JPH051949A - Fire monitor - Google Patents

Fire monitor

Info

Publication number
JPH051949A
JPH051949A JP15421991A JP15421991A JPH051949A JP H051949 A JPH051949 A JP H051949A JP 15421991 A JP15421991 A JP 15421991A JP 15421991 A JP15421991 A JP 15421991A JP H051949 A JPH051949 A JP H051949A
Authority
JP
Japan
Prior art keywords
fire
distance
detection signal
reference value
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15421991A
Other languages
Japanese (ja)
Other versions
JPH0692915B2 (en
Inventor
Hiroshi Ishida
博志 石田
Toshihide Tsuji
利秀 辻
Teruo Iwata
照夫 岩田
Kazumasa Shimizu
和政 清水
Toshiaki Yoshizaki
俊明 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Topcon Corp
Original Assignee
Hochiki Corp
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp, Topcon Corp filed Critical Hochiki Corp
Priority to JP15421991A priority Critical patent/JPH0692915B2/en
Publication of JPH051949A publication Critical patent/JPH051949A/en
Publication of JPH0692915B2 publication Critical patent/JPH0692915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To correctly judge a fire by measuring the distance to a fire source with a range finder in real time when the fire source is detected by two-dimensional scanning, correcting the reference value with the measured distance, and comparing it with the detection signal. CONSTITUTION:The detection signal from a two-dimensional scanning type fire detector 100 is converted by an A/D converter then compared with the preset pre-alarm level by a pre-alarm judgment section 26. When the detection signal exceeds this level, a distance measurement controller 27 outputs the drive signal to a distance measurement drive circuit 28, and a range finder 200 is directed toward a fire source by a motor 29. The distance data from the range finder 200 are read by a distance measurement calculation section 30 and outputted to a correction calculation section 31. The calculation section 31 corrects the reference value data 34 stored in advance with the distance data. A comparison judgment section 32 compares the detection signal from the detector 100 with the corrected reference value and judges a fire if the detection signal exceeds the reference value, the occurrence of the fire and its position are displayed on a display section 36, and an acoustic alarm is generated by a warning device 37.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一定の監視領域を2次
元的に走査しながら火災発生の有無を監視する火災監視
装置に関し、特に検出した火源位置の距離の違いによる
誤報を防止する火災監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire monitoring device for two-dimensionally scanning a certain monitoring region to monitor the presence or absence of a fire, and particularly to prevent false alarms due to the difference in the detected fire source position. Fire monitoring device.

【0002】[0002]

【従来の技術】従来、2次元走査型火災検出器として特
開昭62−255832号に示されたミラー走査型放射
検出器が知られている。この火災検出器の概略構成を図
6に示すと、検出器の筐体1に取り付けられた駆動モー
タ2によって回転駆動される回転ミラー3を有し、回転
ミラー3は監視領域4から入射する被写体光学像を反射
ミラー5側へ反射し、更に、反射ミラー5で反射した被
写体光学像を光電変換素子6で受光する。尚、図示しな
いが、反射ミラー5と光電変換素子6の間に設けられた
スリットを通過した光だけが光電変換素子6に受光され
ることにより、各走査区域の面積が規定されるようにな
っている。
2. Description of the Related Art Conventionally, as a two-dimensional scanning type fire detector, a mirror scanning type radiation detector disclosed in JP-A-62-255832 is known. A schematic configuration of this fire detector is shown in FIG. 6. The fire detector has a rotating mirror 3 that is driven to rotate by a drive motor 2 attached to a housing 1 of the detector. The optical image is reflected toward the reflection mirror 5, and the subject optical image reflected by the reflection mirror 5 is received by the photoelectric conversion element 6. Although not shown, only the light that has passed through the slit provided between the reflection mirror 5 and the photoelectric conversion element 6 is received by the photoelectric conversion element 6, so that the area of each scanning area is defined. ing.

【0003】検出動作は、回転ミラー3を所定の角速度
で回転させることによって監視領域4内の監視物を縦方
向Yに沿って走査し、縦方向Yの一走査を完了する毎に
所定回転角ずつX方向へ筐体1を他の駆動モータ(図示
せず)で回転させる。この回転ミラー3で監視領域4内
の監視物を縦方向Yに沿って走査することにより、監視
領域4内を細かに区切った走査区域内を所謂点順次走査
し、光電変換素子6で光電変換した検出信号を信号処理
することで監視領域内のどの走査区域で火災が発生した
かを識別する。
In the detection operation, the object to be monitored in the monitoring area 4 is scanned along the vertical direction Y by rotating the rotary mirror 3 at a predetermined angular velocity, and a predetermined rotation angle is obtained every time one scan in the vertical direction Y is completed. The casing 1 is rotated in the X direction by another drive motor (not shown). By scanning the monitoring object in the monitoring area 4 along the vertical direction Y with this rotating mirror 3, a so-called dot-sequential scanning is performed within a scanning area which divides the monitoring area 4 finely, and the photoelectric conversion element 6 performs photoelectric conversion. By performing signal processing on the detected signal, it is possible to identify in which scanning area in the monitoring area the fire occurred.

【0004】更に、監視領域4内は、建物の形状が変化
していたり大きさや形状の異なる各種の設置物が存在す
ることから、各走査区域毎の検出器から被監視物までの
距離が一定でないので、走査区域毎に検出される検出信
号に対して距離の遠近に応じた補正を行っている。もし
このような補正処理を行わないと、例えば、検出器から
極めて近い位置にある煙草の火を走査すると、検出信号
のレベルは大きくなるので火災と判断して誤報を発生
し、逆に火災による炎であっても検出器から極めて遠い
位置にある場合は、検出信号のレベルが小さいために火
災発生を見過ごすことなる。
Further, in the monitoring area 4, since the shape of the building is changed and there are various kinds of installed objects having different sizes and shapes, the distance from the detector to the monitored object in each scanning area is constant. Therefore, the detection signal detected for each scanning area is corrected according to the distance. If such a correction process is not performed, for example, if you scan a cigarette fire that is extremely close to the detector, the level of the detection signal will increase, so it will be judged as a fire and a false alarm will be generated. If a flame is located far away from the detector, the level of the detection signal is too small to overlook the fire.

