JPH05194041A - Method for producting sintered part - Google Patents
Method for producting sintered partInfo
- Publication number
- JPH05194041A JPH05194041A JP4212295A JP21229592A JPH05194041A JP H05194041 A JPH05194041 A JP H05194041A JP 4212295 A JP4212295 A JP 4212295A JP 21229592 A JP21229592 A JP 21229592A JP H05194041 A JPH05194041 A JP H05194041A
- Authority
- JP
- Japan
- Prior art keywords
- press die
- manufacturing
- compact
- press
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/02—Dies; Inserts therefor; Mounting thereof; Moulds
- B30B15/022—Moulds for compacting material in powder, granular of pasta form
- B30B15/024—Moulds for compacting material in powder, granular of pasta form using elastic mould parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/003—Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/34—Moulds, cores, or mandrels of special material, e.g. destructible materials
- B28B7/342—Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、粉末材料が冷間静水
圧圧縮成形により、圧力媒体の作用のもとに収縮するプ
レス型中で圧粉体となるように圧縮され、この圧粉体が
続いて焼結されるような焼結成形部品の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder material which is compressed by cold isostatic pressing into a powder compact in a press mold which shrinks under the action of a pressure medium. The present invention relates to a method for manufacturing a sintered molded part, which is subsequently sintered.
【0002】[0002]
【従来の技術】粉末冶金法に基づく金属及びセラミック
の成形部品の製造は、融解冶金に比べてその比較的高い
経済性及び処理可能な材料の多様性に基づき、製品品質
を絶えず向上しながらますます重要性を増している。粉
末冶金法の重要な部分工程としての粉末圧縮に対しては
著しく異なる二つの技術、すなわち頑丈な型又は外型中
での軸方向圧縮と、圧縮媒体の圧力のもとで収縮する可
撓性の型中での静水圧圧縮とが並行して利用されてい
る。現在の成熟した軸方向圧縮技術により幾何学的に複
雑な成形部品、例えば歯車を経済的に大量生産部品とし
て製造することもできる。場合により行われる粉末圧縮
及び焼結後の成形部品の補正は、最小の機械的な仕上げ
加工例えば旋削又は研削さえも全く又はおそらく必要と
しない寸法精度をもたらす。この技術の欠点はプレス圧
力を一つの軸方向へしか加えることができないことであ
る。このことは一方ではこの技術に基づき製造可能な幾
何学的形状を制限し、他方ではこの技術によっては均一
な密度分布を達成できない。材料及び粒子特性に応じて
軸方向圧縮によっては粉末材料を10〜20%の残留多
孔率までしか経済的に圧縮できない。圧縮の限界は個々
の粉末粒子が圧縮力のもとでもはや相対的に動くことが
できず、その運動を阻止されるときに到達される。圧縮
密度はそれ自体焼結の際に達成可能な材料密度及び成形
部品の機械的強度を決定し、その際完成した焼結成形部
品の残留多孔率のそれぞれ残っているパーセンテージが
その機械的特性に不利に作用する。2. Description of the Related Art The production of metal and ceramic molded parts based on powder metallurgy is constantly improving the product quality due to its relatively high economic efficiency and versatility of processable materials compared to fusion metallurgy. It is becoming increasingly important. Two significantly different techniques for powder compaction as an important part of powder metallurgy are axial compaction in a robust or external mold and flexibility to shrink under the pressure of the compacting medium. Is used in parallel with hydrostatic compression in the mold. With the current mature axial compression technology it is also possible to economically produce geometrically complex shaped parts, for example gears, as mass-produced parts. The optional correction of the molded part after powder compaction and sintering results in a dimensional accuracy that requires minimal or no mechanical finishing such as turning or grinding. The drawback of this technique is that the pressing pressure can only be applied in one axial direction. On the one hand, this limits the geometries that can be produced according to this technique, and on the other hand it is not possible with this technique to achieve a uniform density distribution. Depending on the material and particle properties, axial compression can economically compress powder materials to residual porosities of 10 to 20%. The limit of compaction is reached when the individual powder particles can no longer move relative to each other under compressive force and are prevented from their movement. The compressed density itself determines the material density achievable during sintering and the mechanical strength of the molded part, with the respective remaining percentages of the residual porosity of the finished sintered molded part being determined by its mechanical properties. It works against you.
