WO2012066954A1 - Solar cell module and solar power generation device - Google Patents

Solar cell module and solar power generation device Download PDF

Info

Publication number
WO2012066954A1
WO2012066954A1 PCT/JP2011/075563 JP2011075563W WO2012066954A1 WO 2012066954 A1 WO2012066954 A1 WO 2012066954A1 JP 2011075563 W JP2011075563 W JP 2011075563W WO 2012066954 A1 WO2012066954 A1 WO 2012066954A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solar cell
light guide
cell module
unit
Prior art date
Application number
PCT/JP2011/075563
Other languages
French (fr)
Japanese (ja)
Inventor
豪 鎌田
前田 強
内田 秀樹
恭子 東田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012066954A1 publication Critical patent/WO2012066954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • This application claims priority based on Japanese Patent Application No. 2010-256201 filed in Japan on November 16, 2010, the contents of which are incorporated herein by reference.
  • Conventional solar power generation apparatuses generally have a form in which a plurality of solar battery panels are spread over the entire surface facing the sun.
  • a solar power generation apparatus in which a gantry is installed on the roof of a building and a plurality of solar battery panels are spread on the gantry is known.
  • the amount of light incident on the solar cell panel is determined by the area of the solar cell. Therefore, in order to secure the required power generation amount, a solar cell with a corresponding area is required. Therefore, in order to increase the amount of power generation using a conventional solar power generation device, it is necessary to install a large-area solar cell panel, which inevitably increases the cost.
  • the solar cell which has the condensing member which condenses sunlight, and the solar cell element provided in the edge part of the condensing member as a structure replaced with the above conventional solar cells is proposed (for example, see Patent Documents 1 to 4).
  • a condensing member occupying a large area in plan view collects light at the end of the condensing member after receiving sunlight on one main surface, and the condensed light is applied to the solar cell element. Incident light is generated. By doing so, it is possible to secure the amount of power generation while reducing the use area of the solar cell element.
  • the light collecting member with light transmittance, for example, it can be arranged in a window occupying a large area in a building.
  • An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module that realizes high power generation efficiency. Another object is to provide a solar power generation device that achieves high power generation efficiency by using the solar cell module described above.
  • a solar cell module includes a light collecting unit, a first light guide unit provided along a first end surface of the light collecting unit, and the light guide unit.
  • a first solar cell element provided at an end in the extending direction of the first and second concentrators, and the condensing unit has a first surface and a second surface in contact with the first end surface,
  • the light unit is configured to propagate the light incident on the inside from the first surface to be condensed and emitted to at least the first end surface, and the first light guide unit is configured to emit the light collecting unit.
  • Light emitted from the first end surface of the light portion is incident on the inside from the connection surface between the first light guide portion and the first end surface, and propagates in the extending direction of the first light guide portion.
  • the light is emitted from the end portion and incident on the first solar cell element, and at least the second surface of the light collecting portion
  • the light incident from the first surface is reflected, and the traveling direction of the incident light is changed to a direction obliquely intersecting the extending direction of the first end surface in the in-plane direction of the first surface.
  • a plurality of first reflecting portions are provided.
  • the thickness of the first light guide unit may be larger than the dimension of the first end surface of the light collecting unit in the thickness direction of the light collecting unit.
  • the surface of the first light guide portion facing the connection surface may be set in a direction intersecting with the connection surface.
  • the surface of the first light guide portion facing the connection surface may be a curved surface.
  • two of the light collecting portions may be provided so as to form a pair, and the pair of light collecting portions may be provided so as to sandwich the first light guide portion.
  • the said condensing part is made to propagate in the inside of the said condensing part to the said 1st end surface with the light which injects into the inside from the said 1st surface to the said 2nd surface.
  • a plurality of second reflecting portions that are emitted from opposing second end faces are further provided, the second reflecting portion reflects light incident from the first surface, and in the in-plane direction of the first surface, The traveling direction of the incident light is changed to a direction obliquely intersecting with the extending direction of the second end face, and a second guide provided along the second end face is provided on the second end face.
  • a second solar cell element provided at an end of the second light guide, and the second light guide emits light emitted from the second end surface, Incident from the connection surface between the second light guide and the second end surface, propagated in the extending direction of the second light guide and emitted from the end. , It may be incident on the second solar cell element.
  • a plurality of the light collecting portions and a plurality of the first and second light guide portions are alternately arranged and connected alternately in the in-plane direction of the first surface. Also good.
  • a plurality of the light collecting portions may be stacked in a posture in which the first surface and the second surface are substantially parallel.
  • the solar power generation device of one form of the present invention includes the above-described solar cell module.
  • the aspect of the present invention it is possible to provide a solar cell module that realizes high power generation efficiency and a solar power generation apparatus using the solar cell module.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the solar power generation device 100 and the solar cell module 1 of the present embodiment.