【0005】したがって、遠距離の被監視物に対する検
出信号はその距離に応じて伸長させ、近距離の被監視物
に対する検出信号はその距離に応じて縮小させる補正処
理を行い、このような補正後の検出信号が所定の基準値
を超えた時に、その走査区域に火災が発生したと判断し
て確実な火災判断を実現しようとしている。そして、こ
のような距離の違いに応じた検出信号の補正を行うため
には、予め検出器から各走査区域毎の距離を測定し、夫
々の距離に反比例する補正係数を記憶手段に記憶してお
き、点順次走査の周期に同期して所定の補正係数を読み
出して実測の検出信号に掛け算することにより検出信号
を補正したり、あるいは夫々の距離の二乗に反比例する
補正係数を使用し補正を行っている。
Therefore, a correction process is performed in which a detection signal for a long-distance monitored object is expanded according to the distance, and a detection signal for a short-distance monitored object is reduced according to the distance. When the detection signal of 1 exceeds a predetermined reference value, it is determined that a fire has occurred in the scanning area, and it is attempted to realize a reliable fire determination. Then, in order to correct the detection signal according to such a difference in distance, the distance for each scanning area is measured in advance from the detector, and the correction coefficient inversely proportional to each distance is stored in the storage means. Every other, the predetermined correction coefficient is read in synchronization with the dot-sequential scanning cycle to correct the detection signal by multiplying it by the actual detection signal, or the correction coefficient inversely proportional to the square of each distance is used for correction. Is going.

【0006】尚、距離により検出信号を補正する代り
に、距離により基準値を補正しても同じである。
The same applies when the reference value is corrected by the distance instead of correcting the detection signal by the distance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の2次元走査型火災検出器を用いた火災監視装
置にあっては、各走査区域までの距離に基づく火災判定
レベル(基準値)や補正係数の設定を、一次の関係式や
二次の関係式に基づいて行っているが、図7に示す建物
内部の断面形状のように、建物の内部構造が複雑であっ
たり、設置物による凹凸が複雑なために、監視装置から
の距離が多様に変化すると、図8のように、監視装置の
走査回転角θA 〜θEに対する被監視物までの距離A〜
Eの変化が複雑となり、一次や二次の関係式によって求
めた補正係数では細かな走査区域毎に精度の良い補正を
行うことができないという問題があった。
However, in such a fire monitoring device using the conventional two-dimensional scanning type fire detector, the fire determination level (reference value) based on the distance to each scanning area and The correction coefficient is set based on a linear relational expression or a quadratic relational expression, but the internal structure of the building is complicated or the installation is dependent on the sectional shape inside the building shown in Fig. 7. When the distance from the monitoring device changes in various ways due to the complicated unevenness, as shown in FIG. 8, the distance A to the monitored object with respect to the scanning rotation angles θA to θE of the monitoring device is increased.
There is a problem that the change of E becomes complicated, and the correction coefficient obtained by the linear or quadratic relational expression cannot perform accurate correction for each fine scanning area.

【0008】また精度のよい補正を行うためには、検出
器から細かに分けた各走査区域までの距離を実測するか
或いは設計データから求め、走査区域を示す位置座標を
アドレスとして距離をメモリに登録する作業を必要と
し、距離データの作成に膨大な手間がかかる問題があっ
た。本発明は、このような従来の問題点に鑑みてなされ
たもので、前もって行う距離の実測等の作業を不要と
し、火源検出時にリアルタイムで距離を測定して精度の
良い補正を実現する2次元走査型火災検出器を用いた火
災監視装置を提供することを目的とする。
In order to perform accurate correction, the distance from the detector to each finely divided scanning area is actually measured or obtained from design data, and the distance is stored in a memory using the position coordinates indicating the scanning area as an address. There is a problem that it requires enrollment work and enormous effort is required to create distance data. The present invention has been made in view of the above-mentioned conventional problems, and eliminates the need for the work such as the actual measurement of the distance in advance and realizes the accurate correction by measuring the distance in real time when the fire source is detected. An object is to provide a fire monitoring device using a three-dimensional scanning fire detector.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
本発明は次のように構成する。尚、実施例図面中の符号
を併せて示す。まず本発明は、監視領域内を細かな走査
区域に区分し、各走査区域毎に走査することによって検
出される検出信号から火源を検出して火災発生の有無を
判断する2次元走査型火災検出器100を備えた火災監
視装置を対象とする。
To achieve this object, the present invention is constructed as follows. The reference numerals in the drawings of the embodiments are also shown. First, the present invention is a two-dimensional scanning type fire in which a surveillance area is divided into fine scanning areas, and a fire source is detected from a detection signal detected by scanning each scanning area to determine the presence or absence of a fire. The target is a fire monitoring device including the detector 100.

【0010】このような火災監視装置として本発明にあ
っては、2次元走査型火災検出器100と一体又は近傍
に配置されて火源までの距離を計測する距離計200
と、2次元走査型火災検出器100の検出信号が所定の
プリアラーム基準値を越えた時に距離計200を検出し
た火源位置に指向させて距離測定動作を行わせる測距制
御部27と、距離計200で測定された火源位置までの
距離に基づいて予め定めた火災判断の基準値を補正する
補正演算部31と、補正演算部31で補正された補正基
準値と2次元走査型火災検出器100の検出信号との比
較により火災を判断する比較判断部32とを備えたこと
を特徴とする。
In the present invention as such a fire monitoring device, a range finder 200 for measuring the distance to the fire source is arranged integrally with or in the vicinity of the two-dimensional scanning fire detector 100.
And a distance measurement control unit 27 that directs the rangefinder 200 to the detected fire source position to perform the distance measurement operation when the detection signal of the two-dimensional scanning fire detector 100 exceeds a predetermined pre-alarm reference value, A correction calculation unit 31 that corrects a predetermined reference value for fire determination based on the distance to the fire source position measured by the distance meter 200, a correction reference value corrected by the correction calculation unit 31, and a two-dimensional scanning fire. It is characterized by including a comparison / determination unit 32 for determining a fire by comparison with a detection signal of the detector 100.

【0011】ここで測距制御部27は、火源検出位置及
び周辺の複数点の距離を測定させ(多点測距)、測定値
の平均計算により火源位置までの距離を測定させること
が望ましい。また距離計200として反射型のものを使
用した際には、測距制御部27は火源検出位置にある炎
の根元付近となる所定量オフセットした位置までの距離
を測定させる。
Here, the distance measurement control unit 27 can measure the distance between the fire source detection position and a plurality of surrounding points (multipoint distance measurement), and measure the distance to the fire source position by averaging the measured values. desirable. When a reflection type distance meter 200 is used, the distance measurement control unit 27 measures the distance to a position offset by a predetermined amount near the root of the flame at the fire source detection position.

【0012】また補正演算部31は火源位置までの距離
に基づいて2次元走査型火災検出器100の検出信号を
補正し、比較判断部32は補正した検出信号と予め定め
た基準値との比較により火災を判断するようにしてもよ
い。更に2次元走査型火災検出器100の検出信号が所
定のプリアラーム基準値を越えた時に火源の位置が予め
定めた非判断領域に入っていた際には、測距及び火災判
断を禁止させる非判断領域判定部33を備える。
Further, the correction calculation unit 31 corrects the detection signal of the two-dimensional scanning fire detector 100 based on the distance to the fire source position, and the comparison and judgment unit 32 compares the corrected detection signal with a predetermined reference value. You may judge a fire by comparison. Further, when the detection signal of the two-dimensional scanning fire detector 100 exceeds a predetermined pre-alarm reference value and the position of the fire source is within a predetermined non-judgment area, distance measurement and fire judgment are prohibited. The non-judgment area determination unit 33 is provided.