【0003】静水圧圧縮のために粉末材料は従来弾性の
チューブの中に充填され、このチューブ自体は固有の形
状安定性に欠けるので、取り扱いを容易にするために特
に寸法の大きい場合には、貫通孔を設けた壁を備える金
属製スリーブ中に入れられる。充填され閉鎖されたチュ
ーブは静水圧プレス中に挿入され、圧力媒体多くの場合
には水により1000〜4000barの静水圧により
圧縮される。粉末材料上に加わる全方位的圧力に基づ
き、粉末粒子の前記閉塞が軸方向圧縮の場合より高い圧
粉体密度の際に初めて始まり、かつ密度分布は非常に均
一になる。しかしながらこの方法によれば幾何学的に簡
単な圧粉体の形状、通常は円筒形棒及び円板しか製造で
きない。その理由は、圧力媒体のもとで収縮し再利用可
能なゴム又はプラスチック製チューブに対して要求され
る高い弾性率にある。従って焼結の後に得られる半製品
は機械的に仕上げ加工して所望の幾何学的形状にもたら
さなければならない。これは半製品の塑性変形及び/又
は切削加工により行われる。従って実際にこの方法に基
づき製造される製品の多様性は、一方では幾何学的に簡
単な成形部品に制限され、他方では粉末冶金によってし
か得られない材料品質が高い機械加工費従って全体の製
作費を正当化するような、特殊用途のための複雑な成形
部品に制限される。Due to hydrostatic compression, the powder material is conventionally packed in an elastic tube, which itself lacks the inherent shape stability, so that it is particularly large in size for ease of handling. It is placed in a metal sleeve with a wall provided with a through hole. The filled and closed tube is inserted into a hydrostatic press and compressed with a pressure medium, often water, to a hydrostatic pressure of 1000 to 4000 bar. Due to the omnidirectional pressure exerted on the powder material, the blockage of the powder particles only begins at higher green compact densities than in the case of axial compression, and the density distribution becomes very uniform. However, this method can only produce geometrically simple green compact shapes, usually cylindrical rods and disks. The reason is the high elastic modulus required for reusable rubber or plastic tubes that shrink under pressure medium. The semi-finished product obtained after sintering must therefore be mechanically finished to give the desired geometry. This is done by plastic deformation and / or cutting of the semi-finished product. The variety of products actually produced according to this method is therefore limited on the one hand to geometrically simple molded parts, and on the other hand to high material quality obtained only by powder metallurgy, high machining costs and thus overall production. Limited to complex molded parts for special applications that justify the cost.
【0004】[0004]
【発明が解決しようとする課題】この発明の課題は、高
い均一な圧粉体密度における静水圧圧縮すなわち全方位
圧縮の長所が、軸方向圧縮すなわち寸法の正確な幾何学
的に複雑な成形部品の製造の長所と経済的な方法で組み
合わせられるような方法を提供すること、詳細には、融
解冶金自体に比べて経済的かつ材料に適った粉末冶金の
長所を利用しながら、複雑な形状の対称でない成形部品
を目標寸法となるように、優れた強度特性を持たせてか
つ大量生産部品としても製造することにある。この課題
は剛性の外型及び剛性の金型中での軸方向圧縮によって
は達成不可能である。SUMMARY OF THE INVENTION It is an object of the present invention that the advantage of hydrostatic or omnidirectional compression at high and uniform green compact density is that axially compressed or dimensionally correct geometrically complex molded parts. To provide a method that can be combined with the advantages of manufacturing in an economical way, in particular, while utilizing the advantages of powder metallurgy that is more economical and material-friendly than fusion metallurgy itself, It is to manufacture a non-symmetrical molded part with excellent strength characteristics so as to have a target size and also as a mass-produced part. This task cannot be achieved by axial compression in a rigid outer mold and a rigid mold.