  • the photovoltaic power generation apparatus 100 shown in the figure by integrating a plurality (four in the figure) of the solar cell modules 1 that generate power by light irradiation, electric power for driving the external device 200 connected via the wiring 150 is obtained. Supply.
  • solar power generation device 100 solar power generation using irradiated sunlight is performed by installing the solar power generation device 100 on the roof of a building as in the past.
  • the solar power generation device 100 may include, for example, a storage battery that stores electric power obtained from the solar cell module 1 in addition to the solar cell module 1.
  • FIG. 2 is a perspective view showing a schematic configuration of the solar cell module 1 of the present embodiment.
  • FIG. 3 is a plan view showing a schematic configuration of the solar cell module 1.
  • FIG. 4 is a cross-sectional view of the light collecting unit 10 constituting the solar cell module 1.
  • 5A and 5B are side views of the solar cell module 1.
  • the solar cell module 1 of the present embodiment is provided with a plate-shaped light collecting unit 10, a light guide unit 20 provided in contact with the light collection unit 10, and a contact with the light guide unit 20.
  • the solar cell element 30 is provided.
  • the condensing unit 10 and the light guide unit 20 have a function of propagating incident light L therein and guiding the light L to the solar cell element 30. That is, in the solar cell module 1, the light L taken from the light collecting unit 10 is transmitted to the light guide unit 20, guided to the solar cell element 30 through the light guide unit 20, and irradiated to the solar cell element 30.
  • the In the solar cell element 30, photoelectric conversion is performed using incident light, which is extracted as electric energy.
  • an XYZ orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to this XYZ orthogonal coordinate system.
  • the same plane as the incident surface of the light collecting unit 10 is the XY plane
  • the extending direction of the light guide unit 20 is the X axis direction
  • the direction orthogonal to the X axis direction in the horizontal plane is the Y axis direction
  • the X axis The direction orthogonal to each of the direction and the Y-axis direction (that is, the vertical direction) is taken as the Z-axis direction.
  • the condensing part 10 is a plate-like member formed using a light-transmitting material. In the figure, it is illustrated as a trapezoidal member in plan view.
  • an organic material such as an acrylic resin or a polycarbonate resin, or an inorganic material such as glass can be used as a material for forming the light collecting unit 10, but the material is not limited thereto.
  • the condensing unit 10 is configured to take in the light L from a first main surface (one surface) 10a which is a surface parallel to the xy plane and is an upper surface in the z direction.
  • the second main surface (the other surface) 10b which is the surface facing the first main surface 10a, has a plurality of reflecting portions (first reflecting portions) having a function of changing the traveling direction of the light L incident on the inside. ) 18 is provided.
  • the reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 10 b of the light collecting portion 10.
  • the light L incident on the inside of the light collecting unit 10 from the first main surface 10 a propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is collected on the first end surface 10 c that is a connection surface with the light guide unit 20. Is injected.
  • the plurality of reflecting portions 18 are formed apart from each other in a direction in which the ridge line of the triangular prism of each reflecting portion 18 intersects the normal of the first end face 10 c at an angle ⁇ in plan view. .
  • the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between adjacent reflecting portions 18 are all drawn the same. As described above, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between the adjacent reflecting portions 18 may all be the same or different.
  • the traveling direction of light propagating through the inside is a direction substantially orthogonal to the extending direction of the reflection unit 18. Therefore, the light incident on the condensing unit 10 enters the first end surface 10c at an incident angle (90- ⁇ ) in plan view.
  • the reflection unit 18 of the present embodiment is formed integrally with the light collecting unit 10 by processing the light collecting unit 10 itself.
  • the reflecting portion 18 can be formed, for example, by cutting the originally flat surface of the light collecting portion 10 (this surface substantially corresponds to the second main surface 10b). Or you may form the reflection part 18 by methods, such as performing resin injection molding using the metal mold
  • the reflecting portion 18 has a triangular prism shape, as shown in FIG. 4, in the present embodiment, the cross section of the reflecting portion 18 when the condensing portion 10 is cut along a plane orthogonal to the ridgeline of the reflecting portion 18.
  • the shape is a right triangle. That is, each reflector 18 is orthogonal to the first surface T1, which is a surface inclined at an inclination angle ⁇ A with respect to the second main surface 10b, and the second main surface 10b (that is, the inclination angle ⁇ B is 90 degrees).
  • the first surface T1 functions as a reflecting surface that reflects (totally reflects) light incident from the first main surface 10a.
  • the incident angle ⁇ 2 of the light on the first surface T1 changes according to the inclination angle ⁇ A of the first surface T1. Therefore, the inclination angle ⁇ A of the first surface T1 is set in advance so that the incident angle ⁇ 2 of the light incident on the first surface T1 becomes equal to or greater than the critical angle at the interface between the first surface T1 and air and the light is totally reflected. Keep it.
