JPH05192765A - Aluminum brazing method and furnace therefor - Google Patents

Aluminum brazing method and furnace therefor

Info

Publication number
JPH05192765A
JPH05192765A JP4235724A JP23572492A JPH05192765A JP H05192765 A JPH05192765 A JP H05192765A JP 4235724 A JP4235724 A JP 4235724A JP 23572492 A JP23572492 A JP 23572492A JP H05192765 A JPH05192765 A JP H05192765A
Authority
JP
Japan
Prior art keywords
brazing
chamber
work
protective atmosphere
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4235724A
Other languages
Japanese (ja)
Other versions
JP2768163B2 (en
Inventor
Toshiaki Maeda
利章 前田
Shinji Kurano
晋治 倉野
Yukio Ota
幸夫 太田
Takumi Hirako
匠 平子
Takeshi Iguchi
健 井口
Taketoshi Toyama
猛敏 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4235724A priority Critical patent/JP2768163B2/en
Publication of JPH05192765A publication Critical patent/JPH05192765A/en
Application granted granted Critical
Publication of JP2768163B2 publication Critical patent/JP2768163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To reduce variance of the brazing temperature, to reduce influence of a poisonous gas component and to improve productivity by intercepting direct radiation in protective atmosphere gas and heating works by forced convection. CONSTITUTION:The aluminum brazing furnace l which is connected with conveyors 51-56 and can fill up the protective atmosphere gas therein is composed of a preheating chamber 13, a brazing chamber 14 and a slow cooling chamber 15. In the brazing chamber 14, the works are heated by almost forced convection instead of radiant heat by convection of a fan 8 executed by driving heat of a heater 7 by a motor 81 and fitting of a radiant heat intercepting member 9 of a baffle 16. Consequently, the variance of the temperature between respective brazing parts of the works and between the works is reduced and defective brazing is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウムろう付け
方法及びアルミニウムろう付け炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum brazing method and an aluminum brazing furnace.

【0002】[0002]

【従来の技術】従来、保護雰囲気中で強制対流及び輻射
によりアルミニウム部材のろう付け処理を行う方法が知
られている。このろう付け方法では、例えばマッフル炉
中で輻射のみによりろう付けを行う場合に比して強制対
流加熱を利用できるので、加熱効率が良く生産性が高
い。ただこの方法では、被ろう付け部材(以下、ワ−ク
という)に吸着されている有害ガス成分(例えば、酸素
ガスや水蒸気)や保護雰囲気ガス中の残存有害ガス成分
がろう付けに悪影響を与えるという問題があった。
2. Description of the Related Art Conventionally, there is known a method of brazing an aluminum member by forced convection and radiation in a protective atmosphere. In this brazing method, for example, forced convection heating can be used as compared with the case where brazing is performed only by radiation in a muffle furnace, so that the heating efficiency is high and the productivity is high. However, in this method, harmful gas components (for example, oxygen gas and water vapor) adsorbed on the brazed member (hereinafter referred to as work) and residual harmful gas components in the protective atmosphere gas adversely affect brazing. There was a problem.

【0003】この問題を解決すべく特公昭57−424
20号公報は、保護雰囲気中で強制対流及び輻射により
アルミニウム部材を効率良く予熱しておき、その後、主
として輻射加熱によりろう付け処理を行うことを開示し
ている。このようにすれば、ろう付け時におけるろう付
け部位近傍の保護雰囲気ガスの流動が減り、その結果、
ろう付け部位への有害ガス成分の接触が低減される。
To solve this problem, Japanese Patent Publication No. 57-424
Japanese Unexamined Patent Publication No. 20 discloses that an aluminum member is efficiently preheated by forced convection and radiation in a protective atmosphere, and then a brazing process is mainly performed by radiant heating. This reduces the flow of the protective atmosphere gas near the brazing site during brazing, and as a result,
The contact of harmful gas components with the brazing site is reduced.

【0004】また従来、保護雰囲気中でフラックスを被
着したワ−クを主として輻射加熱を用い、従として対流
加熱を用いてろう付け処理することが提案されている。
Further, it has been proposed in the past to braze a work coated with a flux in a protective atmosphere by mainly using radiant heating and secondary convection heating.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た公報のろう付け方法、及び、フラックス被着済みワ−
クを保護雰囲気中で主に輻射加熱を用いてろう付け処理
する上記従来方法では、主として輻射によりワ−ク加熱
を行うので、ワ−クの形状や配置状態によってはワ−ク
間及びワ−ク各部の温度ばらつきが大きくなり、その結
果、昇温しにくいワ−ク部位ではろう材が充分に流れ
ず、ろう付け品質が低下する不具合が生じた。特に、こ
の温度ばらつき問題はワ−ク形状が非常に複雑であった
り、又は、生産性向上のためワ−クを高密度配置して一
括ろう付けする場合に深刻となる。
However, the brazing method of the above-mentioned publication and the flux-deposited wire are disclosed.
In the above-mentioned conventional method in which the work is brazed mainly in the protective atmosphere by using radiant heating, the work is heated mainly by radiant heat. As a result, there is a problem that the brazing material does not flow sufficiently at the work part where the temperature rise is difficult to occur and the brazing quality deteriorates. In particular, this temperature variation problem becomes serious when the work shape is very complicated, or when the work is densely arranged and collectively brazed in order to improve productivity.

【0006】もちろん、必要なろう付け処理温度で長時
間、ワ−クを加熱すれば上記温度ばらつきを減らせる
が、このような加熱時間の延長はろう材によるアルミニ
ウム部材すなわちワ−クの浸食といった新たな不具合を
生じる可能性が考えられ、生産性も悪化してしまう。更
に上記したフラックス被着のワ−クを長時間加熱する場
合には、フラックスの蒸発により、ろう付け不良が生じ
る不具合があった。
Of course, if the work is heated for a long time at the required brazing temperature, the above temperature variation can be reduced. However, such extension of the heating time leads to corrosion of the aluminum member, that is, the work by the brazing material. It is possible that new defects will occur and productivity will deteriorate. Further, when the above flux-coated work is heated for a long time, there is a problem that brazing failure occurs due to evaporation of the flux.

【0007】また、ワ−クを低密度配置して輻射による
温度ばらつきを低減することも可能であるが、この場合
にも配置密度減少率に比例して生産性が低下してしまう
という問題が生じてしまう。本発明は上記問題点に鑑み
なされたものであり、ワ−クのろう付け温度ばらつきの
低減、生産性の向上及び有害ガス成分の影響低減を全て
実現し得るアルミニウムろう付け方法及びアルミニウム
ろう付け炉を提供することを、その目的としている。
Although it is possible to reduce the temperature variation due to radiation by arranging the work at a low density, in this case as well, there is a problem that the productivity decreases in proportion to the reduction rate of the arrangement density. Will occur. The present invention has been made in view of the above problems, and an aluminum brazing method and an aluminum brazing furnace capable of realizing a reduction in variation in the brazing temperature of a work, an improvement in productivity, and a reduction in the influence of harmful gas components. Its purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明のアルミニウムろ
う付け方法は、少なくともろう付け部位にフラックス及
びろう材が被着されたワ−クとしてのアルミニウム部材
を保護雰囲気中で予熱する予熱工程と、予熱済みワ−ク
を前記保護雰囲気中で主として強制対流により加熱しフ
ラックス活性化及びろう材溶解を順次行うろう付け工程
と、ろう付け済みワ−クを前記保護雰囲気中で徐冷する
徐冷工程とを備えることを特徴としている。
The aluminum brazing method of the present invention comprises a preheating step of preheating an aluminum member as a work having a flux and a brazing material adhered at least at a brazing site in a protective atmosphere. A brazing step in which the preheated work is heated in the protective atmosphere mainly by forced convection to sequentially perform flux activation and brazing material melting, and a slow cooling step in which the brazed work is gradually cooled in the protective atmosphere. It is characterized by having and.