【0013】[0013]

【作用】このような構成を備えた本発明によれば、本来
の火災判断レベルより低いプリアラームレベルの基準値
を検出信号が越えて火源位置を検出した際には、距離計
を火源位置に指向させて距離をリアルタイムで測定し、
測定距離に基づき例えば基準値を補正して2次元走査型
火災検出器の検出信号と比較判断するようになり、走査
区域毎に前もって距離を実測して距離や補正係数等をメ
モリに登録する作業が不要となり、大空間構造物のよう
な広い監視区域を細かく分けて走査していても、区域内
の設置物の状況に応じた距離を正確に測定して精度の高
い補正ができ、火災判断の信頼性を更に向上できる。
According to the present invention having such a configuration, when the detection signal exceeds the reference value of the pre-alarm level lower than the original fire judgment level and the fire source position is detected, the range finder is used as the fire source. Point to the position and measure the distance in real time,
Based on the measured distance, for example, the reference value is corrected to make a comparison judgment with the detection signal of the two-dimensional scanning fire detector, and the distance is measured in advance for each scanning area and the distance and the correction coefficient are registered in the memory. Even if a large surveillance area such as a large space structure is finely divided and scanned, it is possible to accurately measure the distance according to the situation of the installation objects in the area and make a highly accurate correction, and judge the fire. The reliability of can be further improved.

【0014】[0014]

【実施例】図1は本発明の火災監視装置で用いる2次元
走査型火災検出器及び距離計の実施例を示した説明図で
ある。図1において、100は2次元走査型火災検出器
であり、基台7に内蔵したモータにより水平回りに回転
自在な支持台16に固定設置されている。支持台16の
左側には距離計200が設置され、この実施例におい
て、距離計200はモータ29により垂直方向の所定範
囲で回動自在に設けられている。
FIG. 1 is an explanatory view showing an embodiment of a two-dimensional scanning type fire detector and range finder used in the fire monitoring apparatus of the present invention. In FIG. 1, reference numeral 100 denotes a two-dimensional scanning type fire detector, which is fixedly installed on a supporting base 16 which is rotatable in a horizontal direction by a motor built in the base 7. A distance meter 200 is installed on the left side of the support base 16, and in this embodiment, the distance meter 200 is rotatably provided within a predetermined vertical range by a motor 29.

【0015】まず2次元走査型火災検出器100を説明
すると次のようになる。2次元走査型火災検出器100
の筐体8内にはモータ9によって回転駆動される回転ミ
ラー10が設けられ、回転ミラー10は監視領域11か
ら入射する被写体の光学像を反射ミラー12側に反射
し、更に反射ミラー12で反射した被写体光学像をスリ
ット13及びリレーレンズ14を介して光電変換素子1
5に受光させている。
First, the two-dimensional scanning type fire detector 100 will be described as follows. Two-dimensional scanning fire detector 100
A rotating mirror 10 that is driven to rotate by a motor 9 is provided in the housing 8 of the rotating mirror 10. The rotating mirror 10 reflects an optical image of a subject incident from the monitoring area 11 to the reflecting mirror 12 side, and further is reflected by the reflecting mirror 12. The subject optical image is subjected to the photoelectric conversion element 1 through the slit 13 and the relay lens 14.
5 is receiving light.

【0016】ここでスリット13を通過した光だけが光
電変換素子15に受光されることにより走査区域ARの
面積が規定されるようになっている。2次元走査型火災
検出器100の動作は回転ミラー10をモータ9により
所定の角速度で回転させることにより監視領域11内を
縦方向Yに沿って走査し、例えば0°〜90°に設定さ
れた縦方向Yの走査が終了する毎に所定の回転角Δθx
だけ支持台16を水平回りに回転させ、これによって監
視領域11内を細かに区切った走査区域に分けて所謂点
順次走査を行い、光電変換素子15で光電変換した検出
信号を制御装置300側に出力する。
Here, only the light that has passed through the slit 13 is received by the photoelectric conversion element 15, so that the area of the scanning area AR is defined. The operation of the two-dimensional scanning fire detector 100 scans the inside of the monitoring region 11 along the vertical direction Y by rotating the rotating mirror 10 by the motor 9 at a predetermined angular velocity, and is set to, for example, 0 ° to 90 °. Each time the scanning in the vertical direction Y is completed, a predetermined rotation angle Δθx
Only by rotating the support base 16 horizontally, the so-called dot-sequential scanning is performed by dividing the inside of the monitoring region 11 into finely divided scanning regions, and the detection signal photoelectrically converted by the photoelectric conversion element 15 is sent to the control device 300 side. Output.

【0017】次に距離計200を説明する。距離計20
0としては、例えばレーザ距離計を使用することができ
る。レーザ距離計は半導体レーザより対象物に向けてレ
ーザパルスを発射させ、レーザパルスの反射光を受光部
で検出して距離を測定することができる。測定距離の分
解能は測距光学系により決まるが、本発明で必要となる
監視区域の測定距離は1000メートルを越えることは
ないことから、通常のレーザ距離計の測定能力の範囲内
であり、しかも1ミリメートルという極めて高精度の距
離分解能を得ることができる。
Next, the rangefinder 200 will be described. Rangefinder 20
As 0, for example, a laser rangefinder can be used. The laser rangefinder can measure a distance by emitting a laser pulse from a semiconductor laser toward an object and detecting reflected light of the laser pulse with a light receiving unit. Although the resolution of the measurement distance is determined by the distance measurement optical system, the measurement distance of the monitoring area required by the present invention does not exceed 1000 meters, and therefore it is within the measurement capability of a normal laser distance meter. It is possible to obtain a highly accurate range resolution of 1 millimeter.

【0018】また距離分解能、信頼性の点でレーザ測距
計が最も望ましいが、これ以外にカメラのオートフォー
カスに使用されている焦点検出光学計を使用し、検出対
象物をオートフォーカス制御により合焦制御させること
で、この合焦制御におけるレンズの駆動量から距離を計
測する方式としてもよい。勿論、レーザ以外の光学式の
距離計あるいは超音波を使用した距離計等適宜の距離計
を使用することができる。
A laser rangefinder is most preferable in terms of distance resolution and reliability, but a focus detection optical meter used for autofocusing of a camera is used in addition to this, and an object to be detected is controlled by autofocus control. A method of measuring the distance from the driving amount of the lens in the focusing control by controlling the focusing may be used. Of course, an appropriate range finder such as an optical range finder other than a laser or a range finder using ultrasonic waves can be used.

