JPH05190884A - Covering material for solar battery - Google Patents

Covering material for solar battery

Info

Publication number
JPH05190884A
JPH05190884A JP4023167A JP2316792A JPH05190884A JP H05190884 A JPH05190884 A JP H05190884A JP 4023167 A JP4023167 A JP 4023167A JP 2316792 A JP2316792 A JP 2316792A JP H05190884 A JPH05190884 A JP H05190884A
Authority
JP
Japan
Prior art keywords
solar battery
solar cell
incident
coating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023167A
Other languages
Japanese (ja)
Inventor
Kei Handa
圭 判田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4023167A priority Critical patent/JPH05190884A/en
Publication of JPH05190884A publication Critical patent/JPH05190884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PURPOSE:To enable directivity of an incidence efficiency to be generated and eliminate a need for an additional mechanism for adjusting an installation angle between an installation-type solar battery and a foundation by forming an inclination surface which is asymmetrical left and right or front and back at a proper spacing on the surface of a translucent plate-like or film-like covering material for covering the surface of the solar battery. CONSTITUTION:A covering material 10 for a solar battery 20 consists of a colorless and transparent glass or a translucent substance such as acryl resin, and the surface side has a wave shape and at the same time the rear side has a flat face. In the surface of the wave shape, a vertical surface 11 which is extended in the normal direction which is erected on the surface of the solar battery 20 and an inclination surface 12 which is extended in a direction which is at an angle of theta for the surface of the solar battery are repeated at a specified pitch. The pitch of the vertical surface 11 is set to a value which is two times larger than that of the surface electrode layer of the solar battery and at the same time each vertical surface is laid out directly above the surface electrode layer. Also, a flat rear surface of the film body 10 is joined to the surface of the solar battery 20 by an adhesive layer 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ソーラーカーなどに搭
載される太陽電池の被覆体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell covering mounted on a solar car or the like.

【0002】[0002]

【従来の技術】ソーラーカーなどに搭載されたり、家屋
の屋根などに設置されたりする太陽電池の表面には、通
常、この表面を機械的に保護するために透光性の板状又
は膜状の被覆体が装着される。この種の被覆体の典型的
なものは、表面が平坦面を呈している。また、この種の
被覆体を透過し太陽電池の表面電極層に向かう入射光線
をレンズ作用に基づきこの表面電極層から離れた受光面
に向かわせて受光面への入射効率を増大させる目的で、
被覆体の表面に左右対称な波型の傾斜面を形成するとい
う技術的思想が特開昭63ー102279号公報に開示
されている。
2. Description of the Related Art The surface of a solar cell mounted on a solar car or installed on a roof of a house is usually a translucent plate or film for mechanically protecting the surface. The covering body is attached. A typical coating of this type has a flat surface. Further, for the purpose of increasing the incident efficiency to the light-receiving surface by directing the incident light beam that passes through this type of coating toward the surface electrode layer of the solar cell toward the light-receiving surface away from this surface electrode layer based on the lens effect,
The technical idea of forming a bilaterally symmetrical corrugated inclined surface on the surface of the covering is disclosed in Japanese Patent Laid-Open No. 63-102279.

【0003】[0003]

【発明が解決しようとする課題】上記従来の被覆体は、
表面が平坦面あるいは左右(又は前後)対称な波型の形
状を呈しているため、太陽電池の表面に立てた法線のま
わりに左右(又は前後)対称な受光特性を有している。
しかしながら、追尾機能を持たない据え置き型の太陽電
池などでは、これを設置しようとする土台の傾きと受光
量を最大にするために最適な太陽電池の向きとが必ずし
も一致しないため、太陽電池と土台との間に設置角度を
調整するための付加的な機構が必要になり、構造が複雑
になりコスト高になるという問題がある。特に、ソーラ
ーカーなどに設置する場合は、設置角度調整機構の付加
に伴い車両全体の重量や空気抵抗が増加するなどの問題
もある。
SUMMARY OF THE INVENTION The conventional coating body described above is
Since the surface is a flat surface or has a corrugated shape that is symmetrical in the left-right direction (or front-rear direction), it has a light-receiving characteristic that is symmetrical in the left-right direction (or front-back direction) around the normal line set on the surface of the solar cell.
However, in a stationary solar cell that does not have a tracking function, the inclination of the base on which it is installed does not necessarily match the optimal orientation of the solar cell to maximize the amount of received light. There is a problem in that an additional mechanism for adjusting the installation angle is required between and, and the structure becomes complicated and the cost becomes high. In particular, when installing in a solar car or the like, there is a problem that the weight of the entire vehicle and air resistance increase with the addition of the installation angle adjusting mechanism.