【0009】本発明のアルミニウムろう付け炉は、フラ
ックス及びろう材が被着されたワ−クとしてのアルミニ
ウム部材を予熱するための予熱室、予熱済みワ−クを加
熱しフラックス活性化及びろう材溶解を順次行うための
ろう付け室、及び、ろう付け済みワ−クを徐冷するため
の徐冷室を備える気密可能な炉体と、前記各室に保護雰
囲気ガスを充填する保護雰囲気ガス充填手段と、ワ−ク
を前記予熱室から前記ろう付け室を経由して前記徐冷室
へ搬送する搬送手段と、前記予熱室へのワ−ク搬入を行
うワ−ク搬入手段と、前記徐冷室からのワ−ク搬出を行
うワ−ク搬出手段と、前記予熱室及びろう付け室内に配
設され前記保護雰囲気ガスを加熱するヒ−タと、前記ろ
う付け室内に前記保護雰囲気ガスの強制対流を生起させ
る循環ファンとを備えるアルミニウムろう付け炉におい
て、前記ろう付け室内に配設され、ワ−クへの輻射熱量
を低減して前記ワ−クの加熱を主として前記強制対流に
より実施させる輻射遮断部材を備えることを特徴ととし
ている。
The aluminum brazing furnace of the present invention comprises a preheating chamber for preheating an aluminum member as a work to which flux and brazing material are applied, a preheated work for heating flux and activating the brazing material. An airtight furnace body having a brazing chamber for sequentially melting and a slow cooling chamber for gradually cooling the brazed work, and a protective atmosphere gas filling for filling each chamber with a protective atmosphere gas Means, conveying means for conveying the work from the preheating chamber to the slow cooling chamber via the brazing chamber, work feeding means for carrying the work into the preheating chamber, and Work carrying-out means for carrying out the work from the cold room, a heater arranged in the preheating chamber and the brazing chamber to heat the protective atmosphere gas, and a protective atmosphere gas in the brazing chamber. With a circulation fan that causes forced convection In the aluminum brazing furnace, a radiation blocking member is provided in the brazing chamber, which reduces the amount of radiant heat to the work and mainly heats the work by the forced convection. I am trying.

【0010】アルミニウム部材の前記ろう付け部位には
まずろう材層が被着され、その上にフラックス層が被着
される。ろう材層は通常、アルミニウム部材厚さの5〜
10%の厚さに被着され、フラックス層は通常、水へフ
ラックスを3〜10%(Wt%)濃度のフラックス液を
塗布し被着されるかまたはアルミニウム部材表面へフラ
クッス粉末をエアスプレー等により被着される。
A brazing material layer is first applied to the brazing portion of the aluminum member, and then a flux layer is applied thereto. The brazing material layer is usually 5 to 5 times the aluminum member thickness.
The flux layer is applied to a thickness of 10%, and the flux layer is usually applied by applying a flux solution having a concentration of 3 to 10% (Wt%) to water, or is applied to the surface of an aluminum member by air spraying flux powder. Be applied by.

【0011】ここで、上記アルミニウム部材としては、
純アルミニウムの他、アルミニウムを主要成分とするア
ルミニウム合金を含む。フラックスとしては、弗化アル
ミニウム酸カリウム(KAlF4 ・K3 AlF 6 とK2
AlF5 ・H2 Oの一種または二種以上の混合物)を採
用することができる。
Here, as the aluminum member,
In addition to pure aluminum,
Includes aluminum alloy. As the flux, Al fluoride
Potassium minate (KAlFFour・ K3AlF 6And K2
AlFFive・ H2O or a mixture of two or more)
Can be used.

【0012】ろう材としては、JISBA4343、J
ISBA4045、JISBA4047等を採用するこ
とができる。本発明のろう付け方法の好適な態様におい
て、ワ−クの温度は、フラックス活性化温度(例えば摂
氏550度)からろう付け処理温度(例えば摂氏600
度)まで毎分摂氏5度以上25度以下、好ましくは毎分
摂氏10度以上20度以下の昇温速度で上昇させられ
る。昇温速度を上記範囲に維持すれば、通常のフラック
ス液濃度(大体3から10%)を変更することなく、こ
の昇温時間中においてフラックスが蒸発して不足すると
いう事態は生じない。逆に昇温速度がこの範囲以下とな
ると、上記昇温時間中のフラックスの蒸発量が増大して
しまい、ろう材厚さが薄い場合にはろう付け品質が低下
する可能性が生じ、ろう材厚さを厚くする場合にはろう
材の流れにより融点が下がりワーク部材の浸食が発生す
る。
As the brazing material, JIS BA4343, J
ISBA4045, JISBA4047, etc. can be adopted. In a preferred embodiment of the brazing method of the present invention, the temperature of the work is from a flux activation temperature (eg 550 degrees Celsius) to a brazing process temperature (eg 600 degrees Celsius).
Up to 5 degrees Celsius per minute and 25 degrees Celsius or less per minute, preferably 10 degrees Celsius or more and 20 degrees Celsius or less per minute. If the heating rate is maintained within the above range, the flux will not evaporate and become insufficient during this heating time without changing the normal flux liquid concentration (approximately 3 to 10%). On the other hand, if the heating rate falls below this range, the amount of flux evaporated during the heating time will increase, and if the brazing material is thin, the brazing quality may deteriorate. When the thickness is increased, the melting point is lowered due to the flow of the brazing material, and the work member is eroded.

【0013】ろう付け工程における昇温速度は、風速、
強制対流ガス温度、ワ−ク状態の3条件によりほぼ決定
される。風速は0.3から1.5m/s、好ましくは
0.6から1m/s(ワーク中央の位置で測定)、強制
対流ガス温度は(ワ−ク流入前において)摂氏550か
ら600度程度とすることが好適である。本発明のろう
付け方法の好適な態様において、ろう付け工程は、酸素
濃度100PPM以下、好ましくは50PPM以下とさ
れ、かつ、露点は摂氏−35度以下好ましくは摂氏−4
0度以下とされる。酸素濃度及び露点がこれ以下であれ
ば、上記通常のフラックス被着量において、ろう付け不
良は生じない。
The temperature rising rate in the brazing process is the wind speed,
It is almost determined by three conditions: forced convection gas temperature and work state. The wind speed is 0.3 to 1.5 m / s, preferably 0.6 to 1 m / s (measured at the center of the work), and the forced convection gas temperature is about 550 to 600 degrees Celsius (before the inflow of the work). Is preferred. In a preferred embodiment of the brazing method of the present invention, the brazing step has an oxygen concentration of 100 PPM or less, preferably 50 PPM or less, and a dew point of -35 degrees Celsius or less, preferably -4 degrees Celsius.
It is set to 0 degrees or less. If the oxygen concentration and the dew point are lower than this, no brazing failure will occur in the above-mentioned usual flux deposition amount.

【0014】本発明のろう付け炉の好適な態様におい
て、ろう付け室へ保護雰囲気ガスを注入する保護雰囲気
ガス注入手段と、徐冷室及び予熱室入口部から保護雰囲
気ガスを排出する保護雰囲気ガス排出手段とが配設され
る。この場合、予熱室をワ−ク搬送可能に搬送方向へ気
通自在に複数の小室に分割し、更に下流側の小室から上
流側に隣接の小室へ保護雰囲気ガスを分流する分流ファ
ンを配設すると更に好適である。
In a preferred embodiment of the brazing furnace of the present invention, a protective atmosphere gas injection means for injecting a protective atmosphere gas into the brazing chamber, and a protective atmosphere gas for discharging the protective atmosphere gas from the inlet of the slow cooling chamber and the preheating chamber Ejecting means are provided. In this case, the preheating chamber is divided into a plurality of small chambers so that the preheat chamber can be conveyed in the conveying direction so that the preheating chamber can be freely communicated in the conveying direction. Then, it is more preferable.

