JPH0519263B2 - - Google Patents

Info

Publication number
JPH0519263B2
JPH0519263B2 JP56153068A JP15306881A JPH0519263B2 JP H0519263 B2 JPH0519263 B2 JP H0519263B2 JP 56153068 A JP56153068 A JP 56153068A JP 15306881 A JP15306881 A JP 15306881A JP H0519263 B2 JPH0519263 B2 JP H0519263B2
Authority
JP
Japan
Prior art keywords
layer
water
air
electrolyte
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56153068A
Other languages
Japanese (ja)
Other versions
JPS5854563A (en
Inventor
Toshiaki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56153068A priority Critical patent/JPS5854563A/en
Publication of JPS5854563A publication Critical patent/JPS5854563A/en
Publication of JPH0519263B2 publication Critical patent/JPH0519263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、空気/金属電池又は酸素センサ等の
空気電極に用いて有効な触媒層に関し、更に詳し
くは重負荷放電が可能で、耐漏液性にもすぐれる
空気電極の触媒層に関する。 従来から、各種の空気電池、ガルバニ型の酸素
センサ等の空気電極にはガス拡散電極が用いられ
ている。 このガス拡散電極としては、当初は厚く、単一
の多孔質触媒層から成るものが用いられてきた
が、現在では、電池に対する薄型化の要求及び耐
漏液性の改善要求から薄い多孔質触媒層に撥水性
材料の薄層を一体的に添着して成る2層構造の電
極が用いられるようになつている。また、漏液の
許されない場合、例えば水中の溶存酸素ガス濃度
の検出に用いるガルバニ型酸素センサにあつて
は、上記の2層構造の電極の撥水性層の上に更に
耐電解液性・ガス透過性の無孔性フイルムを一体
的に添着して空気電極を構成することが行なわれ
ている。 多孔質触媒層と撥水性層とから基本的には構成
される空気電極は、更に例えばニツケルネツトの
ような集電体が一体的に添着されて実用の空気電
極となる。 さて、このような空気電極にあつては、多孔質
触媒層はその細孔内に気相(空気)−固相(触媒
とそれを担持する基材)−液相(電解液)の三相
帯を形成し、該三相帯において酸素ガスの電気化
学的還元反応が進行する。その結果、該多孔質触
媒層に一体的に添着されている集電体を介して電
流を取り出すことができる。したがつて、多孔質
触媒層は、例えば活性炭粉末単独又は活性炭、黒
鉛若しくは各種金属の導電性材料の粉末を基材と
し、これに酸素ガスに対し電気化学的還元能を有
する触媒を担持せしめて構成されている。代表的
なものとしては、例えば酸素還元過電圧の低いニ
ツケルタングステン酸、パラジウム・コバルトで
被覆された炭化タングステン、ニツケル、銀、白
金、パラジウムなどを担持せしめた活性炭粉末
に、例えばポリテトラフロロエチレンで結着して
多孔質体を形成し、これを金属多孔質体、カーボ
ン多孔質体又はカーボン繊維不織布と一体化して
構成されたものがある。 また、撥水性層としては、ポリテトラフロロエ
チレン、テトラフロロエチレン−ヘキサフロロプ
ロピレン共重合体、エチレン−テトラフロロエチ
レン共重合体のようなフツ素樹脂又はポリプロピ
レンに代表される撥水性材料の粉末の焼結体、繊
維を加熱処理して不織布化した紙状のもの、繊布
状のもの、フイルム状のものが広く用いられてい
る。 しかしながら、上記のような従来構造の空気電
極においては、薄く耐漏液性にすぐれ、かつ重負
荷放電が要求される用途(例えば薄型の空気/亜
鉛電池)を必ずしも満足せしめることがなかつ
た。 例えば、撥水性層として上記したようなフツ素
樹脂の粉末を焼結して得た多孔箔を用いた場合、
約20mA/cm2というかなり重負荷の連続放電を行
う事ができるが、その厚みは0.125〜0.50mm程度
になる。又該多孔箔の孔径が均一ではなく大きな
孔径の孔が存在する事から、空気電極の対極での
体積膨張等によつて電池内圧上昇を生じ、特に密
閉型電池の場合には漏液現象を引き起すことがあ
る。一方、漏液を防止するために薄いガス透過性
の無孔性フイルムを接着剤等を用いて更にガス側
に貼着した空気電極においては、漏液現象を完全
に防止でき、かつその厚みも約12.5μm程度まで
薄くする事もできるが、この際には10mA/cm2
上の大電流で連続して放電を行うのは非常に困難
となる。 一方、他の形式の空気電極として、活性炭やニ
ツケルのような導電性の基材粉末に各種の触媒を
担持せしめたものを、ポリテトラフロロエチレン
のような撥水性材料の粉末と混合し、得られた混
合粉末を加圧成形して成るものが知られている。
このとき撥水性材料の粉末は基材粉末の結着剤と
して機能する。この場合の空気電極は2層構造で
はなく、撥水性材料が多孔質触媒層内に均一に分
散するものである。この形式の空気電極は、多孔
質触媒層に添着される撥水性層が不要となるた
め、全体の厚みに対して多孔質触媒層を厚くする
(触媒量を多くする)ことができるので、重負荷
放電が可能となる。逆に、所定電流による重負荷
放電にとつては、その厚みを薄くすることができ
る。しかしながら、この形式の空気電極において
は、親水性の基材又は触媒の面がかなりの程度露
出しているので、時間の経過とともに電解液が
徐々に多孔質触媒層内に浸透して三相帯の有効面
積を漸減せしめる。その結果、重負荷放電の安定
性が阻害されるという不都合な事態が生ずる。 本発明者は、撥水性層を添着せず均一に撥水性
材料が分散された形式の空気電極の多孔質触媒層
における上記のような欠点を解消するために鋭意
研究を重ねた結果、該多孔質触媒層の空気側の撥
水性を電解液側の撥水性よりも高めれば、両者の
バランスする部分では好適な三相帯が形成される
可能性大との着想を得、本発明を完成するに到つ
た。 すなわち、本発明は、長期に亘る重負荷放電が
可能で、耐漏液性にもすぐれ、かつ薄くすること
が容易な空気電極の触媒層の提供を目的とするも
のである。 本発明の触媒層は、いずれも撥水性結着剤を含
有する2つの導電性多孔質触媒層を、それぞれ空
気側層及び電解液側層として一体的に積層して成
る空気電極の触媒層であつて、該空気側層の該撥
水性結着剤の含有比率(重量%)が、該電解液側
層の該撥水性結着剤の含有比率(重量%)よりも
大であること、該空気側層の厚みと該層の該撥水
性結着剤の含有比率(重量%)との積が、該電解
液側層の厚みと該層の該撥水性結着剤の含有比率
(重量%)との積に対して8.0倍以下の値であるこ
とを構成上の特徴とする。 本発明の触媒層は2つの導電性多孔質触媒層を
積層した複合触媒層である。 これらの導電性多孔質触媒層は、酸素ガスに対
して電気化学的還元能を有するニツケルタングス
テン酸、パラジウム・コバルトで被覆された炭化
タングステン、ニツケル、銀、白金、パラジウム
等の触媒を担持させた活性炭粉末又は活性炭の単