  • the inclination angle ⁇ A of the first surface T1 is 24 degrees
  • the refractive index of the light collecting unit 10 is 1.5
  • the refractive index of air is 1.0.
  • the critical angle at the interface between the first surface T1 or the second inclined surface T2 and the air is 41 degrees.
  • the incident angle ⁇ 0 of the light L to the first main surface 10a of the light collecting unit 10 is 27 degrees or more
  • the refraction angle ⁇ 1 when the light L enters the light collecting part 10 is 18 degrees or more. It becomes.
  • the incident angle ⁇ 2 of the light on the first surface T1 is 41 degrees or more, and the incident angle ⁇ 2 is not less than the critical angle, so that the light L is totally reflected by the first surface T1. Therefore, the first surface T1 satisfies the angle condition in which the light is totally reflected by the first surface T1 within the incident angle range of the light L incident on the light collecting unit 10 when the solar cell module 1 is installed on the window. It is sufficient to set the inclination angle ⁇ A.
  • the condensing part 10 of this embodiment shall have the trapezoid shape of planar view except the part (area
  • the light converging portion 10 may be formed so as to extend in the area AR to have a rectangular shape in plan view.
  • the light guide unit 20 is a columnar member formed using a light-transmitting material similar to that of the light collecting unit 10. In the figure, it is illustrated as a prismatic member.
  • the forming material of the light guide unit 20 may be different from the forming material of the light collecting unit 10.
  • the light guide unit 20 is disposed adjacent to the first end surface 10c of the light collecting unit 10 at the center in the z direction of the first main surface 20a of the light guide unit 20 so as to face each other.
  • a region in contact with the first end surface 10c of the light collector 10 in the first main surface 20a is defined as a connection surface 20x.
  • the light L propagating through the condensing unit 10 and emitted from the first end surface 10c is incident on the inside of the light guide unit 20 from the connection surface 20x.
  • the light L that has entered the light guide unit 20 propagates while being repeatedly reflected on the inner wall surface of the light guide unit 20, and is condensed and emitted to the first end surface 20 c that is one end surface of the light guide unit 20.
  • the light guide 20 has a thickness d ⁇ b> 2 of the light guide 20 that is equal to the first end face 10 c of the light collector 10 in the thickness direction (z-axis direction) of the light collector 10. It is larger than the width.
  • 5A and 5B show the locus of light incident on the light guide 20 from the first end face 10c with a two-dot chain line.
  • the thickness d2 of the light guide 20 is larger than the width of the first end face 10c, the light incident on the light guide 20 from the light collector 10 at a predetermined angle is guided. It is easy to repeat the reflection on the inner wall surface.
  • the thickness d2 of the light guide 20 is equal to the width d1 of the first end face 10c, the light L reflected by the inner wall surface of the light guide 20 is condensed again. It is easy to be incident on the portion 10 and easily lost because a lot of light becomes stray light.
  • the thickness of the light guide 20 is controlled to be larger than the width of the first end face 10c as in the present embodiment, the light L in the light guide 20 is again applied to the light collector 10. Reduces the probability of incident stray light. Therefore, in the light guide part 20 of this embodiment, the inside of the light guide part 20 can be effectively propagated.
  • a reflective film may be formed on a surface other than the connection surface 20x and the first end surface 20c of the light guide unit 20. If it does in this way, the light which propagates the inside of the light guide part 20 will be reliably guide
  • the light incident on the light guide unit 20 propagates through the light guide unit 20 by being totally reflected by the inner wall of the light guide unit 20. Therefore, as the condensing part 10 used with such a light guide part 20, the light which injects into the light guide part 20 from the light condensing part 10 injects at the angle which satisfy
  • the angle of light incident on the light guide unit 20 from the light collecting unit 10 can be changed by controlling the extending direction of the reflection unit 18. Further, by changing the refractive index of the light guide unit 20 to be different from the refractive index of the light collecting unit 10, light may be refracted and changed at the interface between the light collecting unit 10 and the light guide unit 20.
  • the solar cell element 30 is disposed adjacent to the light receiving surface 30a of the solar cell element 30 so that the first end surface 20c of the light guide unit 20 faces the light receiving surface 30a.
  • the solar cell element 30 is irradiated with light emitted from the light guide unit 20 and subjected to photoelectric conversion.
  • the light guide unit 20 and the solar cell element 30 may be directly fixed by an optical adhesive or the like, or are not directly fixed, and the position is fixed by being accommodated in a frame (not shown). It may be.
  • the solar cell element 30 As the solar cell element 30, a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used. Although the shape and dimension of the solar cell element 30 are not particularly limited, it is desirable to match the shape and dimension of the first end face 20c of the light guide unit 20. By making the shape and size of the solar cell element 30 coincide with the shape and size of the first end face 20c of the light guide unit 20, the solar cell element 30 efficiently receives the light propagating through the light guide unit 20. Can do.