【0015】本発明のろう付け炉の好適な態様におい
て、フラックスとして弗化アルミニウム酸カリウムを採
用する場合、ワ−クは摂氏550度(フラックス活性化
温度)まで予熱室で予熱することが好ましい。予熱温度
がこれより高い場合には予熱室でのフラックスの蒸発が
問題となり、予熱温度がこれより低い場合にはろう付け
室での対流だけによる昇温に時間がかかるのでこの場合
にも、ろう付け室でのフラックスの蒸発量の増大が無視
できない。
In the preferred embodiment of the brazing furnace of the present invention, when potassium fluoroaluminate is used as the flux, the work is preferably preheated to 550 degrees Celsius (flux activation temperature) in the preheating chamber. If the preheating temperature is higher than this, the evaporation of the flux in the preheating chamber becomes a problem, and if the preheating temperature is lower than this, it takes time to raise the temperature only by convection in the brazing chamber. The increase in the amount of flux evaporated in the attachment room cannot be ignored.

【0016】本発明のろう付け炉の好適な態様におい
て、ろう付け炉内のワ−ク搬送領域を搬送可能に囲むバ
ッフルが強制対流路形成のために、金属缶体により形成
され、更に、このバッフルの内面又は外面に断熱材を素
材とするパネル状の輻射遮断部材が取り付けられる。
In a preferred embodiment of the brazing furnace of the present invention, a baffle that circumscribes the work transfer region in the brazing furnace is formed by a metal can body for forming a forced convection path. A panel-shaped radiation blocking member made of a heat insulating material is attached to the inner or outer surface of the baffle.

【0017】[0017]

【作用】本発明のろう付け炉では、フラックス及びろう
材が被着されたワ−クとしてのアルミニウム部材は、搬
送手段により搬送されて予熱室で予熱され、ろう付け室
でろう付けされ、徐冷室で徐冷される。保護雰囲気充填
手段は各室に保護雰囲気ガスを充填し、ワ−ク搬入手段
はワ−クを予熱室へ搬入し、ワ−ク搬出手段はワ−クを
徐冷室から搬出する。ヒ−タは予熱室及びろう付け室内
の保護雰囲気ガスを加熱し、循環ファンはろう付け室内
に保護雰囲気ガスの強制対流を生起させて予熱済みのワ
−クを加熱してフラックスを溶融、活性化し、次いでろ
う材を溶融しろう付け処理が成される。この活性化され
たフラックスは有害ガス成分からワ−クのろう付け面を
保護する。ろう付け室内に設けられた輻射遮断部材はワ
−クへの熱輻射を遮断し、輻射のばらつきによる各ワ−
ク間及びワ−ク各部間の温度ばらつきを防止する。
In the brazing furnace of the present invention, the aluminum member as a work on which the flux and the brazing material are adhered is conveyed by the conveying means, preheated in the preheating chamber, brazed in the brazing chamber, and gradually heated. It is gradually cooled in the cold room. The protective atmosphere filling means fills each chamber with the protective atmosphere gas, the work carry-in means carries the work into the preheating chamber, and the work carry-out means carries out the work from the slow cooling chamber. The heater heats the protective atmosphere gas in the preheating chamber and the brazing chamber, and the circulation fan causes forced convection of the protective atmosphere gas in the brazing chamber to heat the preheated work to melt and activate the flux. Then, the brazing material is melted and a brazing process is performed. This activated flux protects the brazing surface of the work from harmful gas constituents. The radiation blocking member installed in the brazing chamber blocks the heat radiation to the work and each work due to variations in radiation.
Prevents temperature variations between the work and each part of the work.

【0018】[0018]

【発明の効果】以上説明したように本発明のアルミニウ
ムろう付け方法では、保護雰囲気ガス中でフラックス及
びろう材被着済みのアルミニウム部材を、主に強制対流
によって加熱することを特徴としている。このようにす
れば、強制対流によってワ−クを均一加熱し、かつ、こ
の強制対流により生じるろう付け面への有害ガス成分の
接触をフラックスにより防止するので、ワ−クのろう付
け温度のばらつきによるろう付け不良の低減と、ろう付
け時のワ−クの高密度配置による生産性の向上と、ろう
付け部位への有害ガス成分の接触によるろう付け不良の
低減とを全て実現することができ、その結果として、従
来方法に比べて格段に高い生産性及び歩留りを有するア
ルミニウムろう付け方法を提供することができる。
As described above, the aluminum brazing method of the present invention is characterized in that the aluminum member on which the flux and the brazing material have been adhered is heated in the protective atmosphere gas mainly by forced convection. By doing so, the work is uniformly heated by the forced convection, and the contact of harmful gas components to the brazing surface caused by the forced convection is prevented by the flux. Therefore, the variation in the brazing temperature of the work is prevented. It is possible to realize all of the reduction of brazing defects due to the above, the improvement of productivity by the high density arrangement of the work during brazing, and the reduction of brazing defects due to the contact of harmful gas components to the brazing site. As a result, it is possible to provide an aluminum brazing method having significantly higher productivity and yield than the conventional method.

【0019】本発明のアルミニウムろう付け炉では、保
護雰囲気ガスの強制対流が生起されるろう付け室内に、
ヒータからワ−クへの輻射を遮断する輻射遮断部材を配
設しているので、簡単な構成によりヒ−タからワ−クへ
の直接輻射を遮断でき、ワ−クが受熱する輻射熱量の削
減により上記アルミニウムろう付け方法を実施すること
ができる。
In the aluminum brazing furnace of the present invention, in the brazing chamber where the forced convection of the protective atmosphere gas occurs,
Since a radiation blocking member that blocks radiation from the heater to the work is provided, direct radiation from the heater to the work can be blocked with a simple structure, and the amount of radiant heat received by the work can be reduced. The reduction allows the aluminum brazing method described above to be implemented.

【0020】[0020]

【実施例】以下、本発明のアルミニウムろう付け炉の一
実施例として車両用熱交換器のろう付け供される炉を図
面を参照して説明する。まずこの炉の基本構成を説明す
れば、厚さ約30cmの断熱気密壁10で囲まれて入口
11及び出口12に連通する細長の内部空間Sを有する
炉体1が設けられ、炉体1の入口側には入口側ベスチブ
ル2が隣接配置され、炉体1の出口側には出口側ベスチ
ブル3が隣接配置され、出口側ベスチブル3の出口に隣
接して冷却室4が配設されている。断熱気密壁10は、
セラミックス材を用いた断熱壁とこの断熱壁を覆う金属
板壁とからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A furnace for brazing a vehicle heat exchanger will be described below as an embodiment of the aluminum brazing furnace of the present invention with reference to the drawings. First, the basic structure of the furnace will be described. A furnace body 1 having an elongated internal space S surrounded by a heat insulating airtight wall 10 having a thickness of about 30 cm and communicating with an inlet 11 and an outlet 12 is provided. An inlet side vestibule 2 is disposed adjacent to the inlet side, an outlet side vestibule 3 is disposed adjacent to the outlet side of the furnace body 1, and a cooling chamber 4 is disposed adjacent to an outlet of the outlet side vestibule 3. The heat insulating airtight wall 10 is
It comprises a heat insulating wall made of a ceramic material and a metal plate wall covering the heat insulating wall.

