JPH0519113B2 - - Google Patents

Info

Publication number
JPH0519113B2
JPH0519113B2 JP9243183A JP9243183A JPH0519113B2 JP H0519113 B2 JPH0519113 B2 JP H0519113B2 JP 9243183 A JP9243183 A JP 9243183A JP 9243183 A JP9243183 A JP 9243183A JP H0519113 B2 JPH0519113 B2 JP H0519113B2
Authority
JP
Japan
Prior art keywords
charge
pulse
constant current
pulser
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9243183A
Other languages
Japanese (ja)
Other versions
JPS59218981A (en
Inventor
Michio Okamura
Sumihide Sumitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9243183A priority Critical patent/JPS59218981A/en
Publication of JPS59218981A publication Critical patent/JPS59218981A/en
Publication of JPH0519113B2 publication Critical patent/JPH0519113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線検出器から出力されるパルスを
測定する装置の較正、試験あるいは評価に用いる
ための電荷パルサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge pulser for use in the calibration, testing or evaluation of a device that measures pulses output from a radiation detector.

〔発明の技術的背景〕[Technical background of the invention]

線源から放射されるγ線のエネルギを分析する
装置としてγ線スペクトロメータが存在する。
A gamma ray spectrometer exists as a device that analyzes the energy of gamma rays emitted from a radiation source.

第1図は従来用いられたこの装置の検出部とプ
リアンプの部分を表わしたものである。ゲルマニ
ウム検出器11のアノード側は、チヤージセンシ
テイブなオペアンプ12の入力端子に接続されて
おり、カソード側の電源端子13には高圧の逆バ
イアスが印加されている。
FIG. 1 shows the detection section and preamplifier of this conventionally used device. The anode side of the germanium detector 11 is connected to the input terminal of a charge-sensitive operational amplifier 12, and a high voltage reverse bias is applied to the power supply terminal 13 on the cathode side.

この装置で、γ線がゲルマニウム検出器11に
入射すると、そのエネルギに比例した電荷が発生
する。オペアンプ12はこれを積分して電荷の総
量を求め、γ線のエネルギに比例した波高値のパ
ルスを出力端子14から出力する。このパルスは
増幅後、波高分析器にかけられ、エネルギの分析
が行われる。
In this device, when gamma rays enter the germanium detector 11, an electric charge proportional to the energy of the gamma rays is generated. The operational amplifier 12 integrates this to determine the total amount of charge, and outputs from the output terminal 14 a pulse with a peak value proportional to the energy of the γ-ray. After this pulse is amplified, it is applied to a pulse height analyzer and its energy is analyzed.

この装置では、オペアンプ12の入力端子側
に、結合コンデンサ15を介してテストパルス入
力端子16が配置されている。プリアンプ以降の
装置部分の試験等を行う際には、テストパルス入
力端子16からテストパルスが入力されるように
なつている。
In this device, a test pulse input terminal 16 is arranged on the input terminal side of an operational amplifier 12 via a coupling capacitor 15. When testing the device parts after the preamplifier, a test pulse is input from the test pulse input terminal 16.

ところでオペアンプ12の入力端子側の線路に
は浮遊容量17が存在する。従つて、γ線測定の
際にゲルマニウム検出器11から発生した電荷は
オペアンプ12のみでなくこの浮遊容量17にも
流れ込み、信号の有効成分が減少してSN比が悪
くなる原因となる。結合コンデンサ15の値も信
号の分解能に悪影響のないように、例えば0.5pF
程度の小さな値に選定されている。
By the way, a stray capacitance 17 exists in the line on the input terminal side of the operational amplifier 12. Therefore, the charge generated from the germanium detector 11 during gamma ray measurement flows not only into the operational amplifier 12 but also into this stray capacitance 17, which causes the effective component of the signal to decrease and the S/N ratio to deteriorate. The value of the coupling capacitor 15 should also be set to 0.5 pF, for example, so as not to adversely affect the signal resolution.
It is selected to have a small value.