  • the light taken from the light collecting unit 10 that receives the light L by the reflecting unit 18 travels in a direction that obliquely intersects the first end surface 10c in plan view.
  • a direction is changed and it inject
  • the solar cell element 30 since light collected from the light collecting unit 10 is collected as it propagates through the light collecting unit 10 and the light guide unit 20, the solar cell element 30 having a size corresponding to the first end surface 20 c of the light guide unit 20. Can be used for efficient photoelectric conversion, and there is no need to prepare a large-sized solar cell element. Therefore, the manufacturing cost can be reduced. Furthermore, even if the size of the light collecting unit 10 or the light guide unit 20 is enlarged in the x-axis direction and the amount of light collected is increased, the size of the solar cell element 30 does not change, so the size is increased at low cost. It is possible.
  • the amount of power generation per unit area of the solar cell element 30 is increased, and power can be generated effectively. Can do.
  • the solar cell module 1 of the present embodiment high power generation efficiency can be realized at low cost. Moreover, since the solar power generation device 100 of the present embodiment includes the solar cell module 1 described above, high power generation efficiency can be realized.
  • the present inventor performed a simulation of the power generation amount in order to verify the effect of the solar cell module 1 of the present embodiment.
  • the output condition of the solar cell element 30 is based on the air mass AM1.5 defined by JIS.
  • the dimensions of the condensing part 10 are: the length L1 in the short direction of the first main surface 10a is 100 mm, the length L2 in the longitudinal direction is 100 mm, the thickness d1 is 10 mm, and the normal line of the first end face 10c of the reflecting part 18
  • the inclination angle ⁇ with respect to the direction is 30 degrees
  • the inclination angle ⁇ A of the first inclined surface T1 of the light collector 10 is 30 degrees
  • the inclination angle ⁇ B of the second inclined surface T2 is 90 degrees
  • the width (pitch) of the first inclined surface T1. was 200 ⁇ m and the refractive index was 1.5.
  • the dimensions of the light guide unit 20 were a length L2 of 100 mm, a width of 20 mm, a thickness d2 of 60 mm, and a refractive index of 1.5. Furthermore, the dimensions of the solar cell element 30 were set to 60 mm ⁇ 20 mm, similar to the cross section of the light guide unit 20.
  • the incident angle of sunlight on the first main surface 10a of the light collecting unit 10 is approximately 42 degrees, The power obtained was approximately 20W.
  • the electric power obtained when the solar cell element 30 was directly irradiated with sunlight without using the light collecting unit 10 and the light guide unit 20 was about 2 W.
  • the solar cell module 1 of this embodiment it turned out that sufficiently large electric power can be obtained even if the small solar cell element 30 is used.
  • the solar cell module 1 of this embodiment was irradiated to the window, daylighting indoors by incorporating in the window part of a building so that the 1st main surface 10a of the condensing part 10 may face the outdoors. It is good also as performing solar power generation using a part of sunlight.
  • the reflecting portion 18 has a triangular prism shape whose cross-sectional shape is a right triangle.
  • the present invention is not limited to this.
  • the reflection part 18 has the function to reflect the light L reflected by the 1st surface T1 toward the 1st end surface 10c of the condensing part 10, various shapes can be employ
  • the cross-sectional shape does not have to be a right triangle, and for example, if it has a surface corresponding to the first surface, it may be an unequal triangle or another polygon. Further, the surface corresponding to the first surface T1 may not be a flat surface but may be a curved surface. Furthermore, the reflection part 18 does not need to be a protrusion with a columnar shape extending, and may be a protrusion formed intermittently.
  • the light guide unit 20 has a prismatic shape, but it is possible to propagate the light emitted from the first end face 10c of the light collecting unit 10 in its extending direction.
  • other shapes may be used.
  • the shape is not limited to a column shape, and may be a pyramid shape (pyramid) having an axis of symmetry in the x direction in the figure.
  • the light guide unit 20 is columnar because the width of the light guide unit 20 in the y direction and the z direction does not change even if the light collecting unit 10 is enlarged in the x direction. .
  • the light guide 20 has a rectangular cross-sectional shape.
  • the present invention is not limited to this, and various light sources can be used as long as the light incident on the light can be propagated while being reflected by the inner wall surface.
  • the cross-sectional shape can be adopted.
  • the light guide 21 shown in FIG. 6A has a pentagonal cross-sectional shape.
  • the first end surface 10c has a surface 21x facing the first end surface 10c, and the surfaces facing the first end surface 10c (indicated by reference numerals 21y and 21z in the figure) are the first end surface 10c and It is set in the intersecting direction. Therefore, the light incident on the light guide unit 21 at a predetermined angle from the light collecting unit 10 is easily reflected on the inner wall surface of the light guide unit 21, and the light L efficiently propagates in the light guide unit 21. Can do.