【0004】[0004]

【課題を解決するための手段】本発明に係わる太陽電池
の被覆体の表面には、左右又は前後非対称な傾斜面が形
成されることにより左右又は前後非対称な(指向性の)
受光特性が実現される。
Means for Solving the Problems The left and right or front and rear asymmetrical inclined surfaces are formed on the surface of the solar cell coating body according to the present invention to form left and right or front and rear asymmetrical (directional).
Light receiving characteristics are realized.

【0005】[0005]

【作用】被覆体に入射する太陽光線はその一部が被覆体
内に進入し、残りの一部が反射光となる。表面が平坦な
平板状の被覆体では反射光は全て被覆体から離れ去るた
め被覆体への進入の機会は完全に失われる。これに対し
て、波型の表面を有する被覆体では反射光の光路が隣の
山と交差する機会が残されているためその一部に被覆体
への再入射の機会が与えられる。再入射の機会を得た反
射光の一部はこの再入射によって被覆体内に進入し、残
りの一部が再反射光となる。再反射光の一部にはその光
路が隣の山と交差する機会が残されているため被覆体へ
の再々入射の機会が与えられる。
Function: A part of the sun rays incident on the cover enters the cover and the remaining part becomes reflected light. In the case of a flat plate-shaped coating with a flat surface, all reflected light leaves the coating, and the opportunity for entering the coating is completely lost. On the other hand, in the covering body having the corrugated surface, the optical path of the reflected light has an opportunity to intersect with the adjacent mountain, so that the opportunity to re-enter the covering body is given to a part thereof. A part of the reflected light that has the opportunity of re-incident enters the inside of the coating by this re-incident, and the remaining part becomes the re-reflected light. A part of the re-reflected light has an opportunity for its optical path to intersect with an adjacent mountain, so that the light is re-incident on the coating.

【0006】このように、反射光に対してどれだけ多数
回の再入射の機会が与えられるかによって入射効率が決
定される。この点から、波型の表面を有する被覆体は平
坦な表面を有する被覆体に比べて入射効率が向上する。
また、左右非対称な波型の表面を有する被覆体では、反
射光線のたどる経路が太陽光線の入射方向に応じて異な
ってくるためそのような反射光線に与えられる再入射の
機会も異なってくる。この結果、左右非対称の波型の表
面を有する被覆体では、入射効率に方向性が生ずること
になる。
As described above, the incidence efficiency is determined by how many times the reflected light is allowed to be re-incident. From this point, the coating body having a corrugated surface has a higher incidence efficiency than the coating body having a flat surface.
Further, in the case of a cover having an asymmetrical corrugated surface, the path followed by the reflected light beam differs depending on the incident direction of the sun's rays, and the chance of re-incident light given to such reflected light beam also differs. As a result, the coating having a bilaterally asymmetrical wavy surface has a directivity in the incidence efficiency.

【0007】例えば、図4に示すように、左右非対称の
波型の表面を有する被覆体を想定する。この被覆体の一
方の傾斜面ABは太陽電池の表面に立てた法線の方向に
延在される垂直面であり、これに隣接する他方の傾斜面
BCは垂直面ABとθの余角(90°−θ)をなす方向
に延在されるものとする。この被覆体の素材は、典型的
には、ガラスやアクリル樹脂などであり、その屈折率は
1.5程度である。
For example, as shown in FIG. 4, it is assumed that the covering body has a bilaterally asymmetrical corrugated surface. One inclined surface AB of this cover is a vertical surface extending in the direction of the normal line standing on the surface of the solar cell, and the other inclined surface BC adjacent to this is a complementary angle between the vertical surface AB and θ ( 90 ° -θ). The material of this cover is typically glass or acrylic resin, and its refractive index is about 1.5.

