たり必要に応じてセメン
トの場合に常用されている公知の分散剤あるいは
起泡剤を併用することができる。
また、驚くべきことに、通常のセメント組成物
は水硬性結合剤であるが故に加熱すると強度劣化
を生じていわゆる耐火性は勿論、耐熱性がないの
が一般的であるけれども本発明に係る無機質結合
剤は耐熱・耐火性があり、約1000℃前後の加熱に
よつては熱劣化よりもむしろ強度を向上する性質
がある。
従つて、例えば本発明に係る結合剤を用いた硬
化体を800〜1100℃で加熱したものは、水硬強度
から焼結強度へと転化したものと考えることがで
き、例えば成形パネルをたたくと磁器的な音を発
するところからセラミツクスと言うことができ、
いわばセメント性とセラミツクス性を同時に具備
する特異な無機質結合剤と言えよう。
〔実施例〕
以下に、本発明を具体的に説明するために実施
例を挙げるが、部及び%はいずれも重量によるも
のである。
実施施 1〜5
第1表に示す硼素成分含有の改質ステンレスス
ラグ微粉末(ブレーン比表面積3000m2/g)とフ
エロシリコンダスト〔屋久島電工(株)社製〕を所定
量配合した組成物を均一に混合してそれぞれ無機
質結合剤とした。
これらに、それぞれスラグ粗砕品(1〜5mmの
ものが90%以上)を配合して適量の水を分散剤と
共に混練した後、振動成形して試験パネル(20×
20×10mm)を作成した。
このパネルを自然養生後150℃に乾燥したもの
について焼成前と焼成後及び焼成して水中養生後
のものについて曲げ強度試験を行なつたところ、
第2表の結果が得られた。
第1表
成 分 %
CaO 46.1
SiO2 16.8
Al2O3 14.6
MgO 10.7
Fe2O3 2.2
Cr2O3 2.1
F 6.8
B2O3 0.5
[Industrial Field of Application] The present invention relates to an inorganic binder. Furthermore,
This invention relates to an inorganic binder containing a boron component-containing calcium silicate fine powder and an activated silica fine powder, and relates to a characteristic inorganic binder having both hydraulic and gelatinous properties. [Prior art] Various metallurgical slags such as blast furnace slag, ferroalloy slag, and metal magnesium slag have basic calcium silicate as their main composition, and their powders, especially granulated slag powders, contain latent water. Because of its hardness, it is well known that it is used as a cement material, such as in blast furnace cement. However, since such slag itself usually has a slow hydraulic reaction, it is not currently put to practical use alone. Therefore, when using such slag as a cement material, it must be used together with cement such as Portland cement or alumina cement, or with alkali stimulants such as quicklime, slaked lime, alkali metal compounds, gypsum, calcium chloride, sulfate, and other adjuvants. A wide variety of such cement compositions have been proposed, and many proposals have been made and put into practical use. [Problems to be Solved by the Invention] Conventionally, in the use of typical blast furnace slag as a cement material, cement compositions made by combining the slag with other components often have drawbacks due to compounding, Compared to Portland cement, it has fewer characteristics and its performance is inferior. Incidentally, the present inventors have discovered that, in connection with the so-called pulverization problem of steelmaking slag, slag is significantly modified by adding boron-containing glass to the molten slag for the purpose of modifying the slag. succeeded in paving the way for its use in cement (Patent Application No. 312481/1981). However, the hydraulic properties of this material are insufficient in terms of strength and must be improved. Furthermore, although the development of cement materials by modifying slag is the most desirable from an economic standpoint, due to the inevitable reasons in the process, significant variations in composition occur, making it impossible to obtain a cement material with a stable composition. There are drawbacks. [Means for solving the problem] In view of the above points, in order to further improve the hydraulic properties of calcium silicate-based fine powder containing a boron component, we have been researching the hydraulic properties and found a composition in which activated silica fine powder is blended with this powder. The present invention was completed based on the discovery that the fire resistance as well as the hydraulic properties of the product were significantly improved. That is, in the present invention, basicity = (CaO + MgO + M 2 O) / (SiO 2 + Al 2 O 3 + B 2 O 3 )
(weight ratio) (in the formula, M represents an alkali metal) is 1.3 to 3.0
and the boron content is 0.1 to 5.0 in terms of B2O3 .