  • the light guide portion 22 shown in FIG. 6B has a cross-sectional shape of an arc surrounded by an arc having a central angle larger than 180 degrees and a string connecting ends of the arc.
  • the light guide 22 has a surface 22x that faces the first end surface 10c.
  • the curved surface 22r faces the 1st end surface 10c, the light which injects into the light guide part 21 at a predetermined angle from the condensing part 10 is the inner wall surface of the light guide part 22. Therefore, the reflection can be easily repeated and the light L can be efficiently propagated.
  • the light guide unit 20 is connected to the light collecting unit 10 at the approximate center of the first main surface 20a.
  • the present invention is not limited to this.
  • FIG. 7A shows an example of a solar cell module in which the light collecting unit 10 and the light guide unit 20 are connected at the upper end in the z direction on the first main surface 20a.
  • FIG. 7B shows an example of a solar cell module in which the light collecting unit 11 and the light guide unit 22 formed so that the first end face 11c is inclined obliquely with respect to the z direction.
  • the planar view shape of the light collecting unit 10 is a trapezoid, but is not limited thereto. Various shapes can be adopted as long as the light propagation direction in the light condensing part is obliquely incident on the light guide part 20.
  • the solar cell module 7 shown in FIG. 8A has a plate-shaped condensing part 16 having a triangular shape in plan view.
  • the condensing unit 16 has a plurality of reflecting units 18 on the second main surface 16b, and light incident on the inside from the first main surface 16a is reflected from the inner wall surface and guided from the first end surface 16c. It is injected towards 20.
  • FIGS. 9 to 10A and 10B a solar cell module 2 according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 10A and 10B.
  • the solar cell module 2 of this embodiment is partially in common with the solar cell module 1 of the first embodiment. The difference is that the two light collecting portions 10 are connected to the light guide portion 20. Therefore, in this embodiment, the same code
  • FIG. 9 is a plan view of the solar cell module 2.
  • the solar cell module 2 includes, for one light guide unit 20, a first light collecting unit 10 connected to the first main surface 20a and a second main surface facing the first main surface 20a. And a second condensing unit 12 connected to 20b.
  • the 1st condensing part 10 and the 2nd condensing part 12 have a mirror image relationship mutually.
  • the first condensing unit 10 and the second condensing unit 12 are provided with a plurality of reflecting units (first reflecting units) 18A and 18B each having a function of changing the traveling direction of the light L incident therein. Yes.
  • the light L incident on the inside of the first light collecting unit 10 propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is condensed and emitted to the first end surface 10 c that is a connection surface with the light guide unit 20. Is done.
  • the light L incident on the inside of the second light collecting unit 12 propagates while being repeatedly reflected on the inner surface of the light collecting unit 12, and is collected on the first end surface 12 c that is a connection surface with the light guide unit 20. Is injected.
  • the light L incident from the first light collecting unit 10 and the second light collecting unit 12 is collected on the first end surface 20c and arranged to face the first end surface 20c. Is incident on the solar cell element 30.
  • the solar cell element 30 can be the same size as in the first embodiment.
  • 10A and 10B are side views of the solar cell module 2.
  • FIG. 10A shows an example in which the positions of the first light collecting unit 10 and the second light collecting unit 12 in the height direction (z direction) are the same in the solar cell module 2. That is, the 1st condensing part 10 and the 2nd condensing part 12 are the 1st main surface which is a surface corresponding to the 1st main surface 10a in the 1st main surface 10a and the 2nd condensing part 12. 12a is connected to be the same surface as the upper end surface 20d of the light guide unit 20.
  • the solar cell module 2 formed in this way even if dust or dust that interferes with daylight adheres to the first main surfaces 10a and 12a, there are few steps and it is easy to clean, so that maintenance becomes easy.
  • the positions in the height direction (z direction) of the first light collecting unit 10 and the second light collecting unit 12 may be different from each other. If it is provided at the same height, it will be incident on the other light collecting part (second light collecting part 12 in the figure) from one light collecting part (first light collecting part 10 in the figure). Light (symbol Lx) also exists. However, if the first light collecting unit 10 and the second light collecting unit 12 are provided at different height positions, the light is introduced before entering the other light collecting unit from one light collecting unit. Reflection can be repeated on the inner wall surface of the light part 20, and the light L can be propagated efficiently.
  • the solar cell element 30 is irradiated with the light collected by the first light collecting unit 10 and the second light collecting unit 12, so that high-output power generation is possible. It becomes.
  • the solar cell module 2 can perform high-output power generation at a relatively low cost.
  • the 1st condensing part 10 and the 2nd condensing part 20 being a mirror image, it is not restricted to this, It is a condensing part designed independently, respectively. It does not matter.
  • the pitches of the reflecting portions 18A and 18B may be different from each other, and the shapes of the reflecting portions may be different.