【0008】図4の(A)に示すように、左前方から傾
斜面BCの上方に入射する太陽光線L10の反射光L11
経路は傾斜面ABと交差しないためこの被覆体から遠ざ
かる一方となり被覆体内に進入する機会を完全に逸す
る。また、同一の方向から傾斜面BCの下方に入射する
太陽光線L20の反射光L21の経路は、垂直面ABと交差
するためこの被覆体に進入する機会を再度得る。しかし
ながら、ここで反射されて進入の機会を逸した反射光L
22の経路は傾斜面BCとは交差しないためこの被覆体か
ら遠ざかる一方となり被覆体内に進入する機会を完全に
逸する。
As shown in FIG. 4 (A), the path of the reflected light L 11 of the sun ray L 10 incident on the inclined surface BC from the left front side is away from this cover because it does not intersect the inclined surface AB. It completely misses the opportunity to enter into the cover. In addition, the path of the reflected light L 21 of the sun ray L 20 that is incident on the lower side of the inclined surface BC from the same direction intersects with the vertical surface AB, so that the opportunity to enter this cover is obtained again. However, the reflected light L that is reflected here and misses the opportunity to enter
Since the route of 22 does not intersect with the inclined surface BC, it becomes away from the covering body and completely misses the opportunity to enter the covering body.

【0009】これに対して、図4の(B)に示すよう
に、右前方から垂直面ABに入射する太陽光線L10の反
射光L11の経路は傾斜面BCと交差するため、この被覆
体に進入する機会を再度得る。また、ここで反射されて
進入の機会を逸した反射光L12の経路は再度垂直面AB
と交差するため、この被覆体内に進入する機会を再度得
る。ここで進入の機会を逸した反射光L13の経路は傾斜
面BCと再度交差するため、再度進入の機会を得る。こ
の傾斜面BCで進入の機会を逸した反射光L14はこの被
覆体から遠ざかる一方となり被覆体内に進入する機会を
完全に逸する。すなわち、右前方から垂直面ABに入射
する太陽光線L10は、進入の機会を完全に逸するまでに
4回にわたって進入の機会が与えられる。
On the other hand, as shown in FIG. 4B, the path of the reflected light L 11 of the sun ray L 10 incident on the vertical plane AB from the right front crosses the inclined plane BC, so that this coating is applied. Get another chance to enter the body. In addition, the path of the reflected light L 12 that is reflected here and misses the opportunity to enter is again the vertical plane AB.
Because it intersects with, it gets another chance to enter this cladding. Here, the path of the reflected light L 13 that has missed the opportunity to enter again crosses the inclined surface BC again, so that the opportunity to enter again is obtained. The reflected light L 14 that has missed the opportunity to enter on the inclined surface BC becomes one way away from the coating body and completely misses the opportunity to enter the coating body. That is, the sunlight ray L 10 incident on the vertical plane AB from the right front is given four opportunities to approach until it completely misses the opportunity.

【0010】また、太陽光線L10と並行に傾斜面BCの
上方に入射する太陽光線L20の反射光L21の経路は垂直
面ABと交差するため、この被覆体に進入する機会を再
度獲得する。ここで反射されて進入の機会を逸した反射
光L22の経路は垂直面ABと再度交差するため、なお進
入の機会が与えられる。以下、図示が煩雑になるため、
その先の光路は省略するが、反射光L22には垂直面AB
か傾斜面BCへの進入の機会がなお残されている。
Further, since the path of the reflected light L 21 of the sun ray L 20 incident above the inclined surface BC in parallel with the sun ray L 10 intersects the vertical plane AB, the opportunity to enter this cover is again obtained. To do. The path of the reflected light L 22 that is reflected here and misses the opportunity to enter again intersects the vertical plane AB again, so that the opportunity to enter still remains. Below, because the illustration becomes complicated,
Although the optical path beyond that is omitted, a vertical plane AB is provided for the reflected light L 22.
There is still an opportunity to enter the slope BC.