【0005】[0005]
【課題を解決するための手段】この課題はこの発明に基
づき、粉末材料が発泡プラスチックから成り形状の安定
した使い捨てプレス型に充填され、プレス型を正確に模
写した圧粉体となるように圧縮されることにより解決さ
れる。According to the present invention, a powder material is filled in a disposable press die made of foamed plastic and having a stable shape, and compressed so as to obtain a green compact which is an exact copy of the press die. It is solved by being done.
【0006】発泡プラスチックのうちで特に発泡ポリス
チレンが、大きい幾何学的造形可能性を有し経済的な使
い捨てプレス型として優れていることが判明した。しか
しポリウレタンのような別の発泡プラスチックも、圧力
媒体の作用のもとで制御されて収縮する形状の安定な使
い捨てプレス型として適している。It has been found that among the expanded plastics, expanded polystyrene is particularly excellent as an economical disposable press mold because it has a large geometric shaping capability. However, other foamed plastics such as polyurethane are also suitable as stable, disposable press molds with a controlled shrinkage shape under the action of a pressure medium.
【0007】発泡プラスチック特に発泡ポリスチレンは
静水圧圧縮中に圧縮すべき粉末と付着及び結合しない。
すなわち当初のプレス型表面により与えられた焼結成形
素材の表面品質が、でき上がった圧粉体又は焼結成形部
品でも保たれている。必要なすべての特殊形状での安定
した包装材料としての発泡ポリスチレンは、一般に金型
内で湿り蒸気中での素材の膨張によりそれぞれ所望の形
状安定した輪郭を示すようになる。この発明に基づく使
い捨てプレス型は原理的には包装のための成形品と同じ
方法により製造される。Foamed plastics, especially foamed polystyrene, do not stick and bond with the powder to be compressed during isostatic pressing.
That is, the surface quality of the sinter-molded material given by the original press die surface is maintained even in the finished green compact or sinter-molded part. Expanded polystyrene as a stable packaging material in all the special shapes required generally results in the respective desired shape-stable contours due to the expansion of the material in the mold in wet steam. The disposable press mold according to the invention is manufactured in principle by the same method as the moldings for packaging.
【0008】発泡ポリスチレンの表面は一般に幾分網目
模様を有するか又はざらざらしている。表面のこの網目
模様は成形部品に転写されるおそれがある。これを避け
るためにこの発明の有利な一実施態様によれば、完成し
たプレス型上に有機材料から成る薄いカバー層が被覆さ
れ例えば吹き付けられる。それにより同時に静水圧圧縮
の際の圧力媒体に対する型壁の封止性を高めることもで
きる。両方の措置は成形部品の表面品質の改善に役立
つ。The surface of expanded polystyrene is generally somewhat reticulated or textured. This mesh pattern on the surface can be transferred to the molded part. In order to avoid this, according to an advantageous embodiment of the invention, a thin cover layer of organic material is coated and sprayed onto the finished press die. As a result, at the same time, it is possible to enhance the sealing property of the mold wall against the pressure medium during hydrostatic compression. Both measures help improve the surface quality of the molded part.
【0009】別の措置によれば、発泡ポリスチレン製プ
レス型のざらざらした表面の改良は、発泡工程中に成形
金型を短時間加熱することによりほぼ防止できる。According to another measure, the rough surface modification of the expanded polystyrene press die can be substantially prevented by heating the molding die for a short time during the foaming process.
【0010】発泡プラスチック材料はそれ自体比較的高
い形状安定性を有する。プレス型にとって十分な形状安
定性は、その都度の成形部品体積への適合及び粉末詰め
込み方式への適合のもとに、壁厚の小さいプレス型及び
壁に設けられたリブと補強部により最適化できる。壁厚
の異なる領域は焼結成形部品の品質及び寸法精度に影響
しない。発泡ポリスチレンは3容積%にすぎないポリス
チレン及び97容積%の空気又はガスから成るので、当
初非常に異なる厚さの型壁も静水圧圧縮工程後には実際
上一様な壁厚に圧縮される。The foamed plastic material itself has a relatively high shape stability. Sufficient shape stability for the press die is optimized by the press die with a small wall thickness and the ribs and reinforcements provided on the wall, while adapting to the volume of molded parts and powder packing method in each case. it can. Regions of different wall thickness do not affect the quality and dimensional accuracy of the sintered molded part. Since expanded polystyrene consists of only 3% by volume polystyrene and 97% by volume air or gas, initially also mold walls of very different thickness are compressed to a virtually uniform wall thickness after the isostatic pressing step.