独粉末を、撥水性結着剤の粉末又は液と混合又は
混練し、これを所定の方法、例えばロール成形し
て所定の厚みのシートにすることによつて得られ
る。このとき、用いる撥水性結着剤としては、結
着性とともに撥水性と耐電解液性の良好なもので
あれば何を用いてもよいが、とくに、ポリテトラ
フロロエチレン、ポリエチレン、ポリスチレン、
ポリアミド樹脂、アクリル樹脂、エポキシ樹脂、
ネオプレンやクロロプレンのような合成ゴムを好
ましいものとしてあげることができる。 複合触媒層を構成する2つの導電性多孔質触媒
層のうち、1つは空気側層、他の1つは電解液側
層である。 本発明において、空気側層と電解液側層にそれ
ぞれ含有される撥水性結着剤の量は、その含有比
率において異なる。すなわち、空気側層内の撥水
性結着剤の含有比率は、その重量%において電解
液側層のそれよりも大きいことを第1の特徴とす
る。 かくすることによつて、この複合触媒層を空気
電極に適用した場合、空気側層内の細孔には電解
液が浸透しにくくなり、また電解液側層の細孔内
には電解液が適度に浸透するので、2つの層の境
界面又はその近傍においては、電解液の浸透と撥
水が微妙にバランスを保つことによつて、酸素ガ
スの電気化学的還元反応をする三相帯が長期に亘
り安定して存在できるようになる。 また、空気側層の厚みを大きくすれば、該層の
撥水機能も大きくなるので耐漏液性を向上する。
しかしながら、その厚みが過大になると、全体の
電気抵抗が増大すること、酸素ガスの拡散に対す
る妨害が増大することなどの悪影響が派生し、そ
の結果、重負荷放電が制限されるという事態も生
ずることになる。 そこで、本発明者は、空気側層と電解液側層の
それぞれの厚み(ta,te:mm)、及び各層に含有
されている撥水性結着剤の比率(xa,xe:重量
%)との関係につき調査したところ、ta×xa/te
×xeの値が8.0以下のとき、複合触媒層は重負荷
放電特性及び耐漏液性にすぐれることを見出し
た。ta×xa/te×xeの値が上記の値をはずれる
と、電解液側層と比較して空気側層の厚さが増大
し、しかも撥水性結着剤含有量(重量%)が過大
になるため、空気電極の電気抵抗が増大するのみ
ならず、空気電極全体の厚みを増したときより
も、はるかに酸素ガスの拡散を妨害することにな
る。このことから、本発明の第2の特徴として、
該空気側層の厚みと該層の該撥水性結着剤の含有
比率(重量%)との積は、該電解液側層の厚みと
該層の該撥水性結着剤の含有比率(重量%)との
積に対し、8.0倍以下の値である。 本発明の複合触媒層の作成にあたつては、予
め、xa,xe及びta,teの異なる2枚の導電性多
孔質触媒層のシートを常法により作成しておき、
これをxa×ta/xe×teの値が上記範囲になるよ
うに組合せて積層したうえ、圧着する。このと
き、集電体(例えばニツケルネツト)を各シート
の間、又は電解液側層の表面に挟持又は載置して
同時に圧着して一挙に空気電極を形成することも
できる。 以下に本発明を実施例に基づいて説明する。 実施例 導電性触媒粉末として活性炭の粉末(平均粒径
80μ)、撥水性結着剤としてポリテトラフロロエ
チレン粉末(平均粒径15μ)のデイスパージヨン
を用い、第1表に示したようなxa,ta;xe,xe
の導電性多孔質触媒層シートを作成した。 各シートを積層し、50〜100Kg/cm2の圧力で圧
着し一体的構造の複合触媒層試料を7枚作成し
た。試料1〜5が本発明の実施例、試料6〜7は
比較例である。
The present invention relates to a catalyst layer that is effective for use in air electrodes such as air/metal batteries or oxygen sensors, and more particularly to a catalyst layer for air electrodes that is capable of heavy load discharge and has excellent leakage resistance. Conventionally, gas diffusion electrodes have been used as air electrodes in various air batteries, galvanic oxygen sensors, and the like. Initially, gas diffusion electrodes consisting of a single, thick porous catalyst layer were used, but now, due to the demand for thinner batteries and the need for improved leakage resistance, thin porous catalyst layers have been used. Electrodes with a two-layer structure, in which a thin layer of water-repellent material is integrally attached to the electrode, have come to be used. In addition, in cases where liquid leakage is not allowed, for example, in the case of galvanic oxygen sensors used to detect the concentration of dissolved oxygen gas in water, an electrolyte-resistant and gas-resistant Air electrodes are constructed by integrally attaching a transparent non-porous film. An air electrode basically composed of a porous catalyst layer and a water-repellent layer is further integrally attached with a current collector such as nickel net to become a practical air electrode. Now, in the case of such an air electrode, the porous catalyst layer has three phases within its pores: gas phase (air), solid phase (catalyst and base material supporting it), and liquid phase (electrolyte solution). A band is formed, and an electrochemical reduction reaction of oxygen gas proceeds in the three-phase band. As a result, current can be extracted through the current collector that is integrally attached to the porous catalyst layer. Therefore, the porous catalyst