【0021】これら各部1から4内へのワ−クの搬入、
搬送、搬出を行うためにコンベヤ(搬送手段、ワ−ク搬
入手段、ワ−ク搬出手段)51から58が一列に配設さ
れ、これら各部1から3内へ窒素ガス(雰囲気ガス)を
充填するために充填配管系(保護雰囲気ガス充填手段)
61から63が配設され、これら各部1から3内のガス
を排出するため排出配管系(保護雰囲気ガス排出手段)
71から73が配設されている。
Carrying the work into each of these sections 1 to 4,
In order to carry and carry out, conveyors (carrying means, work carrying-in means, work carrying-out means) 51 to 58 are arranged in a line, and nitrogen gas (atmosphere gas) is filled into each of these parts 1 to 3. For filling piping system (protective atmosphere gas filling means)
61 to 63 are provided, and an exhaust piping system (protective atmosphere gas exhausting means) for exhausting the gas in these parts 1 to 3
71 to 73 are provided.

【0022】炉体1内にはヒ−タ7、循環ファン8が配
設され、一方、炉体1外には分流ファン91が配設され
ている。更にこの炉の主要な特徴をなすものとして、炉
体1内の搬送方向下流部には、輻射遮断用の輻射遮断部
材9(図3参照)が配設されている。以下、各部の詳細
について説明する。
A heater 7 and a circulation fan 8 are arranged inside the furnace body 1, while a diversion fan 91 is arranged outside the furnace body 1. Further, as a main feature of this furnace, a radiation blocking member 9 (see FIG. 3) for blocking radiation is disposed in the furnace body 1 at a downstream portion in the transport direction. The details of each unit will be described below.

【0023】炉体1の大きさは大体、幅2.4m、高さ
2.6m、長さ15mで、炉体1の内部空間は入口11
から出口12へ順番に、搬入室12、予熱室13、ろう
付け室14、搬出室を兼ねる徐冷室15に分割される。
予熱室13は搬送方向に沿って4個の小室Rに分割さ
れ、ろう付け室14も搬送方向に沿って2個の小室Rに
分割されている。
The size of the furnace body 1 is roughly 2.4 m in width, 2.6 m in height, and 15 m in length, and the inner space of the furnace body 1 has an inlet 11
From the outlet to the outlet 12, it is divided into a carry-in chamber 12, a preheating chamber 13, a brazing chamber 14, and a slow cooling chamber 15 which also serves as a carry-out chamber.
The preheating chamber 13 is divided into four small chambers R along the carrying direction, and the brazing chamber 14 is also divided into two small chambers R along the carrying direction.

【0024】これら各小室Rはワ−ク搬送が可能な最小
開口(高さ90cm×横100cm)を有する隔壁によ
り互いに仕切られ、同様に搬入室12と予熱室13との
間、ろう付け室14と徐冷室15との間にも同構造の隔
壁が配設されて無駄なガス流を抑止している。入口側ベ
スチブル2はガス交換用の気密可能な準備室であって、
入口には扉21が昇降可能に配設されたドアフ−ド22
が配設され、出口には扉23が昇降可能に配設されたド
アフ−ド24が配設され、これら扉21、23の遮蔽に
より内部のベスチブル室が気密化される。
Each of these small chambers R is partitioned from each other by a partition having a minimum opening (90 cm in height × 100 cm in width) capable of carrying a work, and similarly, between the carry-in chamber 12 and the preheating chamber 13 and the brazing chamber 14 A partition having the same structure is also provided between the cooling chamber 15 and the slow cooling chamber 15 to prevent a wasteful gas flow. The inlet side vestibule 2 is an airtight preparation room for gas exchange,
A door hood 22 in which a door 21 is vertically movable at the entrance
And a door hood 24 in which a door 23 is arranged so as to be able to move up and down is provided at the outlet, and the vestibular chamber inside is made airtight by the shielding of the doors 21 and 23.

【0025】出口側ベスチブル3も気密可能な準備室で
あって、入口には扉31が昇降可能に配設されたドアフ
−ド32が配設され、出口には扉33が昇降可能に配設
されたドアフ−ド34が配設され、これら扉31、33
の遮蔽により内部のベスチブル室が気密化される。ドア
フ−ド24は入口側ベスチブル2と炉体1の入口11と
の間に介設されており、ドアフ−ド24には炉体1の入
口11を開閉する扉28が昇降可能に配設されている。
ドアフ−ド32は出口側ベスチブル3と炉体1の出口1
2との間に介設されており、ドアフ−ド32には炉体1
の出口12を開閉する扉29が昇降可能に配設されてい
る。扉28、29の閉鎖により炉体1の内部空間は気密
化される。上記した各ドアフ−ド、24、32、は扉及
び扉昇降装置を内蔵するは金属密閉角箱である。
The outlet side vestibule 3 is also a hermetically sealed preparation chamber, in which a door hood 32 in which a door 31 is vertically movable is arranged at the inlet, and a door 33 is vertically movable in the outlet. A door hood 34 is provided and these doors 31, 33 are
The vestibule chamber inside is made airtight by the shielding of. The door hood 24 is interposed between the inlet side vestibule 2 and the inlet 11 of the furnace body 1, and the door hood 24 is provided with a door 28 for opening and closing the inlet 11 of the furnace body 1 so as to be vertically movable. ing.
The door hood 32 is the exit side vestibule 3 and the exit 1 of the furnace body 1.
2 and the furnace body 1 is installed in the door hood 32.
A door 29 that opens and closes the outlet 12 is provided so as to be able to move up and down. By closing the doors 28 and 29, the inner space of the furnace body 1 is made airtight. Each of the door hoods, 24 and 32 described above is a metal closed rectangular box that houses a door and a door lifting device.

【0026】冷却室4は出口側ベスチブル3に接して設
けられており、冷却室4の天井部には強力なワ−ク冷却
用排気ファン41が配設されている。コンベヤ51は入
口側ベスチブル2内へワ−クを装入するための装入コン
ベヤであり、入口側ベスチブル2内に配設されたコンベ
ヤ52はベスチブル内搬送コンベヤである。搬入室12
内に配設されたコンベヤ53はベスチブル搬出コンベヤ
であり、予熱室13及びろう付け室14内に配設された
コンベヤ54は搬送コンベヤである。徐冷室15に配設
されたコンベヤ55はベスチブル搬入コンベヤであり、
出口側ベスチブル3内に配設されたコンベヤ56はベス
チブル内搬送コンベヤであり、コンベヤ58は出口側ベ
スチブル3内からワ−クを搬出するための搬出コンベヤ
である。
The cooling chamber 4 is provided in contact with the outlet side vestibule 3, and a powerful work cooling exhaust fan 41 is disposed on the ceiling of the cooling chamber 4. The conveyor 51 is a loading conveyor for loading the work into the vestibule 2 on the inlet side, and the conveyor 52 disposed in the vestibule 2 on the inlet side is an intra-vestibel transport conveyor. Carry-in room 12
The conveyor 53 disposed inside is a vesible carry-out conveyor, and the conveyor 54 disposed inside the preheating chamber 13 and the brazing chamber 14 is a transfer conveyor. The conveyor 55 provided in the slow cooling chamber 15 is a vessible carry-in conveyor,
The conveyor 56 arranged in the outlet side vestibule 3 is an inside vestibule conveyer conveyor, and the conveyor 58 is a carry-out conveyor for carrying out the work from the outlet side vestibule 3.

【0027】充填配管系61は入口側ベスチブル2内に
窒素ガスを充填する配管であり、充填配管系62はろう
付け室14の二小室Rに窒素ガスを充填する配管であ
り、充填配管系63は出口側ベスチブル3内に窒素ガス
を充填する配管である。排出配管系71は入口側ベスチ
ブル2内のガスを排出する配管であり、排出配管系72
は搬入室12からガスを排出する配管であり、排出配管
系73は徐冷室15からガスを排出する配管であり、排
出配管系74は出口側ベスチブル3内からガスを排出す
る配管である。
The filling piping system 61 is a piping for filling the inlet side vestibile 2 with nitrogen gas, and the filling piping system 62 is a piping for filling the two small chambers R of the brazing chamber 14 with nitrogen gas, and the filling piping system 63. Is a pipe for filling the outlet side vestibule 3 with nitrogen gas. The exhaust pipe system 71 is a pipe for exhausting the gas in the inlet side vestibule 2, and the exhaust pipe system 72
Is a pipe for discharging gas from the carry-in chamber 12, a discharge pipe system 73 is a pipe for discharging gas from the slow cooling chamber 15, and a discharge pipe system 74 is a pipe for discharging gas from the inside of the outlet side vestibule 3.