  • FIGS. 11 to 14B a solar cell module 3 according to a third embodiment of the present invention will be described with reference to FIGS. 11 to 14B.
  • the solar cell module 3 of the present embodiment is also partly in common with the solar cell module 1 of the first embodiment. Therefore, in this embodiment, the same code
  • FIG. 11 to 13 are explanatory views showing a schematic configuration of the solar cell module 3.
  • FIG. 11 is a plan view
  • FIG. 12 is a perspective view
  • FIG. 13 is a side view.
  • the solar cell module 3 includes a plate-shaped condensing unit 13, a light guide unit 20 and a light guide unit (second light guide unit) 23, and a solar cell element. 30 and a solar cell element (second solar cell element) 33.
  • the light guide 20 and the light guide (second light guide) 23 are provided in contact with the light collector 13.
  • the solar cell element 30 is provided in contact with the light guide unit 20.
  • the solar cell element (second solar cell element) 33 is provided in contact with the light guide portion 23.
  • the condensing unit 13 is provided such that the first end surface 13 c faces the first main surface 20 a of the light guide unit 20.
  • the light condensing unit 13 is provided so that the second end surface 13 d facing the first end surface 13 c faces the first main surface 23 a of the light guide unit 23.
  • the first main surface 20a and the first main surface 23a are provided in parallel to each other and in parallel to the z-axis.
  • the condensing unit 13 changes the traveling direction of the light L incident on the inside of the condensing unit 13 on the second main surface 13b that is a surface facing the first main surface 13a.
  • a plurality of reflecting portions 18 having a function of leading to the first end face 13c are provided.
  • the second main surface 13b is also provided with a plurality of reflecting portions 19 having a function of changing the traveling direction of the light L incident on the inside and guiding the light L to the second end surface 13d facing the first end surface 13c.
  • the light La irradiated on the reflecting unit 18 propagates while repeating reflection on the inner surface of the condensing unit 13, and is a first connection surface with the light guide unit 20.
  • the light is condensed on the end face 13c and emitted.
  • the light Lb irradiated to the reflecting portion 19 propagates while being repeatedly reflected on the inner surface of the light collecting portion 13, and is condensed and emitted to the first end surface 13 d that is a connection surface with the light guide portion 23. .
  • the light La incident from the light condensing unit 13 is collected on the first end surface 20c and incident on the solar cell element 30 disposed to face the first end surface 20c.
  • the light Lb incident from the light condensing part 13 is condensed on the first end face 23c, and enters the solar cell element 33 arranged opposite to the first end face 23c.
  • the solar cell elements 30 and 33 the light collected by the light collecting unit 13 is irradiated to generate power.
  • the light converging unit 13 is provided with two types of reflecting units 18 and 19 having different angles. Therefore, it is possible to effectively collect and propagate light. Therefore, it is possible to effectively irradiate any one of the solar cell elements 30 and 33 and realize high power generation efficiency.
  • the plate-like light collecting portion 13 is held by the light guide portions 20 and 23 provided on both sides.
  • the light guides 20 and 23 function as a frame of the light collecting unit 13 and increase the strength of the entire module. Therefore, when it enlarges, it can be set as a highly reliable solar cell module which is hard to be damaged.
  • the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are provided in parallel to each other and in parallel to the z axis. Not limited to this.
  • FIG. 14A shows an example of a solar cell module in which the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are inclined with respect to the z direction and are parallel to each other. .
  • Both end surfaces 14c and 14d connected to the light guide portions 20 and 23 in the light collecting portion 14 are surfaces inclined in the same direction as the first main surface 20a and the first main surface 23a.
  • FIG. 14B shows an example of a solar cell module in which the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are inclined in different directions with respect to the z direction. . Also in the condensing part 15, both end surfaces 15c and 15d connected to the light guide parts 20 and 23 are surfaces inclined in the same direction as the first main surface 20a and the first main surface 23a.
  • the solar cell module in which the light guide units 20 and 23 are provided in such an arrangement, light incident on the light guide units 20 and 23 from the light collecting unit 14 or the light collecting unit 15 at a predetermined angle is transmitted from the light guide unit. It is easy to repeat reflection on the inner wall surface, and the light L can be propagated efficiently. Therefore, high power generation efficiency can be realized.
  • the plurality of light collecting portions 13 are arranged in one direction in the same posture, and the light guide portions 20 are arranged between the adjacent light collecting portions 13. Has been.
  • the condensing part 13 is the same as that shown in the third embodiment.
  • Each condensing part 13 has the 1st end surface 13c connected with the 1st main surface 20a of the light guide part 20 which faces the 1st end surface 13c. Further, the second end surface 13d is connected to the second main surface 20b facing the first main surface 20a in the light guide section 20 facing the second end surface 13d. And as a whole, the repeating structure of the condensing part 13, the light guide part 20, the condensing part 13 ... is formed.