【0019】この実施例において、距離計200は2次
元走査型火災検出器100の支持台16に搭載されてお
り、2次元走査型火災検出器100と一体に基台7上で
水平回りに回転走査されている。また支持台16に対し
モータ29により垂直回りに独立に回動することがで
き、定常監視状態にあっては2次元走査型火災検出器1
00の縦方向Yのセンタ位置Pを指向している。
In this embodiment, the range finder 200 is mounted on the support 16 of the two-dimensional scanning fire detector 100, and rotates horizontally on the base 7 integrally with the two-dimensional scanning fire detector 100. Being scanned. Further, the motor 29 can be independently rotated around the support base 16 in a vertical direction, and in the steady monitoring state, the two-dimensional scanning fire detector 1
A center position P of 00 in the vertical direction Y is oriented.

【0020】図2は図1の2次元走査型火災検出器10
0及び距離計200の監視区域の火源に対する位置関係
を示した説明図である。図2において、今、監視領域1
1の特定の位置で火災により火源400が生じたとする
と、2次元走査型火災検出器100は火源400を走査
した際に得られる検出信号のレベルが上昇することで火
源400を検知する。このように火源400を検知する
と2次元走査型火災検出器100は水平回転、即ちX方
向の走査を停止し、火源400を含む縦方向Yの走査を
繰り返すようになる。このような火源400の検出が2
次元走査型火災検出器100で行われると距離計200
が起動され、2次元走査型火災検出器100による火源
400の検出位置の位置座標(X,Y)を受け、この位
置座標に指向するように距離計200が走査され、走査
後に測距動作を行う。
FIG. 2 is a two-dimensional scanning fire detector 10 of FIG.
It is explanatory drawing which showed the positional relationship of 0 and the rangefinder 200 with respect to the fire source of the monitoring area. In FIG. 2, the monitoring area 1 is now
Assuming that the fire source 400 is generated by the fire at the specific position of 1, the two-dimensional scanning fire detector 100 detects the fire source 400 by increasing the level of the detection signal obtained when the fire source 400 is scanned. . When the fire source 400 is detected in this way, the two-dimensional scanning fire detector 100 stops horizontal rotation, that is, scanning in the X direction, and repeats scanning in the vertical direction Y including the fire source 400. Detection of such a fire source 400 is 2
Rangefinder 200 when done with a three-dimensional scanning fire detector 100
Is activated, the position coordinate (X, Y) of the detection position of the fire source 400 by the two-dimensional scanning fire detector 100 is received, the rangefinder 200 is scanned so as to be directed to this position coordinate, and the distance measurement operation is performed after the scanning. I do.

【0021】通常、2次元走査型火災検出器100によ
る火源400の検出は2次元走査型火災検出器100の
光軸Aを火源400の略中央に指向した状態で得られ、
全く同じ火源検出位置に距離計200を指向させると、
B´に示すように火源400より先の位置を測距してし
まう。そこで本発明にあっては、2次元走査型火災検出
器100の光軸Aに対し火源400における炎の根元に
距離計200の光軸Bが指向するように、光軸Bを所定
量オフセットさせて設置している。
Usually, the detection of the fire source 400 by the two-dimensional scanning type fire detector 100 is obtained with the optical axis A of the two-dimensional scanning type fire detector 100 being oriented substantially at the center of the fire source 400.
When the rangefinder 200 is pointed to the exact same fire source detection position,
As shown in B ', the position ahead of the fire source 400 is measured. Therefore, in the present invention, the optical axis B is offset by a predetermined amount so that the optical axis B of the rangefinder 200 is directed to the root of the flame in the fire source 400 with respect to the optical axis A of the two-dimensional scanning fire detector 100. I have installed it.

【0022】また、距離計200で火源400に対する
一点を測定したのでは精度の高い距離情報が得られない
ことから、例えば火源検出位置に対する光軸Aに対する
オフセットした光軸Bの位置を基準に、その周囲の数点
の距離を測定し、測定距離の平均値を求めるようにする
ことで火源400までの測定距離の信頼性を高めるよう
にしている。
Further, since accurate distance information cannot be obtained by measuring one point with respect to the fire source 400 with the range finder 200, for example, the position of the optical axis B offset from the optical axis A with respect to the fire source detection position is used as a reference. In addition, the reliability of the measurement distance to the fire source 400 is improved by measuring the distances at several points around the circumference and obtaining the average value of the measurement distances.

【0023】図3は本発明の一実施例を示した実施例構
成図である。図3において、20はマイクロプロセッサ
(以下「MPU」という)であり、図1の制御装置30
0側に設けられている。MPU20内にはプログラム制
御により実現される走査制御部21が設けられ、走査制
御部21からは主走査信号Dxと副走査信号Dyが出力
される。主走査信号Dxは主走査駆動回路22に与えら
れ、図1の基台7側に設けられたモータ23を駆動し、
2次元走査型火災検出器100を水平回りの所定範囲で
往復回転させる。また、副走査信号Dyは副走査駆動回
路24を介してモータ9に与えられ、図1に示すように
回転ミラー10を一定の角速度で回転する。
FIG. 3 is a block diagram of an embodiment showing one embodiment of the present invention. In FIG. 3, reference numeral 20 denotes a microprocessor (hereinafter referred to as “MPU”), and the control device 30 of FIG.
It is provided on the 0 side. A scanning control unit 21 realized by program control is provided in the MPU 20, and the scanning control unit 21 outputs a main scanning signal Dx and a sub scanning signal Dy. The main scanning signal Dx is given to the main scanning drive circuit 22 to drive the motor 23 provided on the base 7 side of FIG.
The two-dimensional scanning fire detector 100 is reciprocally rotated within a predetermined horizontal range. Further, the sub-scanning signal Dy is given to the motor 9 via the sub-scanning drive circuit 24 to rotate the rotary mirror 10 at a constant angular velocity as shown in FIG.

【0024】2次元走査型火災検出器100からの検出
信号はA/D変換器25でデジタルデータに変換された
後、MPU20に読み込まれる。MPU20に読み込ま
れた検出信号は、まずプリアラーム判定部26に与えら
れ、予め定めたプリアラームレベルと比較判定され、プ
リアラームレベルを越えると火源が検出されたものと判
断し、測距制御部27を起動する。またプリアラーム判
定部26は火源検出時に走査制御部21より得られる火
源位置座標(X,Y)を測距制御部27に通知する。
The detection signal from the two-dimensional scanning fire detector 100 is converted into digital data by the A / D converter 25 and then read into the MPU 20. The detection signal read by the MPU 20 is first given to the pre-alarm determination unit 26, compared and determined with a predetermined pre-alarm level, and when the pre-alarm level is exceeded, it is determined that a fire source has been detected, and distance measurement control is performed. The section 27 is activated. Further, the pre-alarm determination unit 26 notifies the distance measurement control unit 27 of the fire source position coordinates (X, Y) obtained from the scanning control unit 21 when the fire source is detected.