【0028】予熱室13及びろう付け室14についてに
ついて以下に説明する。図2に予熱室13の搬送方向と
直交する断面を示し、図3にろう付け室14の搬送方向
と直交する断面を示す。ヒ−タ7は、発熱電力6KWの
抵抗線を内蔵したパイプヒータであって、予熱室13の
各小室Rにそれぞれ6個配設されており、天井から両側
壁内面に近接しつつ垂下している。
The preheating chamber 13 and the brazing chamber 14 will be described below. FIG. 2 shows a cross section orthogonal to the carrying direction of the preheating chamber 13, and FIG. 3 shows a cross section perpendicular to the carrying direction of the brazing chamber 14. The heaters 7 are pipe heaters each having a built-in resistance wire with a heating power of 6 kW, and six heaters are provided in each small chamber R of the preheating chamber 13. The heaters 7 hang down from the ceiling while being close to the inner surfaces of both side walls. There is.

【0029】炉体1の天井部外面には減速モ−タ81が
設置され、減速モ−タ81の駆動軸に連結される回転軸
が天井を回転自在に貫通して垂下され、回転軸先端には
循環ファン8が天井部近傍に取り付けられている。循環
ファン8の回転数は900rpmで、直径は約80c
m、8枚羽根形式である。循環ファン8は予熱室13及
びろう付け室14の各小室Rに各1個の割りで配設され
ている。
A deceleration motor 81 is installed on the outer surface of the ceiling of the furnace body 1, and a rotary shaft connected to the drive shaft of the deceleration motor 81 rotatably penetrates through the ceiling and hangs down. A circulation fan 8 is mounted in the vicinity of the ceiling. The rotation speed of the circulation fan 8 is 900 rpm, and the diameter is about 80c.
m, 8 blade type. One circulation fan 8 is provided in each of the small chambers R of the preheating chamber 13 and the brazing chamber 14.

【0030】循環ファン8の直下すなわち予熱室13及
びろう付け室14の中央部はワ−ク搬送領域となってい
て、このワ−ク搬送領域を囲んで下端だけが開口したバ
ッフル16が取り付けられている。バッフル16は両側
のヒ−タ7から水平方向に約20cm、炉体1の底面か
ら垂直方向に約40cm離れている。金属缶体であるバ
ッフル16は強制対流路を小室R内に区画形成するとと
もに、ヒ−タ7から受熱して高温となってワ−クを輻射
加熱する役割を有している。バッフル16の上端には、
循環ファン8を囲むシュラウド82が配設され、これに
より、循環ファン8が生起した強制対流が図2及び図3
内に矢印のように循環する。
Directly below the circulation fan 8, that is, in the center of the preheating chamber 13 and the brazing chamber 14, is a work transfer area. A baffle 16 is attached to surround the work transfer area and only the lower end is opened. ing. The baffle 16 is separated from the heaters 7 on both sides in the horizontal direction by about 20 cm and from the bottom surface of the furnace body 1 in the vertical direction by about 40 cm. The baffle 16 which is a metal can body has a role of partitioning and forming a forced convection flow path in the small chamber R, and also having a role of receiving heat from the heater 7 to reach a high temperature and radiatively heating the work. At the top of the baffle 16,
A shroud 82 surrounding the circulation fan 8 is provided, so that the forced convection generated by the circulation fan 8 is generated as shown in FIGS.
It circulates like an arrow inside.

【0031】更に、炉体1に隣接して炉体1の片側方に
分流ファン91がそれぞれ配設されている(図1では、
片側の分流ファン91のみを示す。)。各分流ファン9
1は、ガス配管17によりそれぞれ、搬送方向下流側の
小室Rから上流側に隣接する小室Rへ保護雰囲気ガスを
送気する。ガス配管17は図2及び図3に示すように、
炉体1の側壁下部を貫通して配設されている。
Further, a shunt fan 91 is arranged adjacent to the furnace body 1 on one side of the furnace body 1 (in FIG. 1, in FIG. 1).
Only the shunt fan 91 on one side is shown. ). Each shunt fan 9
1 supplies the protective atmosphere gas from the small chamber R on the downstream side in the transport direction to the small chamber R adjacent on the upstream side by the gas pipes 17, respectively. The gas pipe 17 is, as shown in FIGS. 2 and 3,
It is arranged so as to penetrate the lower part of the side wall of the furnace body 1.

【0032】ここで、炉体1内のガス流を考えると、ろ
う付け室14の二小室Rに窒素ガスが供給され、搬入室
12及び徐冷室15から排出されるので、ろう付け室1
4から予熱室13を通じて搬入室12へ流れる気流と、
ろう付け室14から徐冷室15へ流れる気流が生じる。
ろう付け室14には主に吸着などによりワ−クに随伴し
て有害ガス成分(酸素ガス、水蒸気、オイルミスト)が
侵入するが、侵入した有害ガス成分は、上記した気流に
乗って排出される。
Considering the gas flow in the furnace body 1, nitrogen gas is supplied to the two small chambers R of the brazing chamber 14 and is discharged from the carry-in chamber 12 and the slow cooling chamber 15. Therefore, the brazing chamber 1
The airflow flowing from 4 to the carry-in chamber 12 through the preheating chamber 13,
An airflow is generated from the brazing chamber 14 to the slow cooling chamber 15.
The harmful gas components (oxygen gas, water vapor, oil mist) enter the brazing chamber 14 along with the work mainly by adsorption, and the invading harmful gas components are discharged by riding on the above-mentioned air flow. It

【0033】ただ、ろう付け室14から徐冷室15まで
の経路より、ろう付け室14から搬入室12までの経路
が長く、その流体抵抗が大きいので、各分流ファン91
によりろう付け室14から搬入室12への気流を促進し
ている。すなわち、これら分流ファン91によりワ−ク
に随伴する有害ガス成分は、ろう付け室14に達する前
に予熱室13で少しづつ還流され、その結果としてろう
付け室14に達する有害ガス成分を低減することができ
る。
However, since the path from the brazing chamber 14 to the carry-in chamber 12 is longer than the path from the brazing chamber 14 to the slow cooling chamber 15 and its fluid resistance is large, each shunt fan 91 is
This promotes the air flow from the brazing chamber 14 to the carry-in chamber 12. That is, the harmful gas components that accompany the work are circulated little by little in the preheating chamber 13 before reaching the brazing chamber 14 by the shunt fan 91, and as a result, the harmful gas components reaching the brazing chamber 14 are reduced. be able to.

【0034】ろう付け室14の各小室Rは図2及び図3
の比較から明らかなように、予熱室13の各小室Rと同
じ構成であり、ただ、バッフル16の両外側面に断熱材
を素材とするパネル状の輻射遮断部材9が張設されてい
る点が異なっている。この輻射遮断部材9は、具体的に
はセラミック材を素材としており、厚さ10cmで搬送
方向にはろう付け室14一杯に配設されている。輻射遮
断部材9の外面とヒ−タ7との間の間隔は10cmに設
計されている。
The small chambers R of the brazing chamber 14 are shown in FIGS.
As is clear from the comparison, the configuration is the same as each of the small chambers R of the preheating chamber 13, except that panel-shaped radiation blocking members 9 made of a heat insulating material are stretched on both outer surfaces of the baffle 16. Are different. Specifically, the radiation blocking member 9 is made of a ceramic material, has a thickness of 10 cm, and is arranged in the brazing chamber 14 in the transport direction. The distance between the outer surface of the radiation blocking member 9 and the heater 7 is designed to be 10 cm.