【0011】このように、図4の場合には右前方から被
覆体に入射する太陽光線には左前方から入射する太陽光
線に比べて多数回にわたって被覆体への進入の機会が与
えられる。また、反射光の絶対量は反射の回数の増大と
共に減少してゆくので、多数回の反射を繰り返した末に
この被覆体から永久に遠ざかる反射光の絶対量は、1回
あるいは2回の反射でこの被覆体から永久に遠ざかる反
射光の絶対量に比べて極めて少ない。このため、図4の
場合には、右前方から被覆体に入射する太陽光線の入射
効率は、左前方から入射する太陽光線のそれに比べて増
加し、入射効率の異方性が生じる。
As described above, in the case of FIG. 4, the sun rays entering the cover from the right front are given more opportunities to enter the cover than the sun rays entering from the left front. In addition, the absolute amount of reflected light decreases as the number of reflections increases. Therefore, the absolute amount of reflected light that is permanently moved away from this cover after repeating a large number of reflections is 1 or 2 times. Therefore, it is extremely small compared to the absolute amount of reflected light that is permanently distant from this cover. Therefore, in the case of FIG. 4, the incidence efficiency of the sun rays incident on the cover from the right front is increased as compared with that of the sun rays incident from the left front, and anisotropy of the incidence efficiency occurs.

【0012】[0012]

【実施例】図1は本発明の一実施例に係わる太陽電池の
被覆体10の構成を被覆対象の太陽電池20と共に示す
断面図である。被覆対象の太陽電池20は、表面から所
定の深さにpn接合が形成されたAlGaAsなどの半
導体基板21と、この半導体基板21の表面に所定間隔
で離散的に形成されて紙面と垂直方向に延在される帯状
の表面電極層群22a,22b,22c・・・と、半導
体基板21の裏面に形成される板状の裏面電極層23と
から構成され、表面電極層22a〜22eと裏面電極層
23との間に発生する光起電力が後段の電気回路(図示
せず)に供給される。
1 is a cross-sectional view showing the structure of a solar cell covering 10 according to an embodiment of the present invention together with a solar cell 20 to be covered. The solar cell 20 to be covered is a semiconductor substrate 21 such as AlGaAs in which a pn junction is formed at a predetermined depth from the surface, and is discretely formed at predetermined intervals on the surface of the semiconductor substrate 21 in a direction perpendicular to the paper surface. The strip-shaped front surface electrode layer groups 22a, 22b, 22c ... And the plate-shaped rear surface electrode layer 23 formed on the rear surface of the semiconductor substrate 21 are formed, and the front surface electrode layers 22a to 22e and the rear surface electrodes are formed. Photoelectromotive force generated between the layer 23 and the layer 23 is supplied to an electric circuit (not shown) in the subsequent stage.

【0013】被覆体10は、無色透明のガラスやアクリ
ル樹脂などの透光性の物質を素材とし、表面側は波型の
形状を呈すると共に裏面側は平坦面を呈している。波形
の表面は、太陽電池20の表面に立てた法線の方向に延
在される垂直面11と太陽電池表面に対して角度θを成
す方向に延在される傾斜面12とが、所定のピッチで反
復されたものとなっている。この実施例では、垂直面1
1のピッチは太陽電池の表面電極層のピッチ(典型的に
は約1mm)の2倍の値に設定されると共に、各垂直面
が表面電極層の真上に配置されている。この被覆体10
の平坦な裏面は、接着剤層30によって太陽電池20の
表面に接合されている。
The cover 10 is made of a transparent material such as colorless and transparent glass or acrylic resin, and has a corrugated shape on the front surface and a flat surface on the back surface. The corrugated surface has a predetermined vertical surface 11 extending in the direction of a normal line standing on the surface of the solar cell 20 and an inclined surface 12 extending in a direction forming an angle θ with the surface of the solar cell. It has been repeated on the pitch. In this embodiment, the vertical plane 1
The pitch of 1 is set to a value twice the pitch of the surface electrode layer of the solar cell (typically about 1 mm), and each vertical surface is arranged directly above the surface electrode layer. This cover 10
The flat back surface of is bonded to the front surface of the solar cell 20 by the adhesive layer 30.