【0011】焼結成形素材の大きさ及び形状に応じて、
この発明に基づく使い捨てプレス型は二つ以上の部品か
ら例えば二つの半殻の形で作られる。プレス型中には、
内部が中空な焼結成形素材の製造を可能にするか、又は
例えば幾何学的に複雑な成形部品に軸として焼結成形部
品の組み込まれる構成部分となるような、中実の中子を
挿入することができる。Depending on the size and shape of the sintered molding material,
The disposable press mold according to the invention is made up of two or more parts, for example in the form of two half-shells. In the press mold,
Inserting a solid core, which allows the production of sinter-molded material with a hollow interior, or which is an integral part of the sinter-molded part, for example as an axis in geometrically complex molded parts can do.
【0012】プレス型はこの発明に基づく方法の一実施
態様によれば、静水圧圧縮後にかつ焼結の前に圧粉体か
ら取り除かれる。しかしながら一般に圧粉体は使い捨て
プレス型と共に焼結される。それにより型抜き工程が省
略され、かつ圧粉体は焼結に基づき固有の安定性を得る
まで表面の損傷から守られる。問題となる材料の焼結温
度は、発泡ポリスチレンのような発泡プラスチックが分
解する及び/又は残滓なく燃焼するような温度を例外な
く超える。それゆえ使い捨てプレス型を焼結中に同時に
問題なく処理できる。According to one embodiment of the method according to the invention, the press mold is removed from the green compact after isostatic pressing and before sintering. However, green compacts are generally sintered with a disposable press mold. This eliminates the die-cutting process and protects the green body from surface damage until it obtains an inherent stability due to sintering. The sintering temperatures of the materials in question are invariably above the temperatures at which foamed plastics such as expanded polystyrene decompose and / or burn without residue. Therefore, the disposable press mold can be processed simultaneously during sintering without any problems.
【0013】現在粉末冶金により焼結成形部品となるよ
うに処理されるすべての材料は、この発明に基づく使い
捨てプレス型中でも用いることができる。セラミック粉
末は金属粉末例えば合金鋼、青銅又は超硬合金の粉末と
同様に良好に処理できる。All materials currently processed by powder metallurgy into sinter-molded parts can also be used in the disposable press mold according to the invention. Ceramic powders can be processed as well as metal powders such as alloy steel, bronze or cemented carbide powders.
【0014】この発明に基づく方法により予想をはるか
に越えて、冷間静水圧法により品質的にかつ価格的に競
争力のあるように製造可能な成形部品の多様性を著しく
広げることができる。発泡プラスチック特に発泡ポリス
チレンから成り充填されたプレス型の静水圧圧縮によ
り、通常の圧縮条件のもとで寸法精度の高い(最終製品
に近い形状の)幾何学的に複雑な成形部品の製造も可能
となる。プレス型の厚さが最終製品に近い形状寸法の達
成に実際上影響せず、かつ従ってできる限り均一な壁厚
のプレス型の製作を全く必要としないという事実は特に
予想外である。この長所は大きい実用的意味を有する。The method according to the invention makes it possible, by far and unexpectedly, to significantly expand the variety of molded parts which can be produced in a qualitatively and cost-competitively manner by the cold isostatic method. Hydrostatic compression of a press mold filled with expanded plastic, especially expanded polystyrene, allows the production of geometrically complex molded parts with high dimensional accuracy (shape close to the final product) under normal compression conditions. Becomes The fact that the thickness of the press die has practically no influence on the achievement of geometries close to the final product and thus does not at all require the production of a press die with a wall thickness as uniform as possible is unexpected. This advantage has great practical implications.