しかしながらこの結合コンデンサ15の存在
は、入力されるテストパルスの形を歪ませるとい
う問題を生じさせている。第2図aはゲルマニウ
ム検出器11からオペアンプ12に供給される信
号波形を表わしている。テストパルスとしてはこ
のような波形のものが好ましい。ところが実際に
は、パルス発生器を用いて同図b1,c1,d1
といつた各種波形をテストパルス入力端子16に
与えてみても、オペアンプ12に供給される信号
波形はそれぞれ同図b2,c2,d2に表される
ようになり、ゲルマニウム検出器11のそれと近
似しない。このため前記した波高分析器等の装置
部分の試験、較正、評価を十分な精度で行うこと
が不可能であつた。
However, the presence of this coupling capacitor 15 causes a problem in that it distorts the shape of the input test pulse. FIG. 2a shows the signal waveform supplied from the germanium detector 11 to the operational amplifier 12. A test pulse having such a waveform is preferable. However, in reality, b1, c1, d1 in the same figure are generated using a pulse generator.
Even if various waveforms such as the above are applied to the test pulse input terminal 16, the signal waveforms supplied to the operational amplifier 12 become as shown in b2, c2, and d2 in the figure, and do not approximate that of the germanium detector 11. . For this reason, it has been impossible to test, calibrate, and evaluate device parts such as the above-mentioned pulse height analyzer with sufficient accuracy.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑み、電荷収集型検
出器の発生する電荷と類似した電荷のパターンを
発生させることのできる電荷パルサを提供するこ
とをその目的とする。
In view of these circumstances, an object of the present invention is to provide a charge pulser that can generate a charge pattern similar to that generated by a charge collection type detector.

〔発明の構成〕[Structure of the invention]

本発明では第3図に示すように定電流回路21
とこの定電流回路21から出力端子22,23に
出力される電流をオン・オフ制御するゲート回路
24と、このゲート回路にゲートパルスを供給す
るパルス発生回路25とを電荷パルサに具備させ
る。そして定電流回路21から放射線検出器の発
生する電荷と類似の電荷を発生させ、出力端子2
2,23に表われたこの電荷を装置の試験等に用
いる。
In the present invention, as shown in FIG.
The charge pulser is equipped with a gate circuit 24 that controls on/off the current output from the constant current circuit 21 to the output terminals 22 and 23, and a pulse generation circuit 25 that supplies gate pulses to the gate circuit. Then, a charge similar to that generated by the radiation detector is generated from the constant current circuit 21, and the output terminal 2
This charge appearing in 2 and 23 is used for device testing, etc.

〔実施例〕〔Example〕

以下実施例につき本発明を詳細に説明する。 The present invention will be explained in detail with reference to Examples below.

第4図は本実施例の電荷パルサをγ線スペクト
ロメータのプリアンプに接続した状態を表わした
ものである。電荷パルサは、定電流回路27、
FET(電界効果トランジスタ)28、パルス発生
回路29によつて構成されている。図に示したプ
リアンプ部分31は、オペアンプ32を用いたチ
ヤージセンシテイブ型プリアンプである。
FIG. 4 shows a state in which the charge pulser of this embodiment is connected to a preamplifier of a γ-ray spectrometer. The charge pulser includes a constant current circuit 27,
It is composed of an FET (field effect transistor) 28 and a pulse generation circuit 29. The preamplifier section 31 shown in the figure is a charge-sensitive preamplifier using an operational amplifier 32.

さて電荷パルサの定電流回路27は、第5図a
に示すように電荷収集型放射線検出器の発生する
電荷のパターンと類似した波形33を定電流源と
して発生させる。この波形33の立ち上がり開始
時点で定電流回路27から同期信号34が出力さ
れ、パルス発生回路29はこれに同期してゲート
パルス35(第5図b)を発生させる。ゲートパ
ルス35はFET28のゲートに入力され、これ
をオンする。この結果、波形33と同一の波形3
6(第5図c)がFETのソースSから出力され、
オペアンプ32の入力端Aに加えられる。
Now, the constant current circuit 27 of the charge pulser is shown in FIG.
As shown in FIG. 3, a waveform 33 similar to the charge pattern generated by a charge collection type radiation detector is generated as a constant current source. At the start of the rise of this waveform 33, a synchronizing signal 34 is output from the constant current circuit 27, and the pulse generating circuit 29 generates a gate pulse 35 (FIG. 5b) in synchronization with this signal. The gate pulse 35 is input to the gate of the FET 28 to turn it on. As a result, waveform 3 which is the same as waveform 33
6 (Figure 5c) is output from the FET source S,
It is applied to the input terminal A of the operational amplifier 32.