The present invention relates to an inorganic binder characterized by comprising calcium silicate fine powder and activated silica fine powder containing % by weight. [Function] The calcium silicate fine powder, which is one of the components of the inorganic binder according to the present invention, contains a boron component, and it is important that it has the above composition, and has hydraulic properties by itself. It is. Such a fine powder is advantageously modified by adding a boron-containing substance to a molten material such as steelmaking slag, but its composition must have the above-mentioned basicity. Further, in the present invention, the slag is not related to modified slag, but may be a composite having the above composition. That is, a calcium-containing substance, a silicic acid substance, a boron-containing substance, alumina, magnesia, and a fluorine-containing substance are melted in a predetermined composition, then cooled and pulverized. As described above, the history of calcium silicate-based fine powder must be that of a molten body, and a thermal history comparable to that of a sintered body is not appropriate. Furthermore, after melting, it must be slowly cooled to form a fine powder and crystalline. In this way, if the basicity is outside the range defined above, hydraulic properties do not develop, and even if they develop, they are insufficient and lack strength, lack practicality, and those that are not crystalline have fire resistance. It lacks. The modified slag powder is preferably, for example, steel manufacturing slag such as stainless steel, ferrochrome slag, etc., but is not limited thereto. In addition to the above basicity, it is particularly recommended that the calcium silicate- based fine powder contains a boron component of 0.1 to 5% by weight as B2O3 , and more preferably a fluorine component of 3 to 10% by weight as F. . Even if the boron content is small, it significantly modifies the physical properties of calcium silicate, making it impossible to improve the physical properties to hydraulic properties and fire resistance. However, if the boron content is outside the above range, the modification is insufficient. Otherwise, it is unsuitable because it adversely deteriorates the fire resistance. Therefore, boron content is often expressed as B 2 O 3
A range of 0.3 to 1% by weight is most preferred. As described above, one of the features of the present invention is that one component of the binder is a material obtained by modifying a highly basic calcium silicate material by containing a small amount of boron component in a uniform structure. It's summery. In general, highly basic calcium silicate causes a powdering phenomenon when slowly cooled, as seen in molten slag, but when it is modified with a boron component, this phenomenon is inhibited, and at the same time, hydraulic properties occur and the modification occurs. The effect can be recognized. The above calcium silicate-based fine powder may have a Blaine specific surface area of 1,500 to 10,000 m 2 /g, but in most cases, 2,000 to 6,000 m 2 /g is practical and suitable. Next, as another component of the inorganic binder according to the present invention, there is activated silica fine powder, which is essential for improving the physical properties of the binder. Here, activated silica refers to a silica raw material that causes a neutralization reaction, so-called hozolan reaction, with a basicity component such as calcium in a boron component-containing calcium silicate fine powder, such as fluorocon dust. , fumed silica, silica sol, activated clay, etc., and ultrafine powdered silica such as ferrosilicon dust and fumed silica are particularly suitable. The combination of these two components needs to be determined depending on the intended use of the binder, the composition of the calcium silicate-based fine powder, the type of active silica, etc., but in most cases, the active silica is Silica is in the range of 5 to 50 parts by weight, preferably in the range of 7 to 30% by weight. As a matter of course, when using the binder according to the present invention, for example, sand, silica grains, waxite, crushed stone grains, refractory grains such as siyamoto, aggregates such as coarsely crushed slag grains, carbon fibers, organic Synthetic fiber,
Desired reinforcing materials and molded bodies can be obtained by appropriately using various short fibers such as glass fibers or coloring agents. Since the inorganic binder according to the present invention is hydraulic, it can be said to belong to the category of a type of cement in that sense, but unlike ordinary cement compositions, it does not require general steam curing. , after hydraulic hardening and demolding, it is sufficient to perform curing in the air, and the heat of hydration is also extremely small. During hydraulic hardening, the ratio of water to cement is called w/c.