【0025】測距制御部27はプリアラームレベル判定
部26の判定出力と共に得られた火源位置座標(X,
Y)に基づいて測距駆動回路28に駆動信号を出力し、
モータ29により図1に示したように支持台16上の距
離計200を検出された火源位置(X,Y)に指向させ
る。図1の実施例にあっては、水平回りのX方向につい
ては2次元走査型火災検出器100と同じ支持台16上
に距離計200が搭載されていることから、距離計20
0のX方向の走査は不要であり、縦方向Yについてのみ
火源検出位置座標(X,Y)に基づくモータ29の駆動
を行う。
The distance measurement control unit 27 receives the judgment output of the pre-alarm level judgment unit 26 and the fire source position coordinates (X,
Y) to output a drive signal to the distance measurement drive circuit 28,
The motor 29 directs the rangefinder 200 on the support 16 to the detected fire source position (X, Y) as shown in FIG. In the embodiment of FIG. 1, since the rangefinder 200 is mounted on the same support 16 as the two-dimensional scanning fire detector 100 in the horizontal X direction, the rangefinder 20
It is not necessary to scan 0 in the X direction, and the motor 29 is driven based on the fire source detection position coordinates (X, Y) only in the vertical direction Y.

【0026】また、測距制御部27は火源検出位置座標
(X,Y)に距離計200を指向させる以外に、図2に
示したように火源検出座標で定める光軸Aに対し所定量
オフセットした光軸Bで決まる火源400の炎の根元位
置を指向する制御も行い、更に必要ならば炎の根元のオ
フセット位置を中心にその周辺の数点を指向させる多点
測距を行う。
In addition to directing the rangefinder 200 to the fire source detection position coordinates (X, Y), the distance measurement control unit 27 also sets the position with respect to the optical axis A defined by the fire source detection coordinates as shown in FIG. Control is also performed to direct the base position of the flame of the fire source 400 determined by the quantitatively offset optical axis B, and if necessary, multipoint distance measurement is performed to direct several points around the flame base offset position. .

【0027】距離計200からの距離データは測距制御
部27で1または複数の測距のためのモータ29が完了
する毎に測距演算部30が読み込まれ、例えばオフセッ
トによる炎の根元までの距離あるいは多点測距で得られ
た特定データの平均値として距離データを補正演算部3
1に出力する。補正演算部31はメモリ40に予め記憶
された基準値データ34から距離データにより補正され
た基準値データを求めて比較判断部32に記録する。
The distance data from the rangefinder 200 is read by the distance measurement calculation unit 30 every time the distance measurement control unit 27 completes one or more motors 29 for distance measurement. The correction calculation unit 3 corrects the distance data as an average value of the specific data obtained by distance measurement or multi-point distance measurement.
Output to 1. The correction calculation unit 31 obtains reference value data corrected based on the distance data from the reference value data 34 stored in advance in the memory 40, and records the reference value data in the comparison determination unit 32.

【0028】図4はメモリ40に格納された基準値デー
タ34の一例を示したもので、横軸に示す距離の増加に
対し縦軸に示す基準電圧値(基準値)が距離の2乗に反
比例して減少する値に設定されている。このため、補正
演算部31にあっては、図4に基づくテーブルデータと
してメモリ40に格納された基準値データ34をアクセ
スし、このときの距離データに対応する基準値データ、
即ち基準電圧値を読み出して比較判断部32に出力す
る。
FIG. 4 shows an example of the reference value data 34 stored in the memory 40. The reference voltage value (reference value) shown on the vertical axis is the square of the distance with respect to the increase of the distance shown on the horizontal axis. It is set to a value that decreases in inverse proportion. Therefore, in the correction calculation unit 31, the reference value data 34 stored in the memory 40 as table data based on FIG. 4 is accessed, and the reference value data corresponding to the distance data at this time,
That is, the reference voltage value is read and output to the comparison / determination unit 32.

【0029】比較判断部32にあってはプリアラーム判
定部26を経由して得られた2次元走査型火災検出器1
00からの検出信号と補正演算部31で距離に応じて補
正された基準値とを比較し、検出信号が基準値以上とな
ったときに火災と判断する。比較判断部32による火災
判断出力は、そのときの火源位置座標と共に表示部36
に与えられ、表示部36に火災発生及び火災発生位置を
表示する。勿論、表示部36としてはCRTディスプレ
イを使用し、監視区域を示す画像の中に火源位置を点灯
あるいはフリッカ表示により示すようにしてもよい。同
時に火災の判断出力は警報器37に与えられ、ベル鳴動
等により音響的な火災警報を行う。
In the comparison and judgment section 32, the two-dimensional scanning fire detector 1 obtained via the pre-alarm judgment section 26
The detection signal from 00 and the reference value corrected according to the distance by the correction calculation unit 31 are compared, and when the detection signal is equal to or higher than the reference value, it is determined that there is a fire. The fire judgment output by the comparison judgment unit 32 is displayed on the display unit 36 together with the fire source position coordinates at that time.
The fire occurrence and the fire occurrence position are displayed on the display unit 36. Of course, a CRT display may be used as the display unit 36, and the fire source position may be indicated by lighting or flicker display in the image showing the monitored area. At the same time, the judgment output of the fire is given to the alarm device 37, and an acoustic fire alarm is given by ringing a bell or the like.

【0030】更にMPU20内には非判断領域判定部3
3が設けられており、プリアラーム判定部26で火源検
出が行われた際に、そのとき走査制御部21より得られ
ている火源の位置座標(X,Y)を非判断領域データ3
5と比較し、非判断領域データ35で定める非判断領域
であれば2次元走査型火災検出器100の検出信号はプ
リアラームレベルを越えていても火源とは判断せず、測
距制御部27による測距動作及び比較判断部32による
火災判断動作を禁止する。
Further, in the MPU 20, a non-judgment area judgment unit 3
3 is provided, and when the fire source is detected by the pre-alarm determination unit 26, the position coordinate (X, Y) of the fire source obtained by the scan control unit 21 at that time is used as the non-determination region data 3
5, if it is a non-judgment area defined by the non-judgment area data 35, even if the detection signal of the two-dimensional scanning fire detector 100 exceeds the pre-alarm level, it is not judged to be a fire source, and the distance measurement control unit The distance measuring operation by 27 and the fire judging operation by the comparison and judgment section 32 are prohibited.