  • the light collected by the plurality of light collecting portions 13 is propagated to the light guide portions 20 connected to each other and faces the first end face 20c of each light guide portion 20.
  • a plurality of solar cell elements 30 provided are irradiated. Each solar cell element 30 performs photoelectric conversion according to the irradiated light. Therefore, when the solar cell module 4 is used, high power generation efficiency can be realized while condensing light over a wide area.
  • the solar cell module 4 when used, it becomes easier to install the solar cell modules 3 without a gap than to prepare a plurality of the solar cell modules 3 of the third embodiment and arrange them at the installation location.
  • the solar cell elements 30 of the other solar cell module 4 are arranged close to the notch 13x of one solar cell module 4. By doing so, it can be arranged without gaps.
  • the solar cell module 5 of this embodiment adds the condensing part 13 further to the solar cell module 3 of 3rd Embodiment, and has two condensing parts 13 (in the vertical direction (z direction) ( The reference numerals 13A and 13B) are stacked.
  • the reflecting portions 18 and 19 provided in the respective light collecting portions 13A and 13B may be provided at positions that overlap each other in a plane, or may be provided at positions that do not overlap in a plane.
  • each 1st end surface 13c faces the 1st main surface 20a of the light guide part 20, and each 2nd end surface 13d is light guide. It is provided so as to face the first main surface 23 a of the portion 23.
  • the first main surface 20a and the first main surface 23a are provided in parallel to each other in parallel to the z direction.
  • the solar cell module 5 having the above-described configuration, the light that has passed through the upper light collecting unit 13A can be collected by the lower light collecting unit 13B, so that the amount of light collected per installation area can be increased. Can be applied to the solar cell elements 30 and 33. Therefore, it can be set as the solar cell module which implement
  • the solar cell module 6 of this embodiment adds the condensing part 10 and 12 further to the solar cell module 2 of 2nd Embodiment, and the condensing part 10 in the vertical direction (z direction). 12 is laminated. That is, the solar cell module 6 has, with respect to one light guide unit 20, condensing units 10A and 10B connected to the first main surface 20a and a condensing unit connected to the second main surface facing the first main surface 20a. Parts 12A and 12B.
  • the positions in the height direction (z direction) of the light collecting unit 10A and the light collecting unit 12A are the same, and the light collecting unit 10B
  • the height direction position with the light condensing part 12B is mutually the same. That is, the condensing unit 10A and the condensing unit 12A are connected such that the first main surface 10a and the first main surface 12a are the same surface as the upper end surface 20d of the light guide unit 20. Further, the light collector 10B and the light collector 12B are connected such that the second main surface 10b and the second main surface 12b are the same surface as the lower end surface 20e of the light guide unit 20.
  • the solar cell module 5 having the above-described configuration, the light transmitted through the upper light collecting portions 10A and 12A can be collected by the lower light collecting portions 10B and 12B.
  • the solar cell element 30 can be irradiated with a lot of light. Therefore, it can be set as the solar cell module which implement
  • the aspect of the present invention can be widely used for solar cell modules or solar power generation devices.
  • SYMBOLS 1-7 Solar cell module, 10-16 ... Condensing part, 10a, 12a, 13a, 16a ... 1st main surface (one surface), 10b, 12b, 13b, 16b ... 2nd main surface (the other surface) 10c, 13c ... first end face, 13d ... second end face, 18 ... first reflecting part, 19 ... second reflecting part, 20-23 ... light guide part, 20x ... connecting face, 30, 33 ... solar cell element , 30c ... end, d1 ... width of the first end face, d2 ... thickness of the light guide part, 100 ... solar power generation device.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This solar cell module (1) has: a light collector unit (10); a first light guide unit (20) provided along the first end surface (10c) of the light collector unit; and a first solar cell element (30) provided to an end in the direction of extension of the first light guide unit. The light collector unit has a first surface and a second surface that border the first end surface. The light collector unit is configured in a manner so as to collect and emit the light that enters to the interior thereof from the first surface at at least the first end surface by causing propagation through the interior. The first light guide unit is configured in a manner so as to cause light emitted from the first end surface of the light collector unit: to enter the interior from the connection surface (20x) between the first light guide unit and the first end surface; to be propagated in the direction of extension of the first light guide unit; to be emitted from the aforementioned end; and to enter the first solar cell element. At least the second surface of the light collector unit is provided with a plurality of first reflection sections (18) that reflect light entering from the first surface, and that, in the in-plane direction of the first surface, alter the direction of progress of the light that has entered to a direction that obliquely intersects with the direction of extension of the first end surface. The solar cell module is able to use a solar cell having a size corresponding to that of the end surface of the first light guide unit, and achieves a high power generation efficiency at a low cost.

Description

太陽電池モジュールおよび太陽光発電装置Solar cell module and solar power generation device
 本発明は、太陽電池モジュールおよび太陽光発電装置に関するものである。
 本願は、2010年11月16日に、日本に出願された特願2010-256201号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a solar power generation device.