【0015】複雑な形状の部品としての、例えば成形さ
れた包装材料としての又はいわゆるフルモールド法の鋳
型としての、発泡プラスチック特に発泡ポリスチレンの
拡大された利用に基づき、この発明による複雑な使い捨
てプレス型の廉価な製造のために成熟した技術を利用す
ることができる。この発明に基づくプレス型の前記の形
状安定性のゆえに、弾性のチューブ中での静水圧成形部
品圧縮に際して不利ではあるが不可避の圧粉体端部肥大
化、いわゆる「象の足現象」は生じない。On account of the expanded use of expanded plastics, in particular expanded polystyrene, as parts of complex shape, for example as molded packaging material or as molds for the so-called full-molding process, a complex disposable press mold according to the invention. Mature technology is available for cheap manufacturing of. Due to the above-mentioned shape stability of the press mold according to the present invention, a disadvantageous but unavoidable enlargement of the green compact end, so-called "elephant's foot phenomenon" occurs when the hydrostatic molding part is compressed in an elastic tube. Absent.
【0016】発泡プラスチック特に発泡ポリスチレンは
発水性であるので、通常静水圧圧縮に用いられる圧力媒
体すなわち水が特に適している。水は圧縮中にプレス型
壁をしみとおらない。Since foamed plastics, in particular expanded polystyrene, are water-repellent, the pressure medium normally used for isostatic pressing, ie water, is particularly suitable. Water does not stain the press walls during compression.
【0017】発泡ポリスチレン中の空気の体積割合が大
きいゆえに、静水圧圧縮に対しては場合により発泡ポリ
スチレンプレス型に安全上の理由からガス吸収体を添加
することが提案される。発泡ポリスチレンプレス型の体
積が大きくかつプレスが圧縮工程中に室内部からガスを
放出する装置を有しない場合にはすべて、充填されたプ
レス型をガス吸収体と一緒に通常用いられる圧縮チュー
ブ中に入れ、この装置を閉鎖後に圧縮のために圧縮室中
へ挿入するのが有利である。生じたガス体積を取り込み
そこで強く圧縮できる開放多孔質非圧縮性の鉄スケルト
ンが特にガス吸収体として適している。Due to the large volume fraction of air in expanded polystyrene, it is proposed to optionally add a gas absorber to the expanded polystyrene press mold for hydrostatic compression for safety reasons. In all cases where the expanded polystyrene press mold has a large volume and the press does not have a device for releasing gas from the chamber during the compression process, the filled press mold is placed in a compression tube normally used with a gas absorber. It is advantageous to put it in and insert the device into the compression chamber for compression after closing. An open porous incompressible iron skeleton, which can take up the generated gas volume and strongly compress it there, is particularly suitable as a gas absorber.
【0018】[0018]
【発明の効果】この発明に基づく方法によれば、ますま
す広範囲に工業製品に用いられるようなセラミック製大
量生産部品を、例えば鋼から成る複雑な容器又は超硬合
金から成る成形部品と同様に製造することができる。こ
の発明に基づく方法はアンダカット及び貫通孔を有する
複雑な成形部品の場合にも、ロストワックス鋳物及びダ
イカスト鋳物に品質的に勝ることはないとしても等価で
ある。しかしこれに加えてこの発明に基づく方法は、切
削加工工程を伴う公知の焼結冶金法及び融解冶金法より
経済的である。According to the method according to the invention, ceramic mass-produced parts, which are used more and more widely in industrial products, can be processed in the same way as complex containers made of steel or molded parts made of cemented carbide. It can be manufactured. The method according to the invention is equivalent, even if not superior in quality, to lost wax castings and die castings, even in the case of complex molded parts with undercuts and through holes. However, in addition to this, the method according to the invention is more economical than the known sinter and fusion metallurgical methods involving a machining step.
Claims (8)
圧力媒体の作用のもとに収縮するプレス型中で圧粉体と
なるように圧縮され、この圧粉体が続いて焼結されるよ
うな焼結成形部品の製造方法において、粉末材料が発泡
プラスチックから成り形状の安定した使い捨てプレス型
に充填され、プレス型を正確に模写した圧粉体となるよ
うに圧縮されることを特徴とする焼結成形部品の製造方
法。1. A powder material is obtained by cold isostatic pressing.