【0035】以下、この実施例の炉の基本作動及びこの
実施例のろう付け方法の特徴をなす作用を以下に説明す
る。まず、ワ−クは、ろう材層が被着され、その上にフ
ラックス層が被着されたアルミニウム管を素材とする熱
交換器であって、ろう材層の厚さはアルミニウム部材厚
さの5〜10%厚さ、フラックス層の厚さはフラックス
液3〜10%濃度を塗布されている。フラックスとして
は弗化アルミニウム酸カリウムが採用され、ろう材とし
てはAl−Si系が採用される。
The basic operation of the furnace of this embodiment and the operation characterizing the brazing method of this embodiment will be described below. First, the work is a heat exchanger made of an aluminum tube having a brazing material layer deposited thereon and a flux layer deposited thereon, and the brazing material layer has a thickness equal to that of the aluminum member. The thickness of the flux layer is 5 to 10%, and the concentration of the flux liquid is 3 to 10%. Potassium fluoroaluminate is used as the flux, and Al-Si system is used as the brazing material.

【0036】ワ−クは、幅約20cm、長さ約30c
m、高さ約5cmであって、このワ−クを積み重ねるこ
となく、互いに約8cmの間隔を開けて、搬送用の金網
バスケット100中に配置し、この金網バスケット10
0をコンベヤ51上に載置する。次に、入口側ベスチブ
ル2の扉21を開き、コンベヤ51、52を同期運転し
てワ−クを入口側ベスチブル2内へ搬入した後、扉21
を閉じる。
The work has a width of about 20 cm and a length of about 30 c.
m, the height is about 5 cm, and the work is placed in a wire netting basket 100 for transport without stacking the works, and the wires are placed at a distance of about 8 cm from each other.
0 is placed on the conveyor 51. Next, the door 21 of the entrance-side vestibule 2 is opened, the conveyors 51 and 52 are operated synchronously, and the work is carried into the entrance-side vestibule 2.
Close.

【0037】次に、図示しない真空ポンプにより入口側
ベスチブル2を0.1Torrまで排気した後、不活性
ガスである窒素ガスを大気圧まで充填する。次に、扉2
3、28を開き、コンベヤ52、53を高速同期運転し
て入口側ベスチブル2から炉体1内の搬入室12へワ−
クを搬入する。搬入室12に搬入されたワ−クは、コン
ベヤ53、54の低速同期運転により搬入室12から予
熱室13、ろう付け室14、最後に徐冷室15へ連続搬
送される。この間、強制対流及び主としてバッフル16
からの輻射により予熱室13内で摂氏約550度まで予
熱される。なお、バッフル16はヒ−タ7からの輻射に
より摂氏約400〜560度に加熱されている。
Next, the inlet-side vestibule 2 is evacuated to 0.1 Torr by a vacuum pump (not shown), and then an inert gas, nitrogen gas, is filled up to the atmospheric pressure. Next, the door 2
3, 28 are opened, and the conveyors 52, 53 are synchronously operated at high speed to work the inlet side vestibule 2 to the carry-in chamber 12 in the furnace body 1.
Bring in the ku. The work carried into the carry-in chamber 12 is continuously carried from the carry-in chamber 12 to the preheating chamber 13, the brazing chamber 14, and finally to the slow cooling chamber 15 by the low speed synchronous operation of the conveyors 53 and 54. During this time, forced convection and mainly baffles 16
Is preheated in the preheating chamber 13 to about 550 degrees Celsius. The baffle 16 is heated to about 400 to 560 degrees Celsius by the radiation from the heater 7.

【0038】ろう付け室14では、バッフル16への輻
射遮断部材9の装着により、ヒ−タ7からバッフル16
への輻射が抑圧され、それによりバッフル16の温度が
低温(ほぼガス温度)となっているので、バッフル16
からワ−クへの輻射熱量は大幅に削減されている。その
結果、ワ−クはほぼ強制対流により加熱されるので、ワ
−クの各ろう付け部位間及び各ワ−ク間の温度ばらつき
が低減され、この温度ばらつきによるろう付け不良が低
減される。ろう付け室14に入ったワ−クは、主に強制
対流だけで加熱され、それによりフラックスがまず溶
融、活性化し、次に、ろう材が溶融してろう付けが実行
される。
In the brazing chamber 14, the radiation blocking member 9 is attached to the baffle 16 so that the baffle 16 can be removed from the heater 7.
Since the radiation to the baffle 16 is suppressed and the temperature of the baffle 16 is low (almost gas temperature),
The amount of radiant heat from the work to the work has been greatly reduced. As a result, since the work is heated by almost forced convection, temperature variations between the brazing parts of the work and between the works are reduced, and brazing defects due to this temperature variation are reduced. The work entering the brazing chamber 14 is heated mainly by forced convection, whereby the flux is first melted and activated, and then the brazing material is melted to perform brazing.

【0039】図4に炉体1内におけるワ−ク温度と時間
との関係を示す。ろう付け室14で、ワ−クはフラック
ス活性化温度(例えば摂氏550度)からろう付け処理
温度(例えば摂氏600度)まで毎分摂氏5度の昇温速
度で上昇させられる。このようにすると、フラックス蒸
発量を許容範囲内に維持できるので、ろう付け不良を発
生させることが無い。昇温速度は、風速、強制対流ガス
温度、ワ−ク状態の3条件によりほぼ決定される。強制
対流ガス温度を極端に高くすることはワークの温度ばら
つきが大きくなり、ここではワ−クに流入する窒素ガス
温度を摂氏約600度、風速を0.3m/s(ワーク中
央の位置で測定)以上としている。これにより、ワ−ク
のフラックス活性化温度からろう付け処理温度まで平均
して毎分摂氏5度の昇温することができる。なお、ろう
付け室14における酸素濃度は50PPM以下とし、か
つ、露点は摂氏−40度以下とした。
FIG. 4 shows the relationship between the work temperature in the furnace body 1 and time. In the brazing chamber 14, the work is ramped from a flux activation temperature (eg 550 degrees Celsius) to a brazing temperature (eg 600 degrees Celsius) at a rate of 5 degrees Celsius per minute. In this way, the flux evaporation amount can be maintained within the allowable range, so that no brazing failure will occur. The rate of temperature rise is almost determined by three conditions: wind velocity, forced convection gas temperature, and work state. If the forced convection gas temperature is made extremely high, the temperature variation of the work becomes large. Here, the temperature of the nitrogen gas flowing into the work is about 600 degrees Celsius and the wind speed is 0.3 m / s (measured at the center of the work. ) And above. As a result, it is possible to raise the temperature from the flux activation temperature of the work to the brazing temperature by 5 degrees Celsius per minute on average. The oxygen concentration in the brazing chamber 14 was 50 PPM or less, and the dew point was -40 degrees Celsius or less.

【0040】次に、ろう付けされたワ−クは、コンベヤ
54、55の同期低速運転により徐冷室15に送られて
摂氏約540度以下まで徐冷された後、扉29、31を
開けて、コンベヤ55、56を高速同期運転することに
より、ワ−クを出口側ベスチブル3に送る。次に、扉2
9、31を閉め、扉33を開けて、コンベヤ56、57
を同期運転することにより、ワ−クを冷却室4に送り、
ここでハンドリング容易な温度まで急速冷却した後、コ
ンベヤ57、58を同期運転することにより搬出する。
Next, the brazed work is sent to the slow cooling chamber 15 by the synchronous low speed operation of the conveyors 54 and 55, and is gradually cooled to about 540 degrees Celsius or less, and then the doors 29 and 31 are opened. Then, the conveyors 55 and 56 are operated at high speed synchronously to send the work to the outlet side vestibule 3. Next, the door 2
Close 9, 31, open the door 33, conveyer 56, 57
, The work is sent to the cooling chamber 4,
Here, after being rapidly cooled to a temperature that is easy to handle, the conveyors 57 and 58 are carried out by synchronously operating.