layer is made of, for example, activated carbon powder alone or powder of activated carbon, graphite, or various metal conductive materials as a base material, and a catalyst having an electrochemical reduction ability for oxygen gas is supported on this. It is configured. Typical examples include nickel tungstic acid, which has a low oxygen reduction overpotential, tungsten carbide coated with palladium and cobalt, activated carbon powder supporting nickel, silver, platinum, palladium, etc., bound with polytetrafluoroethylene, etc. There is a structure in which a porous body is formed by attaching a porous body to a porous body, and this is integrated with a porous metal body, a porous carbon body, or a carbon fiber nonwoven fabric. In addition, the water-repellent layer may be made of powder of a water-repellent material typified by fluorine resins such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, or polypropylene. Sintered bodies, paper-like materials made by heat-treating fibers into non-woven fabrics, fabric-like materials, and film-like materials are widely used. However, the air electrode of the conventional structure as described above does not necessarily satisfy applications requiring thinness, excellent leakage resistance, and heavy load discharge (for example, thin air/zinc batteries). For example, if a porous foil obtained by sintering fluororesin powder as described above is used as the water-repellent layer,
It is possible to perform continuous discharge with a fairly heavy load of approximately 20 mA/cm 2 , but the thickness is approximately 0.125 to 0.50 mm. In addition, since the pore diameter of the porous foil is not uniform and there are pores with large diameters, the internal pressure of the battery increases due to volume expansion at the counter electrode of the air electrode, which may cause leakage, especially in the case of a sealed battery. It may cause. On the other hand, in an air electrode in which a thin gas-permeable non-porous film is further attached to the gas side using an adhesive to prevent liquid leakage, the liquid leakage phenomenon can be completely prevented and the thickness can be reduced. It is possible to reduce the thickness to about 12.5 μm, but in this case it would be extremely difficult to discharge continuously at a large current of 10 mA/cm 2 or more. On the other hand, other types of air electrodes can be obtained by mixing various catalysts supported on conductive base material powder such as activated carbon or nickel with powder of water-repellent material such as polytetrafluoroethylene. It is known that the powder mixture is formed by pressure molding.
At this time, the water-repellent material powder functions as a binder for the base material powder. The air electrode in this case does not have a two-layer structure, but has a water-repellent material uniformly dispersed within the porous catalyst layer. This type of air electrode does not require a water-repellent layer attached to the porous catalyst layer, so the porous catalyst layer can be made thicker (increasing the amount of catalyst) relative to the overall thickness, so it is heavy. Load discharge becomes possible. Conversely, for heavy load discharge using a predetermined current, the thickness can be reduced. However, in this type of air