In a method of manufacturing a sintered molded part, in which a powder compact is compressed into a compact in a press mold that contracts under the action of a pressure medium, and the compact is subsequently sintered, the powder material foams. A method for producing a sinter-molded part, which comprises filling a disposable press die made of plastic and having a stable shape, and compressing the die so as to obtain a green compact that accurately replicates the press die.
いられることを特徴とする請求項1記載の製造方法。2. The manufacturing method according to claim 1, wherein a press die made of expanded polystyrene is used.
いられることを特徴とする請求項1又は2記載の製造方
法。3. The manufacturing method according to claim 1, wherein a press die having an organic cover layer is used.
ブ及び補強部を備えるプレス型が用いられることを特徴
とする請求項1ないし3の一つに記載の製造方法。4. The manufacturing method according to claim 1, wherein a press die having different ribs and having ribs and reinforcing portions incorporated in the wall is used.
は仕上げ焼結され、その際プレス型が化学的に分解し及
び/又は残滓なく燃焼することを特徴とする請求項1な
いし4の一つに記載の製造方法。5. One of the claims 1 to 4, characterized in that the green compact of the molded part is pre- or finish-sintered with the press die, whereby the press die chemically decomposes and / or burns without residue. Manufacturing method described in.
を特徴とする請求項1ないし5の一つに記載の製造方
法。6. The method according to claim 1, wherein the ceramic powder material is compressed.
する請求項1ないし5の一つに記載の製造方法。7. The method according to claim 1, wherein the alloy steel powder is compressed.
圧縮チューブ中に入れられ、圧縮チューブが閉鎖され、
そのまま圧縮されることを特徴とする請求項1ないし7
の一つに記載の製造方法。8. The filled press mold together with the gas absorber is placed in a compression tube and the compression tube is closed,
8. The method according to claim 1, wherein the compression is performed as it is.
The manufacturing method described in one of 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914124198 DE4124198A1 (en) | 1991-07-20 | 1991-07-20 | METHOD FOR PRODUCING SINTER MOLDED PARTS BY COLD ISOSTATIC POWDER PRESSING IN ONE-TIME USE PRESSING MOLDS |
DE4124198.3 | 1991-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05194041A true JPH05194041A (en) | 1993-08-03 |
Family
ID=6436698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4212295A Pending JPH05194041A (en) | 1991-07-20 | 1992-07-17 | Method for producting sintered part |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0526927A3 (en) |
JP (1) | JPH05194041A (en) |
DE (1) | DE4124198A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049496A (en) * | 2006-08-22 | 2008-03-06 | Japan Medical Materials Corp | Mold material for cip |
JP2018199590A (en) * | 2017-05-25 | 2018-12-20 | イビデン株式会社 | Ceramic composite manufacturing method and combination body |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9811634D0 (en) * | 1998-05-29 | 1998-07-29 | Unilever Plc | Stamping dies |
DE102007037702A1 (en) | 2007-08-09 | 2009-02-12 | Rheinmetall Waffe Munition Gmbh | Method and apparatus for producing a tubular solid body from a high-melting tungsten-heavy metal alloy, in particular as a semi-finished product for the production of a penetrator for a balancing projectile with splinter effect |
DE102022132684A1 (en) | 2022-12-08 | 2024-06-13 | Bayerische Motoren Werke Aktiengesellschaft | Portable device for producing a specimen and method for evaluating a specimen |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1975942U (en) * | 1967-07-12 | 1967-12-28 | Carl Pohle Fa | MOLD FOR THE MANUFACTURING AND PACKAGING (DISPOSABLE MOLD) OF MOLDED PARTS FROM CASTABLE OR PACKABLE MASS. |
DE2165280C3 (en) * | 1971-02-02 | 1979-11-29 | Kombinat Veb Keramische Werke Hermsdorf, Ddr 6530 Hermsdorf | Press mold for isostatic pressing technology |
DD97592A1 (en) * | 1972-07-26 | 1973-05-14 | ||