Of course, a smaller value is preferable for increasing strength, but the material according to the present invention is characterized in that this w/c is smaller than that of ordinary cement. For example, a suitable amount of water is 5 to 40 parts by weight, often 6 to 25 parts by weight per 100 parts by weight of binder. In addition, when kneading with water, a known dispersant or foaming agent commonly used in the case of cement can be used in combination, if necessary. Surprisingly, since ordinary cement compositions are hydraulic binders, their strength deteriorates when heated, and they generally have no heat resistance, let alone so-called fire resistance. The binder is heat and fire resistant, and when heated to around 1000°C, it has the property of improving strength rather than causing thermal deterioration. Therefore, for example, when a cured product using the binder according to the present invention is heated at 800 to 1100°C, it can be considered that the hydraulic strength has been converted to sintering strength, and for example, when a molded panel is struck, It can be called ceramics because it emits a porcelain-like sound.
It can be said to be a unique inorganic binder that has both cementitious and ceramic properties. [Examples] Examples are given below to specifically explain the present invention, and all parts and percentages are based on weight. Implementation 1 to 5 A composition containing a predetermined amount of modified stainless steel slag fine powder (Blaine specific surface area 3000 m 2 /g) containing a boron component shown in Table 1 and ferrosilicon dust [manufactured by Yakushima Electric Co., Ltd.] were uniformly mixed to form an inorganic binder. These were mixed with coarsely crushed slag (90% or more of 1-5 mm), mixed with an appropriate amount of water with a dispersant, and then vibration-molded to form a test panel (20×
20×10mm) was created. After natural curing, this panel was dried at 150°C and a bending strength test was performed on it before and after firing, and after firing and curing in water.
The results shown in Table 2 were obtained. Table 1 Ingredients % CaO 46.1 SiO 2 16.8 Al 2 O 3 14.6 MgO 10.7 Fe 2 O 3 2.2 Cr 2 O 3 2.1 F 6.8 B 2 O 3 0.5
【表】
実施施 6〜8
第3表に記載する組成の合成珪酸カルシウム微
粉末(ブレーン比表面積3500m2/g)と実施例1
と同じフエロシリコンダストの所定量とを配合し
て無機質結合剤を調製した。
この無機質結合剤に少量の水を添加、混練して
5cmφ×10cmの円柱試験棒を作成して自然養生し
た後、その一軸圧縮強度を測定したところ、第4
表の結果が得られた。
第3表
成 分 %
CaO 51.1
SiO2 17.8
Al2O3 13.8
MgO 10.5
Fe2O3 2.7
F 7.0
B2O3 0.6[Table] Examples 6 to 8 Synthetic calcium silicate fine powder having the composition shown in Table 3 (Blaine specific surface area 3500 m 2 /g) and Example 1
and a predetermined amount of the same ferrosilicon dust to prepare an inorganic binder. A small amount of water was added to this inorganic binder and kneaded to make a 5cmφ x 10cm cylindrical test rod. After natural curing, the unconfined compressive strength of the rod was measured.
The results in the table were obtained. Table 3 Ingredients % CaO 51.1 SiO 2 17.8 Al 2 O 3 13.8 MgO 10.5 Fe 2 O 3 2.7 F 7.0 B 2 O 3 0.6
本発明に係る無機質結合剤は通常のポルトラン
ドセメントや水硬性スラグセメントとは異なる物
性をもつ結合剤である。
すなわち、セメント性とセラミツクス性とを同
時に具備したもので少量の水で水硬性を有し、そ
の硬化物は耐熱性であつてセラミツクス性を示す
特徴的な無機質結合剤である。
従つて、本発明に係る無機質結合剤を用いて各
種の特徴的な成形体を作成することができ、建築
材料や窯業分野への利用が期待できる。
The inorganic binder according to the present invention is a binder having physical properties different from those of ordinary Portland cement and hydraulic slag cement. That is, it is a characteristic inorganic binder that has both cementitious properties and ceramic properties, has hydraulic properties with a small amount of water, and its cured product is heat resistant and exhibits ceramic properties. Therefore, the inorganic binder according to the present invention can be used to create various characteristic molded bodies, and can be expected to be used in the fields of building materials and ceramics.