【0041】図5に、フラックス活性化温度(例えば摂
氏550度)からろう付け処理温度(例えば摂氏600
度)までの昇温速度と、ろう付け良品率との関係を示
す。ただし、昇温速度以外の条件はこの実施例に等し
い。ろう付け良品率はワークのろう付け部のもれ検査に
より行った。なお、上記昇温速度は強制対流加熱を主と
する場合において、毎分摂氏26度以上とするのは種々
の点で困難であり、ろう付け室14における上記昇温速
度は結局、毎分摂氏5度から25度とするのが好まし
い。
In FIG. 5, the flux activation temperature (for example, 550 degrees Celsius) to the brazing temperature (for example, 600 degrees Celsius).
Shows the relationship between the rate of temperature rise up to the degree) and the rate of non-defective brazing. However, the conditions other than the temperature rising rate are the same as in this embodiment. The rate of non-defective brazing was determined by a leak inspection of the brazing part of the work. In the case where forced convection heating is mainly used, it is difficult to set the heating rate to 26 degrees Celsius or more in various points. It is preferable that the angle is 5 to 25 degrees.

【0042】上記実施例で説明した炉は、同一構造でた
だろう付けにおいて強制対流及び輻射の両方で加熱する
従来の炉に比べて、ろう付け品質を低下することなく金
網バスケット100中に3倍の密度でワ−クを収容で
き、大幅な生産性向上が可能となった。更に、上記実施
例では連続ろう付け炉について説明したが、本発明のろ
う付け方法は、他の形式のろう付け炉に適用できること
は当然である。例えば、小規模のろう付け炉として、予
熱室とろう付け室とが共通となっていて、入口側ベスチ
ブルと出口側ベスチブルとが共通となっていて、バッチ
運転されるろう付け炉に適用することができる。この場
合、予熱時に輻射及び強制対流でワ−クを急速加熱し、
フラックス活性化温度からろう付け処理温度まで主とし
て強制対流で加熱するために、バッフルとヒ−タとの
間、又は、バッフルとワ−クとの間に可動の輻射遮断部
材を設け、予熱時には、輻射遮断部材を上記位置から離
脱させておき、予熱終了後、輻射遮断部材を上記位置に
復帰させればよい。その他、ワ−クの両側にそれぞれ断
熱パネルを挟んで輻射専用ヒ−タバッフル側に、強制対
流専用ヒ−タを炉体側壁側に配設してもよい。そして、
予熱時には両ヒ−タで輻射及び強制対流で急速加熱し、
ろう付け時には強制対流のみで温度ばらつきを抑止しつ
つ加熱を行えばよい。
The furnace described in the above embodiment has three times as much metal wire basket 100 without degrading the brazing quality as compared with the conventional furnace which has the same structure and is heated by both forced convection and radiation in brazing. The work can be accommodated at the density of, and the productivity can be greatly improved. Further, although the continuous brazing furnace is described in the above embodiment, it is obvious that the brazing method of the present invention can be applied to other types of brazing furnaces. For example, as a small-scale brazing furnace, the preheating chamber and the brazing chamber are common, and the inlet side vestibule and the outlet side vestibule are common, and it is applicable to a brazing furnace operated in batch. You can In this case, during preheating, the work is rapidly heated by radiation and forced convection,
In order to heat mainly from the flux activation temperature to the brazing temperature by forced convection, a movable radiation blocking member is provided between the baffle and the heater or between the baffle and the work, and at the time of preheating, The radiation blocking member may be separated from the above position, and after the preheating, the radiation blocking member may be returned to the above position. Alternatively, a heat-dedicated heater baffle side and a forced convection-dedicated heater may be disposed on the side wall of the furnace body with heat insulating panels sandwiched on both sides of the work. And
During preheating, both heaters heat rapidly by radiation and forced convection,
When brazing, heating may be performed while suppressing temperature variations only by forced convection.

【0043】なお、図3において、輻射遮断部材9は、
バッフル16に接する必要はなく、ヒ−タ7から直接あ
るいはバッフル16を介してのワ−クへの輻射を低減で
きる配置であればよい。
In FIG. 3, the radiation blocking member 9 is
The baffle 16 does not have to be in contact with the baffle 16 and may be arranged so as to reduce radiation from the heater 7 directly or through the baffle 16 to the work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミニウムろう付け炉の一実施例を
表す模式断面図、
FIG. 1 is a schematic sectional view showing an embodiment of an aluminum brazing furnace of the present invention,

【図2】上記実施例における予熱室の模式断面図、FIG. 2 is a schematic cross-sectional view of the preheating chamber in the above embodiment,

【図3】上記実施例におけるろう付け室の模式断面図、FIG. 3 is a schematic sectional view of a brazing chamber in the above embodiment,

【図4】上記実施例におけるワ−クの温度変化を示すグ
ラフ、
FIG. 4 is a graph showing the temperature change of the work in the above embodiment,

【図5】上記実施例における昇温速度とろう付け良品率
との関係を示すグラフ、
FIG. 5 is a graph showing the relationship between the rate of temperature rise and the non-defective brazing rate in the above example,

【符号の説明】[Explanation of symbols]