electrode, the surface of the hydrophilic base material or catalyst is exposed to a considerable extent, so the electrolyte gradually penetrates into the porous catalyst layer over time, forming a three-phase zone. The effective area of the area is gradually reduced. As a result, an inconvenient situation arises in that the stability of heavy load discharge is inhibited. The present inventor has conducted extensive research in order to eliminate the above-mentioned drawbacks in the porous catalyst layer of an air electrode in which a water-repellent material is uniformly dispersed without attaching a water-repellent layer. The present invention was completed based on the idea that if the water repellency on the air side of the catalyst layer is made higher than the water repellency on the electrolyte side, there is a high possibility that a suitable three-phase zone will be formed in the area where the two are balanced. I reached it. That is, an object of the present invention is to provide a catalyst layer for an air electrode that is capable of long-term heavy load discharge, has excellent leakage resistance, and can be easily made thin. The catalyst layer of the present invention is an air electrode catalyst layer formed by integrally laminating two conductive porous catalyst layers each containing a water-repellent binder as an air side layer and an electrolyte side layer. the content ratio (wt%) of the water-repellent binder in the air side layer is greater than the content ratio (wt%) of the water-repellent binder in the electrolyte side layer; The product of the thickness of the air side layer and the content ratio (wt%) of the water-repellent binder in the layer is the product of the thickness of the electrolyte side layer and the content ratio (wt%) of the water-repellent binder in the layer. ) is 8.0 times or less. The catalyst layer of the present invention is a composite catalyst layer in which two conductive porous catalyst layers are laminated. These conductive porous catalyst layers support catalysts such as nickel tungstic acid, tungsten carbide coated with palladium and cobalt, nickel, silver, platinum, and palladium, which have the ability to electrochemically reduce oxygen gas. It can be obtained by mixing or kneading activated carbon powder or activated carbon powder alone with a water-repellent binder powder or liquid, and forming the mixture into a sheet of a predetermined thickness by a predetermined method, for example, roll forming. At this time, any water-repellent binder may be used as long as it has good binding properties, water repellency, and electrolyte resistance, but polytetrafluoroethylene, polyethylene, polystyrene,
polyamide resin, acrylic resin, epoxy resin,
Synthetic rubbers such as neoprene and chloroprene are preferred. Of the two conductive porous catalyst layers constituting the composite catalyst layer, one is an air side layer and the other is an electrolyte side layer. In the present invention, the amounts of the water-repellent binder contained in the air side layer and the electrolyte side layer differ in their content ratios. That is, the first feature is that the content ratio of the water-repellent binder in the air side layer is larger in weight percent than that in the electrolyte side layer. By doing so, when this composite catalyst