DE2802652C2 (en) * | 1978-01-21 | 1982-08-05 | Villeroy & Boch Keramische Werke Kg, 6642 Mettlach | Method for producing a ceramic body with a mold cavity by slip casting |
DE3822601A1 (en) * | 1988-07-04 | 1990-01-11 | Gruenzweig & Hartmann | Foam for use in the process for producing metal castings by means of cavityless casting |
DE3802727C1 (en) * | 1988-01-29 | 1988-12-22 | Gruenzweig + Hartmann Und Glasfaser Ag, 6700 Ludwigshafen, De | Process for producing metallic castings by means of full-mould casting |
DE3836009A1 (en) * | 1988-10-21 | 1990-04-26 | Gruenzweig & Hartmann | Method for producing a pattern for full mould casting |
JPH02280999A (en) * | 1989-04-18 | 1990-11-16 | Nkk Corp | Method for forming powder of metal, ceramic or the like |
JPH03103376A (en) * | 1989-09-14 | 1991-04-30 | Nkk Corp | Production of cellular mold |
DE4012700A1 (en) * | 1990-04-20 | 1991-10-31 | Hutschenreuther | METHOD FOR PRODUCING A CERAMIC MOLDED BODY AND DEVICE FOR PRESSING A CERAMIC MOLDING |
-
1991
- 1991-07-20 DE DE19914124198 patent/DE4124198A1/en not_active Withdrawn
-
1992
- 1992-07-07 EP EP19920202072 patent/EP0526927A3/en not_active Withdrawn
- 1992-07-17 JP JP4212295A patent/JPH05194041A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049496A (en) * | 2006-08-22 | 2008-03-06 | Japan Medical Materials Corp | Mold material for cip |
JP2018199590A (en) * | 2017-05-25 | 2018-12-20 | イビデン株式会社 | Ceramic composite manufacturing method and combination body |
Also Published As
Publication number | Publication date |
---|---|
DE4124198A1 (en) | 1993-01-21 |
EP0526927A3 (en) | 1993-11-10 |
EP0526927A2 (en) | 1993-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5937265A (en) | Tooling die insert and rapid method for fabricating same | |
US5032352A (en) | Composite body formation of consolidated powder metal part | |
CN104907567B (en) | A kind of method for preparing high-density complicated shape cemented carbide parts and cutter | |
JP4546238B2 (en) | Method for producing a highly porous metal compact close to the final contour | |
JPS587683B2 (en) | Funmatsu | |
US5818005A (en) | Electrical discharge machining electrode and rapid method for fabricating same | |
US6056915A (en) | Rapid manufacture of metal and ceramic tooling | |
CA1271011A (en) | Method of molding powders of metal, ceramic and the like | |
JP2002129204A (en) | Method for manufacturing porous metal | |
KR100502986B1 (en) | Net shape die and mold and manufacturing method | |
US3841870A (en) | Method of making articles from powdered material requiring forming at high temperature | |
US6592807B2 (en) | Method of making a porous tire tread mold | |
US2847708A (en) | Means for making die inserts | |
US20090226338A1 (en) | Method and system for manufacturing of complex shape parts from powder materials by hot isostatic pressing with controlled pressure inside the tooling and providing the shape of the part by multi-layer inserts | |
JPH05194041A (en) | Method for producting sintered part | |
EP0992327B1 (en) | Method of forming complex-shaped hollow ceramic bodies | |
US6203734B1 (en) | Low pressure injection molding of metal and ceramic powders using soft tooling | |
US5077002A (en) | Process for shaping any desired component using a powder as the starting material | |
Lenk | Rapid prototyping of ceramic components | |
JP3869072B2 (en) | Molding method of green compact | |
WO1990001385A1 (en) | Process for making a consolidated body | |
JPS643587B2 (en) | ||
WO2006114849A1 (en) | Miniature bearing and method for manufacturing the same | |
US20040151611A1 (en) | Method for producing powder metal tooling, mold cavity member | |
US20020109260A1 (en) | Injection moulding tool and method for production thereof |