【0014】図2は、図1の被覆体の入射効率の指向性
を光線追跡法によって確認したシミュレーション結果で
ある。このシミュレーションに際しては、被覆体10の
屈折率を1.5、被覆体10の外部が空気(屈折率1.
0)、半導体基板20の屈折率を3.5、接着剤層30
と表面電極層22a,22b,22c・・・の厚みをゼ
ロ、表面電極層を完全反射面としその面積の半導体基板
21の全表面積に占める百分比を6.6% とし、反射
率は Fresnelの公式に従って算定している。
FIG. 2 is a simulation result of confirming the directivity of the incident efficiency of the cover of FIG. 1 by the ray tracing method. In this simulation, the refractive index of the coating 10 is 1.5, and the outside of the coating 10 is air (refractive index 1.
0), the refractive index of the semiconductor substrate 20 is 3.5, and the adhesive layer 30
And the thickness of the surface electrode layers 22a, 22b, 22c ... Is zero, the surface electrode layer is a perfect reflection surface, and the percentage of that area to the total surface area of the semiconductor substrate 21 is 6.6%. The reflectance is Fresnel's formula. It is calculated according to.

【0015】図2の縦軸は、半導体基板21に入射した
太陽光線の全光量の被覆体10に入射した太陽光線の全
光量に対する百分比(入射効率 %)である。横軸は、
太陽電池10の表面に立てた法線と入射太陽光線との成
す角度φ(°)であり、図1において太陽光線が右側か
ら入射する場合にφが正の値を取る。この入射効率は入
射角φを5°ずつ変化させながら算定されている。ま
た、パラメータは、図1のθであり、0°,45°,6
0°の三つの値が選択されている。
The vertical axis of FIG. 2 represents the percentage (incident efficiency%) of the total amount of sunlight incident on the semiconductor substrate 21 with respect to the total amount of sunlight incident on the coating 10. The horizontal axis is
It is an angle φ (°) formed by a normal line standing on the surface of the solar cell 10 and an incident sun ray, and φ has a positive value when the sun ray enters from the right side in FIG. 1. This incidence efficiency is calculated while changing the incidence angle φ by 5 °. The parameter is θ in FIG. 1, and is 0 °, 45 °, 6
Three values of 0 ° are selected.

【0016】図3は、図2のシミュレーションの途中経
過の一部を示す概念図であり、矢印を付した直線は光路
であり、光線の近傍に表示されている数字は透過光や反
射光の光量である。各光量は、原入射光量の絶対量を1
00とした場合の絶対光量で表現してある。各光線の絶
対光量は透過や反射を繰り返す間に減少してゆくが、こ
の絶対光量が5以下に低下した光線については煩雑化を
避けるために図示を省略している。最初に傾斜面に入射
した100の光量のうち87.7の光量が透過し、1
2.3の光量が反射される。透過した87.7の光量は
半導体基板の表面に達し、このうち13.0の光量が反
射される。すなわち、半導体基板内に進入する絶対光量
は74.7である。この波型の構造が無限に続く場合を
想定しているため、図の左端から図外に出てゆく絶対光
量13.0の光線は、垂直面を透過した絶対光量12.
5の光線として左側から再び図中に現れている。
FIG. 3 is a conceptual diagram showing a part of the progress of the simulation shown in FIG. 2. The straight line with an arrow is the optical path, and the numbers displayed near the light beam indicate the transmitted light and the reflected light. The amount of light. Each light quantity is the absolute quantity of the original incident light quantity is 1
It is expressed by the absolute light amount when 00 is set. The absolute light amount of each light beam decreases while repeating transmission and reflection, but the light beam whose absolute light amount has decreased to 5 or less is omitted in order to avoid complication. Of the 100 light amounts that first entered the inclined surface, 87.7 light amounts were transmitted, and
A light amount of 2.3 is reflected. The transmitted light amount of 87.7 reaches the surface of the semiconductor substrate, of which 13.0 is reflected. That is, the absolute amount of light entering the semiconductor substrate is 74.7. Since it is assumed that this corrugated structure continues indefinitely, a light beam with an absolute light intensity of 13.0 going out from the left end of the figure to the outside of the figure has an absolute light intensity of 12.
It again appears in the figure from the left as a ray of light 5.