layer is applied to an air electrode, the electrolyte becomes difficult to penetrate into the pores in the air side layer, and the electrolyte is prevented from penetrating into the pores in the electrolyte side layer. As the penetration is moderate, at or near the interface between the two layers, a three-phase zone is created where the electrolyte penetration and water repellency maintain a delicate balance, allowing the electrochemical reduction reaction of oxygen gas to occur. It will be able to exist stably for a long period of time. Furthermore, if the thickness of the air side layer is increased, the water repellency of the layer will also be increased, thereby improving the leakage resistance.
However, if the thickness becomes too large, negative effects such as an increase in the overall electrical resistance and an increase in interference with the diffusion of oxygen gas may occur, resulting in a situation where heavy load discharge is restricted. become. Therefore, the present inventor determined the respective thicknesses (ta, te: mm) of the air side layer and electrolyte side layer, and the ratio (xa, xe: weight %) of the water-repellent binder contained in each layer. When we investigated the relationship between tax×xa/te
It has been found that when the value of xxe is 8.0 or less, the composite catalyst layer has excellent heavy load discharge characteristics and leakage resistance. If the value of ta×xa/te×xe deviates from the above value, the thickness of the air side layer will increase compared to the electrolyte side layer, and the water-repellent binder content (wt%) will become excessive. Therefore, not only the electrical resistance of the air electrode increases, but also the diffusion of oxygen gas is hindered much more than when the thickness of the entire air electrode is increased. From this, the second feature of the present invention is that
The product of the thickness of the air side layer and the content ratio (weight %) of the water repellent binder in the layer is the product of the thickness of the electrolyte side layer and the content ratio (weight %) of the water repellent binder in the layer. %), the value is 8.0 times or less. When creating the composite catalyst layer of the present invention, two conductive porous catalyst layer sheets with different xa, xe and ta, te are created in advance by a conventional method.
These are combined and laminated so that the value of xa x ta/xe x te falls within the above range, and then crimped. At this time, a current collector (for example, a nickel net) may be sandwiched or placed between each sheet or on the surface of the electrolyte side layer and pressed together at the same time to form an air electrode at once. The present invention will be explained below based on examples. Example Activated carbon powder (average particle size
80μ), using a dispersion of polytetrafluoroethylene powder (average particle size 15μ) as a water-repellent binder, xa, ta; xe, xe as shown in Table 1.
A conductive porous catalyst layer sheet was prepared. Each sheet was laminated and pressed together at a pressure of 50 to 100 kg/cm 2 to prepare seven composite catalyst layer samples with an integral structure. Samples 1 to 5 are examples of the present invention, and samples 6 to 7 are comparative examples.

【表】【table】

【表】 各複合触媒層のxa×ta/xe×teの値はそれぞ
れ第1表に併記した。 これら複合触媒層の電解液側層の上に0.15φ40
メツシユのニツケルネツトを、空気側層の表面に
は平均孔径3μ、厚み100μのポリテトラフロロエ
チレンフイルムを当接し、全体を100Kg/cm2で加
圧して、7個の空気電極を作成した。また、活性
炭の粉末(平均粒径80μ)、ポリエチレン粉末
(平均粒径35μ)を150℃で混練した後、ロール圧
延してシートとした。
[Table] The values of xa×ta/xe×te for each composite catalyst layer are also listed in Table 1. 0.15φ40 on the electrolyte side layer of these composite catalyst layers
A polytetrafluoroethylene film having an average pore diameter of 3 .mu.m and a thickness of 100 .mu.m was brought into contact with the surface of the air side layer of the mesh nickel net, and the whole was pressurized at 100 kg/ cm.sup.2 to form seven air electrodes. In addition, activated carbon powder (average particle size 80μ) and polyethylene powder (average particle size 35μ) were kneaded at 150°C, and then rolled into a sheet.

【表】 試料1〜7の場合と同様にして4枚の複合触媒
層を作成した。試料8〜9が実施例、試料10〜11
は比較例である。これらの複合触媒層を用いて、
試料1〜7の場合と同様にして4個の空気電極を
作成した。xa,ta:xe,teは第2表に示したと
おりであつた。 ついで、各空気電極と量比で3%の水銀でアマ
ルガム化した60〜150メツシユ篩通過の亜鉛粉末
をゲル状電解液(水酸化ナトリウム溶液中にゲル
化剤を分散して調製したもの)に分散させて成る
亜鉛極とポリアミド不織布から成るセパレータと
から空気/亜鉛電池を11個組立てた。 これらの電池を25℃空気中で16時間放置した
後、各種の電流で5分間放置し、5分後の端子電
圧が1.0V以下に降下するときの電流値を測定し
た。また、各電池に500Ω定抵抗を接続し、25℃
で連続放電した。空気側層から電解液が漏洩する
までの時間を測定した。 以上の結果を、第1表、第2表の試料番号に対
応させて第3表に一括して示した。
[Table] Four composite catalyst layers were prepared in the same manner as in Samples 1 to 7. Samples 8-9 are examples, samples 10-11
is a comparative example. Using these composite catalyst layers,
Four air electrodes were created in the same manner as in Samples 1 to 7. xa, ta: xe, te were as shown in Table 2. Next, each air electrode and the zinc powder passed through a 60 to 150 mesh sieve amalgamated with 3% mercury by volume were mixed into a gel electrolyte (prepared by dispersing a gelling agent in a sodium hydroxide solution). Eleven air/zinc batteries were assembled from dispersed zinc electrodes and separators made of polyamide nonwoven fabric. These batteries were left in air at 25° C. for 16 hours, then left with various currents for 5 minutes, and the current value when the terminal voltage dropped to 1.0 V or less after 5 minutes was measured. Also, connect a 500Ω constant resistor to each battery, and
It was discharged continuously. The time required for the electrolyte to leak from the air side layer was measured. The above results are collectively shown in Table 3 in correspondence with the sample numbers in Tables 1 and 2.

【表】 上表から明らかな如く、本発明に係る空気電極
を用いる事により、重負荷放電が可能となり、し
かも耐漏液性が向上する。 なお上記実施例においては水酸化ナトリウムを
電解液とする空気−亜鉛電池を組み立てて、その
性能評価を行つたが、他の電解液、例えば塩化ア
ンモニウムや水酸化カリウムや水酸化リチウム、
水酸化セシウム、水酸化ルビジウム等をこれら溶
液に混合した溶液を用いても同様の効果が得られ
る事は言うまでもない。又空気−鉄電池等にも用
いる事ができる。 以上詳述の如く、本発明の触媒層を用いる事に
より薄くて重負荷放電が可能で、かつ耐漏液性に
すぐれる空気電極を容易に得る事ができるので、
その工業上利用価値は大きい。
[Table] As is clear from the above table, by using the air electrode according to the present invention, heavy load discharge becomes possible and leakage resistance is improved. In the above example, an air-zinc battery using sodium hydroxide as the electrolyte was assembled and its performance was evaluated, but other electrolytes such as ammonium chloride, potassium hydroxide, lithium hydroxide,
It goes without saying that similar effects can be obtained by using a solution obtained by mixing cesium hydroxide, rubidium hydroxide, etc. with these solutions. It can also be used in air-iron batteries, etc. As detailed above, by using the catalyst layer of the present invention, it is possible to easily obtain a thin air electrode that is capable of heavy load discharge and has excellent leakage resistance.
Its industrial value is great.