この電荷パルサでは、FETのソースSとオペ
アンプ32の入力端Aまでの配線を極力短かく
し、浮遊容量37を小さくしている。従つて
FET28は、オンのときのみオペアンプ32に
電荷を与えることになり、オフのとき何の悪影響
も生じさせない。
In this charge pulser, the wiring from the source S of the FET to the input terminal A of the operational amplifier 32 is made as short as possible to reduce the stray capacitance 37. Accordingly
The FET 28 provides charge to the operational amplifier 32 only when it is on, and does not have any adverse effects when it is off.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、定電流回
路を用いて放射線検出器が発生する電荷の量や数
を任意に模擬できるので、放射線検出器と組合わ
せて使用する装置の較正等をより客観的に行うこ
とができる。
As explained above, according to the present invention, the amount and number of charges generated by a radiation detector can be arbitrarily simulated using a constant current circuit, making it easier to calibrate a device used in combination with a radiation detector. It can be done objectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来用いられたγ線スペクトロメータ
の要部を表わした回路図、第2図はこのパルス入
力端子に加えられるテストパルスの波形とプリア
ンプに加えられる信号波形を放射線検出器の出力
する波形と対比させた各種波形図、第3図は本発
明の原理的構成を表わしたブロツク図、第4図は
本発明の一実施例における電荷パルサをプリアン
プに接続した状態を表わした回路図、第5図はこ
の電荷パルサの動作を説明するための各種波形図
である。 11……ゲルマニウム検出器、27……定電流
回路、28……FET(電界効果トランジスタ)、
29……パルス発生回路。
Figure 1 is a circuit diagram showing the main parts of a conventional gamma-ray spectrometer, and Figure 2 shows the waveform of the test pulse applied to this pulse input terminal and the signal waveform applied to the preamplifier, which are output from the radiation detector. 3 is a block diagram showing the principle configuration of the present invention; FIG. 4 is a circuit diagram showing a state in which a charge pulser is connected to a preamplifier in an embodiment of the present invention; FIG. 5 is a diagram of various waveforms for explaining the operation of this charge pulser. 11... germanium detector, 27... constant current circuit, 28... FET (field effect transistor),
29...Pulse generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電荷収集型放射線検出器の発生する電荷と類
似した電荷を発生させる定電流源と、この定電流
源が電荷を発生するときこれに同期してゲートパ
ルスを発生させるパルス発生回路と、このゲート
パルスによつてオンされ前記電荷を出力側に与え
る電界効果トランジスタとを具備することを特徴
とする電荷パルサ。
1. A constant current source that generates a charge similar to that generated by a charge collection type radiation detector, a pulse generation circuit that generates a gate pulse in synchronization with this constant current source when it generates a charge, and this gate. A charge pulser comprising: a field effect transistor that is turned on by a pulse and supplies the charge to an output side.
JP9243183A 1983-05-27 1983-05-27 Charge pulser Granted JPS59218981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9243183A JPS59218981A (en) 1983-05-27 1983-05-27 Charge pulser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9243183A JPS59218981A (en) 1983-05-27 1983-05-27 Charge pulser

Publications (2)

Publication Number Publication Date
JPS59218981A JPS59218981A (en) 1984-12-10
JPH0519113B2 true JPH0519113B2 (en) 1993-03-15

Family

ID=14054246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9243183A Granted JPS59218981A (en) 1983-05-27 1983-05-27 Charge pulser

Country Status (1)

Country Link
JP (1) JPS59218981A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359155A (en) * 1986-08-29 1988-03-15 Toshiba Corp Communication control system
ITPI20120060A1 (en) * 2012-05-15 2013-11-16 Ronaldo Bellazzini DIGITAL RADIOLOGICAL SENSOR

Also Published As

Publication number Publication date
JPS59218981A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US3959653A (en) Fast charge digitizer and digital data acquisition system for measuring time varying radiation fields
US4880981A (en) Low level radiation measurement device
JPH0519113B2 (en)
JP3740315B2 (en) X-ray sensor signal processing circuit, X-ray CT apparatus using the same, and X-ray sensor signal processing method
US5182596A (en) Device for measuring surface potentials at photosensitive body and electrostatic recording apparatus using said device
US2942188A (en) Discriminator circuit
US4413183A (en) Gamma camera
EP1111406B1 (en) Radiation detector
US2682001A (en) Radiation measuring meter
JPH0119107Y2 (en)
SU1660490A1 (en) Multipurpose radiation-monitor
JPS5693339A (en) Function test device of integrated circuit
SU1122899A1 (en) Method and device for registering radiation by means of photodiode
JPH0718757B2 (en) Photon counting photometer
Bushnin et al. Pulse-height encoders for the analysis of a large counter system
RU2073888C1 (en) Device which measures flux of thermonuclear neutrons
SU1430917A1 (en) Scintillation time-run spectrometer
JPH0619455B2 (en) Radiation measuring device
JPH03189586A (en) Radiation measuring instrument
JP3873912B2 (en) X-ray sensor signal processing circuit and X-ray sensor signal processing method
JPH02157680A (en) Radiation measuring instrument
US3511988A (en) Signal displaying device for use with an x-ray microanalyzer
JPS59226885A (en) Energy dispersion type x-ray measuring device
SU691767A1 (en) Pulse amplitude measuring apparatus
SU557299A1 (en) Microprobe microrelief analysis device