【0031】非判断領域判定部33での判定に使用する
非判断領域データ35はメモリ40に予め登録されてい
る。即ち、監視区域の中には火災によらずに強い強度の
放射光、例えば太陽の反射光を発する区域があり、この
ような区域についてはプリアラームレベルを越える検出
信号が得られても火災判断を行うこと自体無意味である
ことから、予め監視区域の中の検出信号がプリアラーム
レベルを越えても火災判断を必要としない領域を非判断
領域として調べてメモリ40の非判断領域データ35と
して登録しておき、プリアラーム判定部26で検出信号
がプリアラームレベルを越えたことを判定した際に非判
断領域判定部33で非判断領域データ35と突き合わ
せ、不必要な火災判断を行わないようにしている。
The non-judgment area data 35 used for the judgment by the non-judgment area judgment unit 33 is registered in the memory 40 in advance. That is, there is an area that emits strong radiant light, such as the reflected light of the sun, regardless of the fire in the monitored area, and even if a detection signal that exceeds the pre-alarm level is obtained for such an area, the fire judgment Since it is meaningless to perform the above, it is preliminarily examined as a non-judgment area data 35 of the memory 40 by checking a non-judgment area in which a fire judgment is not required even if the detection signal in the monitoring area exceeds the pre-alarm level. When the pre-alarm determination unit 26 determines that the detection signal exceeds the pre-alarm level, the non-determination region determination unit 33 matches the non-determination region data 35 with each other so that unnecessary fire determination is not performed. I have to.

【0032】図5は図3に示した本発明の実施例の処理
動作を示したフローチャートである。図5において、ま
ずステップS1(以下「ステップ」は省略)において、
2次元走査型火災検出器100を監視領域11の中の最
初の基準となる走査区域、即ち主及び副走査方向の原点
座標に初期設定し、主及び副走査方向の走査を開始す
る。
FIG. 5 is a flow chart showing the processing operation of the embodiment of the present invention shown in FIG. In FIG. 5, first in step S1 (hereinafter “step” is omitted),
The two-dimensional scanning fire detector 100 is initialized to the first reference scanning area in the monitoring area 11, that is, the origin coordinates in the main and sub-scanning directions, and scanning in the main and sub-scanning directions is started.

【0033】監視領域11の走査を開始すると、各走査
区域の走査毎にS2で2次元走査型火災検出器100か
らの検出信号を読み込み、S3でプリアラームレベル以
上か否か判定する。プリアラームレベル以上でなければ
S11に進み、次のXY座標に更新し、S2,S3の処
理を繰り返す。S3で検出信号がプリアラームレベル以
上となったことが判別されるとS4に進み、このときの
位置座標(X,Y)及び検出信号を記憶する。
When the scanning of the monitoring area 11 is started, the detection signal from the two-dimensional scanning fire detector 100 is read in S2 for each scanning of each scanning area, and it is determined in S3 whether or not it is equal to or higher than the pre-alarm level. If it is not at or above the pre-alarm level, the process proceeds to S11, the XY coordinates are updated to the next, and the processes of S2 and S3 are repeated. When it is determined in S3 that the detection signal has reached the pre-alarm level or higher, the process proceeds to S4, and the position coordinates (X, Y) and the detection signal at this time are stored.

【0034】続いてS5で非判断領域か否か判断し、も
し非判断領域であればS6以降の処理は行わず、S11
に戻ってXY座標を更新して次の区域の処理に進む。S
5で非判断領域でなかった場合にはS6に進んで測距動
作を行う。この測距動作は検出した火源の位置座標
(X,Y)に対し検知火源の炎の根元に距離計200を
指向させるオフセット測距や数点に指向させて測定する
多点測距を行う。
Subsequently, in S5, it is determined whether or not it is the non-judgment area. If it is the non-judgment area, the processing in and after S6 is not performed, and S11 is executed.
Then, the XY coordinates are updated and the process proceeds to the next area. S
If it is not in the non-judgment area in 5, the process proceeds to S6 to perform the distance measuring operation. This range-finding operation includes offset range-finding in which the rangefinder 200 is directed to the base of the flame of the detected fire source with respect to the detected position coordinates (X, Y) of the detected fire source, and multipoint range-finding in which the rangefinder 200 is directed to several points. To do.

【0035】続いてS7で火源までの距離を検出し、S
8で検出距離に基づく基準値の補正を例えば図4に示し
た基準値データを使用して行う。次にS9で2次元走査
型火災検出器100より生データとして得られ、S4で
検出された検出信号とS8で検出距離に基づいて補正さ
れた基準値とを比較し、検出位置が基準値以上であれば
S10に進み、火災と判断して火災出力を生じ、表示部
36及び警報器37より火災警報表示を行う。勿論、S
9で検出値が基準値より小さければ火災出力は行わずに
S11に進んでXY座標を更新して次の区域の処理に進
む。
Subsequently, the distance to the fire source is detected in S7, and S
In 8, the correction of the reference value based on the detection distance is performed using the reference value data shown in FIG. 4, for example. Next, in S9, the detection signal obtained as raw data from the two-dimensional scanning fire detector 100 and detected in S4 is compared with the reference value corrected based on the detection distance in S8. If so, the process proceeds to S10, it is determined that there is a fire, a fire output is generated, and a fire alarm is displayed on the display unit 36 and the alarm device 37. Of course, S
If the detected value is smaller than the reference value in 9, the fire output is not performed and the process proceeds to S11 to update the XY coordinates and proceed to the process of the next area.

【0036】尚、図3の補正演算部31にあっては、測
距演算部30から得られた距離データに基づいて基準値
を補正するようにしているが、基準値を補正する代わり
に2次元走査型火災検出器100からの検出信号に距離
に応じた補正係数を掛け合せて検出信号そのものを距離
による減衰を除いた値となるように補正し、補正した検
出信号を比較判断部32で所定の基準値と比較するよう
にしてもよい。この場合の検出信号の補正係数は、例え
ば図4に示した特性を、距離の短いときに小さく、距離
の増加に応じて増加するような逆の特性とすればよい。
In the correction calculation unit 31 of FIG. 3, the reference value is corrected based on the distance data obtained from the distance measurement calculation unit 30, but instead of correcting the reference value, the correction value is set to 2 The detection signal from the dimensional scanning fire detector 100 is multiplied by a correction coefficient according to the distance to correct the detection signal itself to a value excluding the attenuation due to the distance, and the corrected detection signal is determined by the comparison / determination unit 32 in a predetermined manner. You may make it compare with the reference value of. In this case, the correction coefficient of the detection signal may be, for example, the characteristic shown in FIG. 4, which has a small characteristic when the distance is short and has an inverse characteristic which increases as the distance increases.