Claims (1)

【特許請求の範囲】[Claims] 1 いずれも撥水性結着剤を含有する2つの導電
性多孔質触媒層を、それぞれ空気側層及び電解液
側層として一体的に積層して成る空気電極の触媒
層であつて、該空気側層の該撥水性結着剤の含有
比率(重量%)が、該電解液側層の該撥水性結着
剤の含有比率(重量%)よりも大であり、該空気
側層の厚みと該層の該撥水性結着剤の含有比率
(重量%)との積が、該電解液側層の厚みと該層
の該撥水性結着剤の含有比率(重量%)との積に
対して8.0倍以下の値であることを特徴とする空
気電極の触媒層。
1 A catalyst layer of an air electrode formed by integrally laminating two conductive porous catalyst layers, each containing a water-repellent binder, as an air side layer and an electrolyte side layer, and the air side The content ratio (wt%) of the water-repellent binder in the layer is larger than the content ratio (wt%) of the water-repellent binder in the electrolyte side layer, and the thickness of the air side layer and the The product of the content ratio (wt%) of the water-repellent binder in the layer is the product of the thickness of the electrolyte side layer and the content ratio (wt%) of the water-repellent binder in the layer. A catalyst layer of an air electrode characterized by having a value of 8.0 times or less.
JP56153068A 1981-09-29 1981-09-29 Catalyst layer for air electrode Granted JPS5854563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153068A JPS5854563A (en) 1981-09-29 1981-09-29 Catalyst layer for air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153068A JPS5854563A (en) 1981-09-29 1981-09-29 Catalyst layer for air electrode

Publications (2)

Publication Number Publication Date
JPS5854563A JPS5854563A (en) 1983-03-31
JPH0519263B2 true JPH0519263B2 (en) 1993-03-16

Family

ID=15554277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153068A Granted JPS5854563A (en) 1981-09-29 1981-09-29 Catalyst layer for air electrode

Country Status (1)

Country Link
JP (1) JPS5854563A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210865A (en) * 1985-07-05 1987-01-19 Mitsubishi Electric Corp Electrode-matrix bonding body for fuel cell and its manufacture
EP1494807A2 (en) 2001-12-27 2005-01-12 Aerogel Composite, LLC Aerogel and metallic compositions
JP2007263653A (en) * 2006-03-28 2007-10-11 Riken Keiki Co Ltd Acting electrode for constant-potential electrolytic type gas sensor and its manufacturing method
DE102010024053A1 (en) * 2010-06-16 2011-12-22 Bayer Materialscience Ag Oxygenating electrode and process for its preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045248A (en) * 1973-08-28 1975-04-23
JPS575272A (en) * 1980-06-12 1982-01-12 Toshiba Battery Co Ltd Air cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045248A (en) * 1973-08-28 1975-04-23
JPS575272A (en) * 1980-06-12 1982-01-12 Toshiba Battery Co Ltd Air cell

Also Published As

Publication number Publication date
JPS5854563A (en) 1983-03-31

Similar Documents

Publication Publication Date Title
EP0054688B1 (en) Air electrode
EP0110491B1 (en) Size and weight graded multi-layered eas diffusion electrodes
US4448856A (en) Battery and fuel cell electrodes containing stainless steel charging additive
US5312701A (en) Process for preparing a single pass gas diffusion electrode
US4152489A (en) Multi-ply laminar pasted air electrodes
US4341848A (en) Bifunctional air electrodes containing elemental iron powder charging additive
US4585711A (en) Hydrogen electrode for a fuel cell
US3704171A (en) Catalytic membrane air electrodes for fuel cells and fuel cells containing same
JPS648431B2 (en)
JPH0519263B2 (en)
JPH06103984A (en) Electrode structure for fuel cell
JPS60746B2 (en) gas electrode
US4804598A (en) Separator systems for silver-iron batteries
JP2993965B2 (en) Electric double layer capacitor
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JP3395440B2 (en) Air electrode current collecting material for air battery and air battery provided with the same
JPH0348621B2 (en)
JPH07320744A (en) One-stage production of gas diffusion electrode
JPH07220726A (en) Air electrode collector material for air cell and air cell provided with this air electrode collector material
JPH0616416B2 (en) Air electrode
JPS6051505A (en) Gas selective composite membrane
JPS6122570A (en) Manufacture of air electrode
JPS6054164A (en) Zinc air battery
JPH02226659A (en) Electrode construction for fuel cell
JPS63138668A (en) Thin type air cell