【0017】図2のシミュレーション結果から以下の結
論が導かれる。 1.太陽光線の入射方向のいかんによらず被覆体の表面
を波型にすることにより平坦な表面の被覆体よりも入射
効率を向上できる。 2.被覆体の表面を非対称な波型にすることにより太陽
光線の入射方向に応じて非対称な(指向性を持った)入
射効率が得られる。 3.指向性を利用しようとするφが正の領域内ではθ=
45°の波型の方がθ=60°の波型よりも入射効率が
大きい。 なお、図2において、平坦な表面(θ=0)の場合、当
然のことながら入射効率は入射方向によらず対称となる
ので、これと波型の表面についての入射効率とを比較す
ることにより、波型表面についての入射効率の非対称性
が一目瞭然となる。
The following conclusions can be drawn from the simulation results of FIG. 1. By making the surface of the cover corrugated regardless of the incident direction of the sun rays, the incidence efficiency can be improved as compared with the cover having a flat surface. 2. By making the surface of the covering body asymmetrical, an asymmetrical (directive) incidence efficiency can be obtained according to the incident direction of the sunlight. 3. In the region where φ that tries to use directivity is positive, θ =
The 45 ° corrugation has a higher incidence efficiency than the θ = 60 ° corrugation. Note that in FIG. 2, in the case of a flat surface (θ = 0), the incident efficiency is naturally symmetric regardless of the incident direction. Therefore, by comparing this with the incident efficiency on the corrugated surface, , The asymmetry of the incident efficiency on the corrugated surface becomes obvious.

【0018】[0018]

【発明の効果】以上詳細に説明したように、本発明に係
わる太陽電池の被覆体は、表面に左右又は前後に非対称
な波型を形成することにより入射効率の指向性を生じさ
せる構成であるから、据え置き型の太陽電池と土台との
間に設置角度を調整するための付加的な機構が不要にな
り、構造を簡易・安価にできるという効果が奏される。
As described above in detail, the coating of the solar cell according to the present invention has a structure in which the asymmetrical corrugations are formed on the surface in the left-right direction or the front-back direction to generate the directivity of the incident efficiency. Therefore, an additional mechanism for adjusting the installation angle between the stationary solar cell and the base is not required, and the structure can be simplified and inexpensive.

【0019】特に、ソーラーカー搭載用の太陽電池など
では、設置角度調整機構の付加によって車両全体の重量
や空気抵抗が増加したり、あるいは美観が損われるなど
の問題も有効に回避される。
In particular, in the case of a solar cell mounted on a solar car, the addition of the installation angle adjusting mechanism effectively avoids the problems of increasing the weight and air resistance of the entire vehicle, and impairing the aesthetic appearance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の被覆体の構造を被覆対象の
太陽電池と共に示す断面図である。
FIG. 1 is a cross-sectional view showing a structure of a coating body according to an embodiment of the present invention together with a solar cell to be coated.

【図2】図1の構造について得られた入射効率のシミュ
レーション結果を示す特性図である。
FIG. 2 is a characteristic diagram showing a simulation result of incidence efficiency obtained for the structure of FIG.

【図3】図1の構造について得られた入射効率のシミュ
レーションの途中結果である透過光線や反射光線の経路
とこれらの絶対光量の一例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of paths of transmitted light rays and reflected light rays, which are intermediate results of the simulation of the incident efficiency obtained for the structure of FIG. 1, and their absolute light amounts.