【0037】また、上記の実施例における基準値の補正
は、図4に示す特性をテーブルデータとしてメモリ40
に記憶し、距離をアドレスとして対応する補正された基
準値データを読み出すルックアップテーブル方式を採用
しているが、測定距離をパラメータとした演算により補
正した基準値を求めるようにしてもよいことは勿論であ
る。
The correction of the reference value in the above embodiment uses the characteristics shown in FIG. 4 as table data in the memory 40.
Although a lookup table method is adopted in which the corrected reference value data stored in the memory is read out and the corresponding corrected reference value data is read, the corrected reference value may be obtained by calculation using the measured distance as a parameter. Of course.

【0038】更に上記の実施例にあっては、図1に示し
たようにミラー走査型放射検出器としても2次元走査型
火災検出器100を使用する場合を例にとるものであっ
たが、2次元走査型火災検出器100としてはこれ以外
にCCD等を用いた半導体式の画像検出器を使用するよ
うにしてもよい。即ち、図1に示す監視領域11をCC
Dの撮像面に光学系により結像し、1または複数のCC
D画素単位にXY走査して検出信号を求めればよい。
Further, in the above embodiment, the case where the two-dimensional scanning fire detector 100 is used also as the mirror scanning radiation detector as shown in FIG. 1 is taken as an example. Alternatively, as the two-dimensional scanning type fire detector 100, a semiconductor image detector using a CCD or the like may be used. That is, the monitoring area 11 shown in FIG.
An image is formed on the image pickup surface of D by an optical system, and one or more CCs are formed.
The detection signal may be obtained by performing XY scanning in units of D pixels.

【0039】[0039]

【発明の効果】以上説明してきたように、本発明によれ
ば、監視領域内を細かな走査区域に区分して2次元走査
により火源を検出した際に、火源検出位置までの距離を
距離計によりリアルタイムで測定し、測定距離により例
えば基準値を補正して検出信号との比較により火災を判
断するため、距離が変わっても正確な火災判断ができ、
更に細かく区分した走査区域毎に距離を実測等して補正
データや補正係数をメモリに登録する膨大な作業を不要
とし、装置の作成に要する準備期間を大幅に短縮し、更
に警戒区域内の設置物の変更があっても特別な作業を必
要とすることなく距離を検出して正確な火災判断ができ
る。
As described above, according to the present invention, when a fire source is detected by two-dimensional scanning by dividing the surveillance area into fine scanning areas, the distance to the fire source detection position is determined. Measures in real time with a rangefinder, corrects the reference value according to the measured distance, and judges the fire by comparing with the detection signal, so accurate fire judgment can be made even if the distance changes,
Eliminates the enormous work of registering correction data and correction coefficients in memory by actually measuring the distance for each finely divided scanning area, significantly shortening the preparation period required to create the device, and installing in the warning area Even if the object is changed, it is possible to detect the distance and detect the fire accurately without requiring special work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる2次元走査型火災検出器及び距
離計の説明図
FIG. 1 is an explanatory view of a two-dimensional scanning fire detector and a distance meter used in the present invention.

【図2】図1の2次元走査型火災検出器及び距離計の監
視区域の火源に対する位置関係を示した説明図
FIG. 2 is an explanatory diagram showing the positional relationship of the two-dimensional scanning fire detector and rangefinder of FIG. 1 with respect to the fire source in the monitored area.

【図3】本発明の一実施例を示した実施例構成図FIG. 3 is a configuration diagram of an embodiment showing an embodiment of the present invention.

【図4】本発明で用いる距離に対する基準電圧値の特性
FIG. 4 is a characteristic diagram of a reference voltage value with respect to a distance used in the present invention.

【図5】本発明の処理動作を示したフローチャートFIG. 5 is a flowchart showing the processing operation of the present invention.

【図6】従来の2次元走査型火災検出器の概略構成図FIG. 6 is a schematic configuration diagram of a conventional two-dimensional scanning fire detector.

【図7】監視領域に設置物がある場合の縦断面説明図FIG. 7 is a vertical cross-sectional explanatory view when an installation object is present in the monitoring area.

【図8】図7の監視領域に対する検出器回転角と距離の
関係を示した特性図
8 is a characteristic diagram showing the relationship between the detector rotation angle and the distance with respect to the monitoring area in FIG.

【符号の説明】[Explanation of symbols]

100:2次元走査型火災検出器 200:距離計 300:制御装置 400:火源 7:基台 8:筐体 9,23,29:モータ 10:回転ミラー 11:監視領域 12:ミラー 13:スリット 14:リレーレンズ 15:光電変換素子 16:支持台 20:マイクロプロセッサ(MPU) 21:走査制御部 22:主走査駆動回路 24:副走査駆動回路 25:A/D変換器 26:プリアラーム判定部 27:測距制御部 28:測距駆動回路 30:測距演算部 31:補正演算部 32:比較判断部 33:非判断領域判定部 34:基準値データ 35:非判断領域データ 36:表示部 37:警報器 100: Two-dimensional scanning fire detector 200: Distance meter 300: Control device 400: Fire source 7: Base 8: Case 9,23,29: Motor 10: Rotating mirror 11: Monitoring area 12: Mirror 13: Slit 14: Relay lens 15: Photoelectric conversion element 16: Support stand 20: Microprocessor (MPU) 21: Scan control unit 22: Main scanning drive circuit 24: Sub-scanning drive circuit 25: A / D converter 26: Pre-alarm determination section 27: Distance measurement control unit 28: Distance measurement drive circuit 30: Distance calculation unit 31: Correction calculation unit 32: Comparison judgment part 33: Non-judgment area judgment unit 34: Reference value data 35: Non-judgment area data 36: Display 37: Alarm device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 照夫 東京都品川区上大崎2丁目10番43号 ホー チキ株式会社内 (72)発明者 清水 和政 東京都板橋区蓮沼町75番1号 株式会社ト プコン内 (72)発明者 吉崎 俊明 東京都板橋区蓮沼町75番1号 株式会社ト プコン内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Teruo Iwata             2-1043 Kamiosaki, Shinagawa-ku, Tokyo Ho             Chiki Co., Ltd. (72) Inventor Kazumasa Shimizu             75-1 Hasunumacho, Itabashi-ku, Tokyo             In Pucon (72) Inventor Toshiaki Yoshizaki             75-1 Hasunumacho, Itabashi-ku, Tokyo             In Pucon