Claims (1)
)(重量比) (式中、Mはアルカリ金属を表す)が1.3〜3.0
の範囲にあり且つ硼素成分をB2O3換算で0.1〜5.0
重量%含有する珪酸カルシウム系微粉末と活性シ
リカ微粉末とよりなることを特徴とする無機質結
合剤。 2 珪酸カルシウム系微粉末はフツ素成分をFと
して3〜10重量%含有するものである特許請求の
範囲第1項記載の無機質結合剤。 3 珪酸カルシウム系微粉末は溶融冷却物のブレ
ーン比表面積1500〜10000m2/gの結晶性微粉末
である特許請求の範囲第1項または第2項記載の
無機質結合剤。 4 珪酸カルシウム系微粉末100重量部当たり活
性シリカ5〜50重量部の配合組成ある特許請求の
範囲第1項記載の無機質結合剤。[Claims] 1 Basicity = (CaO + MgO + M 2 O) / (SiO 2 + Al 2 O 3 + B 2 O 3
) (weight ratio) (in the formula, M represents an alkali metal) is 1.3 to 3.0
and the boron content is 0.1 to 5.0 in terms of B2O3 .
An inorganic binder comprising calcium silicate fine powder and activated silica fine powder containing % by weight. 2. The inorganic binder according to claim 1, wherein the calcium silicate-based fine powder contains 3 to 10% by weight of a fluorine component as F. 3. The inorganic binder according to claim 1 or 2, wherein the calcium silicate-based fine powder is a crystalline fine powder having a Blaine specific surface area of 1,500 to 10,000 m 2 /g of the molten and cooled material. 4. The inorganic binder according to claim 1, which contains 5 to 50 parts by weight of activated silica per 100 parts by weight of calcium silicate-based fine powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28656187A JPH01131046A (en) | 1987-11-13 | 1987-11-13 | Inorganic binder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28656187A JPH01131046A (en) | 1987-11-13 | 1987-11-13 | Inorganic binder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01131046A JPH01131046A (en) | 1989-05-23 |
JPH0519500B2 true JPH0519500B2 (en) | 1993-03-16 |
Family
ID=17706003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28656187A Granted JPH01131046A (en) | 1987-11-13 | 1987-11-13 | Inorganic binder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01131046A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2817953B2 (en) * | 1989-06-29 | 1998-10-30 | 日本化学工業株式会社 | Inorganic molded article and method for producing the same |
DE102007035257B3 (en) * | 2007-07-27 | 2008-11-13 | Forschungszentrum Karlsruhe Gmbh | Single-phase hydraulic binder, process for its preparation and building material produced with this binder |
-
1987
- 1987-11-13 JP JP28656187A patent/JPH01131046A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01131046A (en) | 1989-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4780142A (en) | Hard setting refractory composition | |
JP5080714B2 (en) | Cement composition | |
JP4563835B2 (en) | Mortar composition, mortar, and cured mortar using the same | |
JP4290628B2 (en) | Ultrafast cement composition, superhard mortar composition, and ultrafast grout mortar | |
US4921536A (en) | Non-calcareous castable binder | |
JPH0476345B2 (en) | ||
JP4201265B2 (en) | Ultra-fast hardening / high flow mortar composition and super fast hardening / high flow mortar composition | |
JP3638308B2 (en) | Cement composition | |
JP3150164B2 (en) | Cement admixture and cement composition | |
JPH0519500B2 (en) | ||
KR102144170B1 (en) | Slag cement composition | |
JP4180050B2 (en) | Admixture for concrete containing non-ferrous smelt aggregate and concrete composition using the same | |
JP2592887B2 (en) | Inorganic cured product and method for producing the same | |
JP3027593B2 (en) | Manufacturing method of special cement | |
JP3580911B2 (en) | Cement admixture for steam-cured products and cement composition for steam-cured products containing the admixture | |
JPS6241774A (en) | Non-burnt refractory heat insulator | |
JP3024723B2 (en) | Insulated castable | |
JPH06115998A (en) | Production of hydraulic composition | |
CA1298323C (en) | Hard setting refractory composition | |
JP2817953B2 (en) | Inorganic molded article and method for producing the same | |
JP2821802B2 (en) | Manufacturing method of glazed inorganic molded body | |
JPH0137352B2 (en) | ||
JPH10316476A (en) | Thermal insulation castable | |
JP3036792B2 (en) | Castable binder | |
WO2023234041A1 (en) | Cement material, cement composition, and hardened article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |