JPH0519324Y2 - - Google Patents

Info

Publication number
JPH0519324Y2
JPH0519324Y2 JP1986193069U JP19306986U JPH0519324Y2 JP H0519324 Y2 JPH0519324 Y2 JP H0519324Y2 JP 1986193069 U JP1986193069 U JP 1986193069U JP 19306986 U JP19306986 U JP 19306986U JP H0519324 Y2 JPH0519324 Y2 JP H0519324Y2
Authority
JP
Japan
Prior art keywords
slab
pedestal
heating furnace
induction heating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986193069U
Other languages
Japanese (ja)
Other versions
JPS6398362U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986193069U priority Critical patent/JPH0519324Y2/ja
Publication of JPS6398362U publication Critical patent/JPS6398362U/ja
Application granted granted Critical
Publication of JPH0519324Y2 publication Critical patent/JPH0519324Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〈産業上の利用分野〉 本考案は、スラブ長辺側端面(すなわち底面)
からの熱発散を防止する回転式断熱材を備えた下
部装入式竪型のスラブ誘導加熱炉に関するもので
ある。 〈従来の技術〉 竪型誘導加熱炉では、上部装入式ではトングな
どの吊具による圧痕疵、スラブ落下などがあるた
め、下部装入式が一般に採用されている。 下部装入式竪型誘導加熱炉の場合、その装置の
構成としては、例えば実公昭51−15344号公報、
実公昭52−56336号公報にも見られ、また第6図
に示すように、スラブ1を水平状態で回転装置の
L字状の転回レバー2に載荷後、図示していない
転回起倒駆動装置により、転回レバー2を90度転
回してスラブ1を垂直状態に起す。その後、第7
図に示すように昇降装置3を図示しない昇降駆動
装置により上昇させ、転回レバー2上にあるスラ
ブ1を垂直状態のまま受け取り、そのまま加熱炉
4内に装入する。転回レバー2と昇降装置との関
係は第8図、または第9図に示すように昇降装置
3のスラブ受台5を挟むように、あるいは受台5
で挟まれるような位置に転回レバー2があり、転
回レバー2が転回時にスラブ受台5に干渉しない
ように、転回経路にはスラブ受台5がないか、ま
たは転回レバー2の干渉範囲を切欠いた構造とな
つている。 また、受台5の下部には加熱炉内を密閉する炉
床6が設けられている。 なお、スラブ1を垂直状態で転回レバー2から
昇降装置3のスラブ受台5に移載加熱炉4内に装
入する時の動きとしては、転回レバーーが第6図
のようにスラブ1を垂直状態に起し停止後、昇降
装置3を上昇させ、スラブ1を転回レバー2上か
らスラブ受台5に受け取り炉床6が転回レバー2
と干渉する寸前に転回レバー2を転倒開動させ、
炉床6が通過する通路を形成する。もちろん、こ
の時に転回レバー2は、受台5上のスラブ1にも
干渉しないように受台5の高さは調整されてい
る。また、本図には図示していないが、スラブが
起立し上昇時に転倒しないように適宜、転倒防止
装置が設けられている。このようにして、スラブ
1を加熱炉4内に装入し、スラブ1を加熱するが
ここで問題となるのは加熱されたスラブ温度の不
均一性である。 前述したように、昇降装置3のスラブ受台5の
形状は、転回レバーの干渉を避けるために第8
図、第9図のようになり、このような受台でスラ
ブを支持し加熱した場合、例えば実開昭49−
22111号公報にもみられるように、受台に当つて
いない部分の熱放散損が大きく、第8図、第9図
のスラブ受台の場合にはスラブ底面の温度分布
は、それぞれ第10図、第11図のようになる。
すなわち、第10図は第8図に示すような受台で
スラブを支持した場合のスラブ底面の長辺方向の
温度分布を示し、第11図は、第9図に示すよう
な受台でスラブを支持した場合のスラブ底面長辺
方向の温度分布を示したが、スラブ底面(受台
側)の温度分布が、長辺方向で不均一となり、特
に受台に接触していない部分は、炉床までの距離
が長く熱放散も大きく、温度低下が著しく圧延
上、品質上問題となる。 〈考案が解決しようとする問題点〉 本考案は、前述のようなスラブ底面、特に受台
に接触していない部分からの熱放散を少なくし、
スラブ長辺方向を均一に加熱することができる誘
導型スラブ加熱装置を提供するためになされたも
のである。 〈問題点を解決するための手段〉 本考案者らは、下部装入式竪型誘導加熱炉にお
けるスラブの均一加熱法について、鋭意研究を重
ねた結果、スラブ底面と炉床との空隙を小さくす
ることによつてスラブからの熱放散を減少できる
との知見をえ、この知見にもとづいてこの考案を
なすに至つた。 本考案は、スラブの長辺側端面を局部的に支持
するための受台5を昇降炉床6に載置し、この昇
降炉床を上昇することにより、スラブを誘導加熱
炉4の下部から炉内に装入するようにした下部装
入式竪型誘導加熱炉において、誘導加熱炉4の幅
より短い長さで、かつ各受台5間隔または受台5
と誘導加熱炉4内壁との間隔より短い幅の回転式
断熱材7′と、耐火断熱材7の下端近傍に形成さ
れ、かつ前記回転式断熱材7′が収納される空間
部16内でスラブ底面に接近した下方位置に配設
した軸8とで構成され、前記回転式断熱材7′が
炉内に回転自在なように軸8に固設されている誘
導型スラブ加熱装置である。 〈作用〉 本考案を図面に従つて説明する。 先づ、原理的には第1図、第2図に示すよう
に、加熱炉4内にスラブ1を装入後、スラブ1を
加熱する時に、スラブ受台5のない部分に回転式
断熱材7′をスラブに接近した位置に設置するこ
とにより、スラブ底面、特に受台に接触していな
い部分の熱放散を少なくするものである。 構造は、第3図〜第5図に示すように、炉壁耐
火断熱材7の下端近傍の一部分を空間部16とし
て、そこに回転式断熱材7′(位置及び大きさは、
受台の配置および大きさにより決まる。)を収納
し、これは内部水冷式の軸8により回転自在に支
持されており、先端部には長穴案内片9を有した
ロツド10とピン11により連結されている。ロ
ツド10は、炉壁外部に設けた軸受15により摺
動自在に支持されている。またロツド10の他端
は、シリンダー12の先端金物13とピン14で
連結されており、シリンダーを押し引きすること
により、ロツド10を介して、回転式断熱材7′
が90度回転し第3図の状態、または第4図の状態
となる。 すなわち、スラブ1を炉内に装入後、シリンダ
ー12を作動させ、回転式断熱材7′を第3図に
示すように、スラブ受台5の両サイド、あるいは
その間の隙間を遮蔽するように回転しスラブ底面
に近接させた状態で加熱する。スラブが所定温度
に達し加熱が終わると第4図に示すようにシリン
ダー12を逆に作動させ、回転式断熱材を元の位
置に戻しスラブの通過する通路を形成し昇降装置
3を下降してスラブ1を搬送する。 上記のように、製造の簡単な回転式断熱材の遮
蔽板により、受台のない部分のスラブ底面と炉床
までとの距離を小さくするように遮蔽することに
より、スラブ底面からの熱放散を少なくし、温度
低下を大幅に減少させ底面の均一加熱ができ、圧
延上及び品質上での改善が図られた。 〈実施例〉 下記の下部装入式竪型誘導加熱炉で、本考案に
よる回転式断熱材の有無によつて、下記の寸法の
スラブを平均温度1200℃に加熱して、そのスラブ
底面温度差(ΔT2、第11図参照)を測定し、そ
の結果を下表にまとめた。 1 誘導加熱炉(第2図タイプ) (1) 炉寸法 高さ:2000mm、 長さ:3000mm、 幅:500mm。 (2) スラブ受台 高さ 850×3ケ 2 スラブ 1000mm高さ×2800mm長さ×300mm厚
<Industrial Application Field> The present invention is applicable to long side end faces of slabs (i.e. bottom faces).
The present invention relates to a bottom-charging vertical slab induction heating furnace equipped with a rotary heat insulator that prevents heat dissipation from the furnace. <Prior Art> In vertical induction heating furnaces, a bottom charging type is generally used because the top charging type causes indentation flaws and falling slabs due to hangers such as tongs. In the case of a bottom-charging vertical induction heating furnace, the configuration of the device is as described in, for example, Japanese Utility Model Publication No. 15344/1983;
As also seen in Japanese Utility Model Publication No. 52-56336, and as shown in FIG. 6, after loading the slab 1 in a horizontal state onto the L-shaped turning lever 2 of the rotating device, The turning lever 2 is turned 90 degrees to raise the slab 1 to a vertical position. Then the seventh
As shown in the figure, the lifting device 3 is raised by a lifting drive device (not shown), and the slab 1 placed on the turning lever 2 is received in a vertical state and charged into the heating furnace 4 as it is. The relationship between the turning lever 2 and the lifting device is as shown in FIG.
The turning lever 2 is located in a position where it is pinched by the slab holder 5, and in order to prevent the turning lever 2 from interfering with the slab holder 5 during turning, either there is no slab holder 5 in the turning path or the interference range of the turning lever 2 is cut out. It has a traditional structure. Furthermore, a hearth 6 is provided below the pedestal 5 to seal the inside of the heating furnace. When the slab 1 is transferred vertically from the rotating lever 2 to the slab holder 5 of the lifting device 3 and loaded into the heating furnace 4, the rotating lever moves the slab 1 vertically as shown in Fig. 6. After raising and stopping the lifting device 3, the slab 1 is received from above the turning lever 2 onto the slab pedestal 5, and the hearth 6 is placed on the turning lever 2.
Just before it interferes with the lever, rotate the turning lever 2 and open it.
A passage is formed through which the hearth 6 passes. Of course, at this time, the height of the pedestal 5 is adjusted so that the turning lever 2 does not interfere with the slab 1 on the pedestal 5. Further, although not shown in this figure, a fall prevention device is appropriately provided to prevent the slab from falling when it stands up and rises. In this way, the slab 1 is charged into the heating furnace 4 and is heated, but the problem here is the non-uniformity of the temperature of the heated slab. As mentioned above, the shape of the slab pedestal 5 of the lifting device 3 is the eighth shape in order to avoid interference with the turning lever.
If the slab is supported and heated with such a pedestal as shown in Fig. 9 and Fig. 9, for example,
As seen in Publication No. 22111, the heat dissipation loss is large in the parts that do not touch the pedestal, and in the case of the slab pedestals shown in Figures 8 and 9, the temperature distribution at the bottom of the slab is as shown in Figure 10, respectively. , as shown in FIG.
That is, FIG. 10 shows the temperature distribution in the long side direction of the bottom surface of the slab when the slab is supported on a pedestal as shown in FIG. 8, and FIG. The temperature distribution in the long side direction of the bottom surface of the slab when the slab is supported is shown, but the temperature distribution on the bottom surface of the slab (on the pedestal side) is uneven in the long side direction, especially in the part that is not in contact with the pedestal. The distance to the floor is long and heat dissipation is large, resulting in a significant drop in temperature, which causes problems in terms of rolling and quality. <Problems to be solved by the invention> The invention reduces the heat dissipation from the bottom of the slab as described above, especially from the part not in contact with the pedestal,
This was done in order to provide an induction type slab heating device that can uniformly heat the long sides of the slab. <Means for solving the problem> As a result of intensive research into a method for uniformly heating a slab in a bottom-charging vertical induction heating furnace, the inventors of the present invention have developed a method to reduce the gap between the bottom of the slab and the hearth. We learned that heat dissipation from the slab could be reduced by doing so, and based on this knowledge, we came up with this idea. In the present invention, a pedestal 5 for locally supporting the end face of the long side of the slab is placed on a lifting hearth 6, and by lifting this lifting hearth, the slab is lifted from the lower part of the induction heating furnace 4. In a bottom-charging vertical induction heating furnace that is charged into the furnace, the length is shorter than the width of the induction heating furnace 4, and the distance between each pedestal 5 or the pedestal 5 is
A rotary heat insulator 7' having a width shorter than the distance between the inner wall of the induction heating furnace 4 and a slab in a space 16 formed near the lower end of the refractory heat insulator 7 and in which the rotary heat insulator 7' is accommodated. This is an induction type slab heating device, which comprises a shaft 8 disposed at a lower position close to the bottom surface, and the rotary heat insulating material 7' is fixed to the shaft 8 so as to be rotatable inside the furnace. <Operation> The present invention will be explained according to the drawings. First, in principle, as shown in FIGS. 1 and 2, after loading the slab 1 into the heating furnace 4, when heating the slab 1, a rotary heat insulator is placed in the part where the slab pedestal 5 is not located. 7' is placed close to the slab to reduce heat dissipation from the bottom of the slab, especially the portion that is not in contact with the pedestal. As shown in FIGS. 3 to 5, the structure is such that a space 16 is formed in a part near the lower end of the furnace wall refractory heat insulating material 7, and a rotary heat insulating material 7' (position and size is
Depends on the placement and size of the pedestal. ), which is rotatably supported by an internally water-cooled shaft 8, and is connected by a pin 11 to a rod 10 having an elongated guide piece 9 at its tip. The rod 10 is slidably supported by a bearing 15 provided outside the furnace wall. The other end of the rod 10 is connected to the tip metal fitting 13 of the cylinder 12 by a pin 14, and by pushing and pulling the cylinder, the rotary heat insulating material 7' is inserted through the rod 10.
is rotated 90 degrees, resulting in the state shown in Figure 3 or Figure 4. That is, after loading the slab 1 into the furnace, the cylinder 12 is operated and the rotary heat insulating material 7' is moved to cover both sides of the slab pedestal 5 or the gap between them, as shown in FIG. It rotates and heats while close to the bottom of the slab. When the slab reaches a predetermined temperature and heating is completed, the cylinder 12 is operated in reverse as shown in FIG. Transport the slab 1. As mentioned above, by using the shield plate of the rotary heat insulating material, which is easy to manufacture, to reduce the distance between the bottom of the slab where there is no pedestal and the hearth, heat dissipation from the bottom of the slab is reduced. This significantly reduced the temperature drop and enabled uniform heating of the bottom surface, resulting in improvements in rolling and quality. <Example> In the bottom-charging vertical induction heating furnace shown below, slabs with the following dimensions were heated to an average temperature of 1200°C with or without the rotary heat insulating material according to the present invention, and the difference in bottom surface temperature of the slabs was determined. (ΔT 2 , see FIG. 11) was measured, and the results are summarized in the table below. 1 Induction heating furnace (Fig. 2 type) (1) Furnace dimensions Height: 2000mm, length: 3000mm, width: 500mm. (2) Slab pedestal height 850 x 3 pieces Slab 1000mm height x 2800mm length x 300mm thickness

【表】 この実施例から明らかなように、本考案による
とスラブ底面の温度差は大幅に減少し、均一加熱
ができた。 〈考案の効果〉 本考案によると、下部装入式竪型誘導加熱炉に
おけるスラブ加熱において、スラブ長辺側端面
(すなわち底面)が従来より均一に加熱され、ス
ラブの圧延上および品質上の改善があつた。
[Table] As is clear from this example, according to the present invention, the temperature difference at the bottom of the slab was significantly reduced, and uniform heating was achieved. <Effects of the invention> According to the invention, when heating a slab in a bottom-charging vertical induction heating furnace, the long side end face (i.e., the bottom face) of the slab is heated more uniformly than before, resulting in improvements in the rolling and quality of the slab. It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本考案による加熱炉の正面断
面図、第3図は第2図のAA断面図、第4図は第
3図の回転断熱材の不使用時の説明図、第5図は
第3図におけるBB断面図、第6図、第7図は下
部装入式竪型加熱炉の断面側面図、第8図、第9
図はそれぞれ第6図、第7図の断面正面図、第1
0図、第11図はそれぞれ第8図、第9図の場合
のスラブ底面温度分布図である。 1……スラブ、2……回転レバー、3……昇降
装置、4……下部装入式竪型加熱炉、5……スラ
ブ受台、5a,5b,5c……スラブ受台、6…
…炉床、7……耐火断熱材、7′……回転式断熱
材、8……軸、9……案内片、10……ロツド、
11……ピン、12……シリンダー、13……先
端金物、14……ピン、15……軸受、16……
空間部。
Figures 1 and 2 are front sectional views of the heating furnace according to the present invention, Figure 3 is a sectional view along AA of Figure 2, Figure 4 is an explanatory view of Figure 3 when the rotary heat insulating material is not used, Figure 5 is a BB cross-sectional view in Figure 3, Figures 6 and 7 are cross-sectional side views of the bottom charging vertical heating furnace, Figures 8 and 9.
The figures are the cross-sectional front view of Fig. 6 and Fig. 7, and the sectional front view of Fig. 1.
0 and 11 are slab bottom surface temperature distribution diagrams in the cases of FIGS. 8 and 9, respectively. DESCRIPTION OF SYMBOLS 1... Slab, 2... Rotation lever, 3... Lifting device, 4... Bottom charging vertical heating furnace, 5... Slab pedestal, 5a, 5b, 5c... Slab pedestal, 6...
... Hearth, 7 ... Fireproof insulation material, 7' ... Rotary insulation material, 8 ... Shaft, 9 ... Guide piece, 10 ... Rod,
11... Pin, 12... Cylinder, 13... Tip hardware, 14... Pin, 15... Bearing, 16...
Space department.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スラブ1の長辺側端面を局部的に支持するため
の受台5を昇降炉床6に載置し、この昇降炉床を
上昇することによりスラブを誘導加熱炉4の下部
から炉内に装入するようにした下部装入式竪型誘
導加熱炉において、誘導加熱炉4の幅より短い長
さで、かつ各受台5間隔または受台5と誘導加熱
炉4内壁との間隔より短い幅の回転式断熱材7′
と、耐火断熱材7の下端近傍に形成され、かつ前
記回転式断熱材7′が収納される空間部16内で
スラブ底面に接近した下方位置に配設した軸8と
で構成され、前記回転式断熱材7′が炉内に回転
自在なように軸8に固設されていることを特徴と
する誘導型スラブ加熱装置。
A pedestal 5 for locally supporting the long side end face of the slab 1 is placed on a lifting hearth 6, and the slab is loaded into the induction heating furnace 4 from the lower part by lifting the lifting hearth. In the bottom-charging vertical induction heating furnace, the length is shorter than the width of the induction heating furnace 4, and the width is shorter than the interval between each pedestal 5 or the interval between the pedestal 5 and the inner wall of the induction heating furnace 4. Rotating insulation material 7'
and a shaft 8 formed near the lower end of the fireproof heat insulating material 7 and disposed at a lower position close to the bottom surface of the slab within the space 16 in which the rotary heat insulating material 7' is housed. An induction type slab heating device characterized in that a type heat insulating material 7' is fixed to a shaft 8 so as to be rotatable inside the furnace.
JP1986193069U 1986-12-17 1986-12-17 Expired - Lifetime JPH0519324Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986193069U JPH0519324Y2 (en) 1986-12-17 1986-12-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986193069U JPH0519324Y2 (en) 1986-12-17 1986-12-17

Publications (2)

Publication Number Publication Date
JPS6398362U JPS6398362U (en) 1988-06-25
JPH0519324Y2 true JPH0519324Y2 (en) 1993-05-21

Family

ID=31148747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986193069U Expired - Lifetime JPH0519324Y2 (en) 1986-12-17 1986-12-17

Country Status (1)

Country Link
JP (1) JPH0519324Y2 (en)

Also Published As

Publication number Publication date
JPS6398362U (en) 1988-06-25

Similar Documents

Publication Publication Date Title
JPH0519324Y2 (en)
JPH04274814A (en) Standby device for rolled stock waiting for cooling time
JP3285529B2 (en) Furnace coiler
KR100775487B1 (en) An apparatus for heating a cold slab in the hot roll utility
CN214039589U (en) Metal heating equipment for metal material engineering
JPH0813044A (en) Continuous heat treatment furnace
JPS6123000Y2 (en)
US4582482A (en) Top-fired, walking hearth-type furnace
JPS5893510A (en) Slow cooler for hot rolled steel material
KR101140825B1 (en) Furnace
CN220062529U (en) Trolley furnace device convenient to clear up slag
CN218879969U (en) High-temperature annealing furnace heat-insulating cover structure based on cold-rolled oriented silicon steel
JP3158506B2 (en) Vertical coil heat treatment furnace
JP2530106B2 (en) 2-stage heating furnace
JPS589193Y2 (en) Furnace lid device
JPH0421819Y2 (en)
JPS6219392Y2 (en)
JPS6219391Y2 (en)
JPS5919563Y2 (en) Covered ladle lid opening/closing device
JPH0199719A (en) Continuous casting equipment
JPH0445028Y2 (en)
CN206019307U (en) The distillatory insulation smelting furnace of continuous vacuum
JPS6037154Y2 (en) Rotating thermal insulation cover for high-temperature slabs
JPS6026124Y2 (en) Tube heat treatment equipment
JPH0421820Y2 (en)