13は予熱室、14はろう付け室、15は徐冷室、62
は保護雰囲気充填手段、54はコンベヤ(搬送手段)、
52、53はコンベヤ(ワ−ク搬入手段)、55、56
はコンベヤ(ワ−ク搬出手段)、7はヒ−タ、8は循環
ファン、9は輻射遮断部材
13 is a preheating chamber, 14 is a brazing chamber, 15 is a slow cooling chamber, 62
Is a protective atmosphere filling means, 54 is a conveyor (conveying means),
52 and 53 are conveyors (work-in means), 55 and 56
Is a conveyor (work-out means), 7 is a heater, 8 is a circulation fan, and 9 is a radiation blocking member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平子 匠 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 井口 健 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 外山 猛敏 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirako Takumi, 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihon Denso Co., Ltd. (72) Inventor, Ken Iguchi, 1-1, Showa-cho, Kariya city, Aichi prefecture Nidec Incorporated (72) Inventor Taketoshi Toyama 1-1 1-1 Showa-cho, Kariya city, Aichi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともろう付け部位にフラックス及び
ろう材が被着されたワ−クとしてのアルミニウム部材を
保護雰囲気中で予熱する予熱工程と、 予熱済みワ−クを前記保護雰囲気中で主として強制対流
により加熱しフラックス活性化及びろう材溶融を順次行
うろう付け工程と、 ろう付け済みワ−クを前記保護雰囲気中で徐冷する徐冷
工程とを備えることを特徴とするアルミニウムろう付け
方法。
1. A preheating step of preheating an aluminum member as a work, to which flux and a brazing material are applied at least at a brazing site, in a protective atmosphere, and a preheated work is mainly forced in the protective atmosphere. An aluminum brazing method comprising: a brazing step of heating by convection to sequentially perform flux activation and melting of a brazing material; and a slow cooling step of gradually cooling a brazed work in the protective atmosphere.
【請求項2】前記ろう材としてAl−Si系を採用し、
前記フラックスとして弗化アルミニウム酸カリウムKA
lF4 ,K3 AlF6 とK2 AlF5 ・H2 Oの一種ま
たは二種以上の混合物を採用し、前記ろう付け工程にお
いて摂氏550度から摂氏600度までのワ−クの昇温
を毎分摂氏5度以上の昇温速度で実行する請求項1記載
のアルミニウムろう付け方法。
2. An Al—Si system is adopted as the brazing material,
As the flux, potassium fluoroaluminate KA
lF 4, K 3 adopts AlF 6 and K 2 AlF 5 · H 2 O type or a mixture of two or more of the sum from 550 degrees Celsius to 600 degrees Celsius in the brazing process - every Atsushi Nobori of click The aluminum brazing method according to claim 1, wherein the aluminum brazing method is performed at a heating rate of 5 degrees Celsius or more.
【請求項3】フラックス及びろう材が被着されたワ−ク
としてのアルミニウム部材を予熱するための予熱室、予
熱済みワ−クを加熱しフラックス活性化及びろう材溶融
を順次行うためのろう付け室、及び、ろう付け済みワ−
クを徐冷するための徐冷室を備える気密可能な炉体と、
前記各室に保護雰囲気ガスを充填する保護雰囲気ガス充
填手段と、ワ−クを前記予熱室から前記ろう付け室を経
由して前記徐冷室へ搬送する搬送手段と、前記予熱室へ
のワ−ク搬入を行うワ−ク搬入手段と、前記徐冷室から
のワ−ク搬出を行うワ−ク搬出手段と、前記予熱室及び
ろう付け室内に配設され前記保護雰囲気ガスを加熱する
ヒ−タと、前記ろう付け室内に前記保護雰囲気ガスの強
制対流を生起させる循環ファンとを備えるアルミニウム
ろう付け炉において、 前記ろう付け室内に配設され、ワ−クへの輻射熱量を低
減して前記ワ−クの加熱を主として前記強制対流により
実施させる輻射遮断部材を備えることを特徴とするアル
ミニウムろう付け炉。
3. A preheating chamber for preheating an aluminum member as a work to which flux and a brazing material are applied, a preheating chamber is heated to perform flux activation and a brazing filler metal in sequence. Brazing room and brazed wire
An airtight furnace body provided with a slow cooling chamber for slow cooling
Protective atmosphere gas filling means for filling each chamber with a protective atmosphere gas, conveying means for conveying a work from the preheating chamber to the slow cooling chamber via the brazing chamber, and a work to the preheating chamber. A work carry-in means for carrying in work, a work carry-out means for carrying out work from the slow cooling chamber, and a heater for heating the protective atmosphere gas provided in the preheating chamber and the brazing chamber. -In an aluminum brazing furnace provided with a cooling fan and a circulation fan that causes forced convection of the protective atmosphere gas in the brazing chamber, the aluminum brazing furnace is disposed in the brazing chamber to reduce the amount of radiant heat to the work. An aluminum brazing furnace characterized by comprising a radiation blocking member for heating the work mainly by the forced convection.
JP4235724A 1991-10-18 1992-09-03 Aluminum brazing method using non-corrosive flux and aluminum brazing furnace using non-corrosive flux Expired - Lifetime JP2768163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235724A JP2768163B2 (en) 1991-10-18 1992-09-03 Aluminum brazing method using non-corrosive flux and aluminum brazing furnace using non-corrosive flux

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27087591 1991-10-18
JP3-270875 1991-10-18
JP4235724A JP2768163B2 (en) 1991-10-18 1992-09-03 Aluminum brazing method using non-corrosive flux and aluminum brazing furnace using non-corrosive flux

Publications (2)

Publication Number Publication Date
JPH05192765A true JPH05192765A (en) 1993-08-03
JP2768163B2 JP2768163B2 (en) 1998-06-25

Family

ID=26532291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235724A Expired - Lifetime JP2768163B2 (en) 1991-10-18 1992-09-03 Aluminum brazing method using non-corrosive flux and aluminum brazing furnace using non-corrosive flux

Country Status (1)

Country Link
JP (1) JP2768163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424097B1 (en) * 2001-06-19 2004-03-26 대한열기 주식회사 Preheating system of brazing object for batch-type brazing furnace system
JP2007319924A (en) * 2006-06-05 2007-12-13 Kanto Yakin Kogyo Co Ltd Continuous furnace for brazing aluminum product and method therefor
JP2009285719A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Flux applicator
CN114029575A (en) * 2021-11-16 2022-02-11 深圳市飞荣达科技股份有限公司 Segmented brazing method and segmented brazing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163363U (en) * 1984-07-03 1986-04-30
JPS62176672A (en) * 1986-01-28 1987-08-03 Showa Alum Corp Brazing method for aluminum made heat exchanger having excellent corrosion resistance
JPH01186270A (en) * 1988-01-19 1989-07-25 Kenji Kondo Reflow soldering device
JPH01293993A (en) * 1988-05-20 1989-11-27 Kanto Yakin Kogyo Kk Brazing method for aluminum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163363U (en) * 1984-07-03 1986-04-30
JPS62176672A (en) * 1986-01-28 1987-08-03 Showa Alum Corp Brazing method for aluminum made heat exchanger having excellent corrosion resistance
JPH01186270A (en) * 1988-01-19 1989-07-25 Kenji Kondo Reflow soldering device
JPH01293993A (en) * 1988-05-20 1989-11-27 Kanto Yakin Kogyo Kk Brazing method for aluminum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424097B1 (en) * 2001-06-19 2004-03-26 대한열기 주식회사 Preheating system of brazing object for batch-type brazing furnace system
JP2007319924A (en) * 2006-06-05 2007-12-13 Kanto Yakin Kogyo Co Ltd Continuous furnace for brazing aluminum product and method therefor
JP4592645B2 (en) * 2006-06-05 2010-12-01 関東冶金工業株式会社 Continuous furnace for brazing aluminum products and brazing method
JP2009285719A (en) * 2008-05-30 2009-12-10 Nippon Dennetsu Co Ltd Flux applicator
CN114029575A (en) * 2021-11-16 2022-02-11 深圳市飞荣达科技股份有限公司 Segmented brazing method and segmented brazing device

Also Published As

Publication number Publication date
JP2768163B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US4886449A (en) Vacuum brazing of aluminum alloy workpieces
US5289968A (en) Aluminum brazing method and furnace therefor
JP2017155277A (en) Method, device, and system to manufacturing black plated steel sheet
JP2019516563A (en) Method and apparatus for manufacturing a brazed heat exchanger
JPH05192765A (en) Aluminum brazing method and furnace therefor
JP2010042439A (en) Brazing method of combination type of convection heat and radiant heat, and brazing furnace
US7625260B2 (en) Method of sealing glass panel assembly and sealing process furnace
JPS58224087A (en) Method and device for vacuum sealing of heat insulated vacuum vessel
US4804128A (en) Vacuum brazing of aluminum alloy workpieces
JPH04127958A (en) Vacuum brazing method for heat exchanger
JP6796929B2 (en) Fluxless brazing method for aluminum materials and brazing processing equipment
CN210529024U (en) Carburizing equipment
RU2135339C1 (en) Method of producing metal structure
KR100816350B1 (en) Heat treatment device
JPH0655349B2 (en) Vacuum brazing method for aluminum
CN1265516A (en) Exhaust sealing method for plasma display panel
JPH11229042A (en) Vertical type continuous heat treatment furnace
JPH06102818B2 (en) Aluminum vacuum brazing method and vacuum brazing furnace
KR102370006B1 (en) Continuous brazing system
JP2772699B2 (en) Vacuum heat treatment equipment
JPS6122236B2 (en)
JPH0341887Y2 (en)
JPH1021832A (en) Gas evacuating and sealing method for plasma display panel and facility therefor
JP2843471B2 (en) Airtight structure of partition door in vacuum processing furnace
JPH07115165B2 (en) Vacuum brazing equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 15