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】監視領域内を細かな走査区域に区分し、各
走査区域毎に走査することによって検出される検出信号
から火源を検出して火災発生の有無を判断する2次元走
査型火災検出器を備えた火災監視装置に於いて、前記2
次元走査型火災検出器と一体又は近傍に配置されて火源
までの距離を計測する距離計と、前記2次元走査型火災
検出器の検出信号が所定のプリアラーム基準値を越えた
時に前記距離計を検出した火源位置に指向させて距離測
定動作を行わせる測距制御部と、前記距離計で測定され
た火源位置までの距離に基づいて予め定めた火災判断の
基準値を補正する補正演算部と、該補正演算部で補正さ
れた補正基準値と前記2次元走査型火災検出器の検出信
号との比較により火災を判断する比較判断部とを備えた
ことを特徴とする火災監視装置。
1. A two-dimensional scanning fire in which a fire source is detected by detecting a fire source from a detection signal detected by scanning each scanning area by dividing a surveillance area into fine scanning areas. In a fire monitoring device equipped with a detector, the above 2
A distance meter that is arranged integrally with or in the vicinity of the two-dimensional scanning fire detector to measure the distance to the fire source, and the distance when the detection signal of the two-dimensional scanning fire detector exceeds a predetermined pre-alarm reference value. A distance measurement control unit that directs the meter to the detected fire source position to perform a distance measurement operation, and corrects a predetermined reference value for fire determination based on the distance to the fire source position measured by the distance meter. A fire monitoring system comprising: a correction calculation unit; and a comparison determination unit that determines a fire by comparing a correction reference value corrected by the correction calculation unit and a detection signal of the two-dimensional scanning fire detector. apparatus.
【請求項2】請求項1記載の火災監視装置に於いて、前
記測距制御部は、火源検出位置及び周辺の複数点の距離
を測定させ、該測定値の平均計算により火源位置までの
距離を測定させることを特徴とする火災監視装置。
2. The fire monitoring device according to claim 1, wherein the distance measurement control unit causes the fire source detection position and distances of a plurality of surrounding points to be measured, and the fire source position is calculated by averaging the measured values. Fire monitoring device characterized by measuring the distance of.
【請求項3】請求項1記載の火災監視装置に於いて、前
記距離計として反射型を使用した際に、前記測距制御部
は検出位置にある炎の根元付近となる所定量オフセット
した位置までの距離を測定させることを特徴とする火災
監視装置。
3. The fire monitoring device according to claim 1, wherein when the reflection type is used as the range finder, the distance measurement control unit is offset by a predetermined amount near the root of the flame at the detection position. Fire monitoring device characterized by measuring the distance to.
【請求項4】請求項1記載の火災監視装置に於いて、前
記補正演算部は火源位置までの距離に基づいて前記2次
元走査型火災検出器の検出信号を補正し、前記比較判断
部は補正した検出信号と予め定めた基準値との比較によ
り火災を判断することを特徴とする火災監視装置。
4. The fire monitoring device according to claim 1, wherein the correction calculation unit corrects a detection signal of the two-dimensional scanning fire detector based on a distance to a fire source position, and the comparison / determination unit. Is a fire monitoring device characterized by judging a fire by comparing a corrected detection signal with a predetermined reference value.
【請求項5】請求項1記載の火災監視装置に於いて、前
記2次元走査型火災検出器の検出信号が所定のプリアラ
ーム基準値を越えた時に該火源の位置が予め定めた非判
断領域に入っていた際には、前記測距及び火災判断を禁
止させる非判断領域判定部を備えたことを特徴とする火
災監視装置。
5. The fire monitoring apparatus according to claim 1, wherein when the detection signal of the two-dimensional scanning fire detector exceeds a predetermined pre-alarm reference value, the position of the fire source is a predetermined non-judgment. A fire monitoring device comprising a non-judgment area judgment unit for prohibiting the distance measurement and the fire judgment when in the area.
JP15421991A 1991-06-26 1991-06-26 Fire monitoring equipment Expired - Lifetime JPH0692915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15421991A JPH0692915B2 (en) 1991-06-26 1991-06-26 Fire monitoring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15421991A JPH0692915B2 (en) 1991-06-26 1991-06-26 Fire monitoring equipment

Publications (2)

Publication Number Publication Date
JPH051949A true JPH051949A (en) 1993-01-08
JPH0692915B2 JPH0692915B2 (en) 1994-11-16

Family

ID=15579453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15421991A Expired - Lifetime JPH0692915B2 (en) 1991-06-26 1991-06-26 Fire monitoring equipment

Country Status (1)

Country Link
JP (1) JPH0692915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227782A (en) * 2005-02-16 2006-08-31 Hochiki Corp Method for adjusting scanning fire detector
JP6311039B1 (en) * 2017-02-01 2018-04-11 株式会社アマダホールディングス Fire detecting method for laser beam machine and laser beam machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227782A (en) * 2005-02-16 2006-08-31 Hochiki Corp Method for adjusting scanning fire detector
JP4668641B2 (en) * 2005-02-16 2011-04-13 ホーチキ株式会社 How to adjust the scanning fire detector
JP6311039B1 (en) * 2017-02-01 2018-04-11 株式会社アマダホールディングス Fire detecting method for laser beam machine and laser beam machine
JP2018122331A (en) * 2017-02-01 2018-08-09 株式会社アマダホールディングス Fire detection method for laser processing apparatus and laser processing apparatus
WO2018142966A1 (en) * 2017-02-01 2018-08-09 株式会社アマダホールディングス Method for detecting fire in laser processing machine, and laser processing machine

Also Published As

Publication number Publication date
JPH0692915B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US7092045B2 (en) Projection-type display apparatus
US6480187B1 (en) Optical scanning-type touch panel
CN102232176B (en) Method for optically scanning and measuring an environment
US20040246498A1 (en) Position detector
JP2010151682A (en) Laser scanner, laser scanner measuring system, calibration method of laser scanner measuring system, and target for calibration
US10534075B2 (en) Three-dimensional surveying instrument and three-dimensional surveying method
JP2000504418A (en) Distance and / or position measuring device
JP6982424B2 (en) Surveying system
US6204916B1 (en) Three dimensional information measurement method and apparatus
JP3011121B2 (en) Security system
JP2019519788A (en) Method for comparing a received beam and a rotating laser beam incident on a laser receiver
JP2017223541A (en) Laser scanner
JP2018159642A (en) Mobile entity imaging device and mobile entity
US5568258A (en) Method and device for measuring distortion of a transmitting beam or a surface shape of a three-dimensional object
JPH102712A (en) Three-dimensional measuring device
JPH051949A (en) Fire monitor
US20200209446A1 (en) Sensing device with conical reflector for making two-dimensional optical radar
US20210080577A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP2598842B2 (en) Two-dimensional scanning fire monitoring device
WO2024004166A1 (en) Distance measurement device
US20230421744A1 (en) Method and device for three-dimensional light detection and ranging (lidar), and three-dimensional measuring device thereof
JP2002090117A (en) Wide angle distance measuring device
JPH076822B2 (en) Water level measuring device
JP4176899B2 (en) Scanning position measuring method and apparatus in scanning optical system
JP2023038693A (en) Measurement data processing device, measurement data processing method and measurement data processing processing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20091116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20101116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 17