【図4】本発明の作用を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

10 被覆体 11 被覆体10の表面に形成された一方の傾斜面
(垂直面) 12 被覆体10の表面に形成された他方の傾斜面 20 被覆対称の太陽電池 30 接着剤層
10 coating body 11 one inclined surface (vertical surface) formed on the surface of the coating body 10 other inclined surface formed on the surface of the coating body 20 solar cell 30 having coating symmetry 30 adhesive layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の表面を覆うための透光性の板状
又は膜状の太陽電池の被覆体において、 前記被覆体の表面側には左右又は前後非対称な傾斜面が
適宜な間隔で形成されたことを特徴とする太陽電池の被
覆体。
1. A translucent plate-shaped or film-shaped solar cell coating for covering the surface of a solar cell, wherein a left-right or front-back asymmetric inclined surface is provided at an appropriate interval on the surface side of the coating. A coated body of a solar cell, which is formed.
【請求項2】前記左右又は前後非対称な傾斜面のうち一
方の傾斜面は前記太陽電池の表面に立てた法線と平行の
向きに延在されると共に他方の傾斜面はこの一方の傾斜
面との角度をほぼ45o とする向きに延在されることを
特徴とする請求項1記載の太陽電池の被覆体。
2. One of the left and right or front and rear asymmetrical inclined surfaces extends in a direction parallel to a normal line standing on the surface of the solar cell, and the other inclined surface has the one inclined surface. The solar cell coating body according to claim 1, wherein the coating body extends in a direction having an angle of about 45 ° .
JP4023167A 1992-01-13 1992-01-13 Covering material for solar battery Pending JPH05190884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023167A JPH05190884A (en) 1992-01-13 1992-01-13 Covering material for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023167A JPH05190884A (en) 1992-01-13 1992-01-13 Covering material for solar battery

Publications (1)

Publication Number Publication Date
JPH05190884A true JPH05190884A (en) 1993-07-30

Family

ID=12103070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023167A Pending JPH05190884A (en) 1992-01-13 1992-01-13 Covering material for solar battery

Country Status (1)

Country Link
JP (1) JPH05190884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590495A (en) * 1995-07-06 1997-01-07 Bressler Group Inc. Solar roofing system
JP2009503881A (en) * 2005-08-02 2009-01-29 サン−ゴバン グラス フランス Solar cell with plate with asymmetric specific structure
JP2013205148A (en) * 2012-03-28 2013-10-07 Seiko Epson Corp Timepiece
JP2014192265A (en) * 2013-03-26 2014-10-06 Lintec Corp Prism member for solar battery and solar battery module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590495A (en) * 1995-07-06 1997-01-07 Bressler Group Inc. Solar roofing system
US5830779A (en) * 1995-07-06 1998-11-03 Bressler Group Inc. Method of making photovoltaic module
JP2009503881A (en) * 2005-08-02 2009-01-29 サン−ゴバン グラス フランス Solar cell with plate with asymmetric specific structure
JP2013178530A (en) * 2005-08-02 2013-09-09 Saint-Gobain Glass France Solar cell with plate in asymmetrical specified structure
JP2013205148A (en) * 2012-03-28 2013-10-07 Seiko Epson Corp Timepiece
JP2014192265A (en) * 2013-03-26 2014-10-06 Lintec Corp Prism member for solar battery and solar battery module

Similar Documents

Publication Publication Date Title
JP3259692B2 (en) Concentrating photovoltaic module, method of manufacturing the same, and concentrating photovoltaic system
CN100539208C (en) A kind of solar energy conversion system
US20190288145A1 (en) Light-Concentrating Mechanism, Photovoltaic Power Generation Device, Window Structure, and Glass Window
JP3670835B2 (en) Solar cell module
JP2012503221A (en) Increasing the angular range of light collection in solar collectors / collectors
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
WO2007073203A1 (en) Solar cell module
JP2013098496A (en) Solar battery module and manufacturing method thereof
US20120006384A1 (en) Optical layer for light control type solar photovoltaic module, light control type solar photovoltaic module, and light control type solar photovoltaic panel
JP3404365B2 (en) Concentrating solar power generator
CA2738647A1 (en) Solar collector panel
AU2010246958B2 (en) Light collection system and method
JP6146627B2 (en) Solar cell module
JPH11340493A (en) Sunlight condensing device
JPH05190884A (en) Covering material for solar battery
JP2023107850A (en) Glass building material
JPWO2013058381A1 (en) Condensing device, photovoltaic power generation device, and photothermal conversion device
CN208848914U (en) Solar cell module
JP2001230441A (en) Solar cell module panel
US20180294374A1 (en) Photovoltaic module
WO2012066954A1 (en) Solar cell module and solar power generation device
CN108321226A (en) Solar cell module
JP2012151240A (en) Solar battery module
JP3098835B2 (en) Solar cell coating
JP3594805B2 (en) Solar cell module