This application claims priority based on Japanese Patent Application No. 2010-256201 filed in Japan on November 16, 2010, the contents of which are incorporated herein by reference.
 従来の太陽光発電装置は、複数の太陽電池パネルを太陽に向けて一面に敷き詰めた形態のものが一般的であった。一例として、建物の屋根に架台を設置し、架台上に複数の太陽電池パネルを敷き詰めた形態の太陽光発電装置が知られている。 Conventional solar power generation apparatuses generally have a form in which a plurality of solar battery panels are spread over the entire surface facing the sun. As an example, a solar power generation apparatus in which a gantry is installed on the roof of a building and a plurality of solar battery panels are spread on the gantry is known.
 しかし、このような設置形態の場合、太陽電池パネルに入射する光の光量は、太陽電池の面積で決まることとなる。そのため、必要とする発電量を確保するためには、対応する面積の太陽電池が必要となる。したがって、従来の太陽光発電装置を用いて発電量を大きくしようとする場合には、大面積の太陽電池パネルを設置する必要があり、高コストになることが避けられなかった。 However, in the case of such an installation form, the amount of light incident on the solar cell panel is determined by the area of the solar cell. Therefore, in order to secure the required power generation amount, a solar cell with a corresponding area is required. Therefore, in order to increase the amount of power generation using a conventional solar power generation device, it is necessary to install a large-area solar cell panel, which inevitably increases the cost.
 そこで、上記のような従来の太陽電池に代わる構成として、太陽光を集光する集光部材と、集光部材の端部に設けられた太陽電池素子とを有する太陽電池が提案されている(例えば特許文献1から4参照)。これらの太陽電池では、平面視で広い面積を占める集光部材が、一主面で太陽光を受光した後に集光部材の端部に光を集光し、集光した光を太陽電池素子に入射させて発電を行っている。こうすることにより、太陽電池素子の使用面積を小さくしつつ、発電量を確保することができる。あわせて、集光部材に光透過性を持たせることにより、例えば、建物において広い面積を占める窓に配置することが可能となる。また、集光部材を複数積層して配置することが可能となる、など、従来の太陽光発電装置よりも高い自由度で設置することが可能となる。 Then, the solar cell which has the condensing member which condenses sunlight, and the solar cell element provided in the edge part of the condensing member as a structure replaced with the above conventional solar cells is proposed ( For example, see Patent Documents 1 to 4). In these solar cells, a condensing member occupying a large area in plan view collects light at the end of the condensing member after receiving sunlight on one main surface, and the condensed light is applied to the solar cell element. Incident light is generated. By doing so, it is possible to secure the amount of power generation while reducing the use area of the solar cell element. In addition, by providing the light collecting member with light transmittance, for example, it can be arranged in a window occupying a large area in a building. Moreover, it becomes possible to install with a higher degree of freedom than the conventional solar power generation device, such as being able to arrange and arrange a plurality of light collecting members.
実開昭61-136559号公報Japanese Utility Model Publication No. 61-136559 特開平7-122771号公報JP 7-122771 A 特開2004-47752号公報JP 2004-47752 A 特開平11-46008号公報Japanese Patent Laid-Open No. 11-46008
 近年では、環境意識が向上している社会背景から、太陽光発電に対する関心が高まっており、より低コストで高出力の発電が可能な太陽光発電装置が求められている。通常、発電量を増やすためには、大型化により設置面積を増やすことや、単位面積当たりの発電効率を向上させること、の検討が成される。 In recent years, interest in solar power generation has increased due to the social background with increasing environmental awareness, and there is a need for a solar power generation apparatus capable of generating high-output power at a lower cost. Usually, in order to increase the amount of power generation, consideration is given to increasing the installation area by increasing the size and improving the power generation efficiency per unit area.
 これに対し、上述の特許文献に記載の太陽光発電装置では、太陽光発電装置の設置面積に対する発電効率を向上させて、高効率の発電を行うという観点からは、まだ改良の余地がある。 On the other hand, in the solar power generation device described in the above-mentioned patent document, there is still room for improvement from the viewpoint of improving the power generation efficiency with respect to the installation area of the solar power generation device and performing highly efficient power generation.
 また、上述の太陽光発電装置は、集光部材を大型化すると、あわせて大面積の太陽電池が必要となり高コストとなったり、集光部材の大面積化により集光効率の低下が著しく、発電効率が低下したりするなど、装置の大型化による設置面積の拡大には不向きである。 In addition, when the above-described solar power generation device is enlarged in size, a large-area solar cell is required, resulting in high cost, or due to the large area of the condensing member, the condensing efficiency is significantly reduced. It is not suitable for expanding the installation area by increasing the size of the device, such as a decrease in power generation efficiency.
 本発明の態様はこのような事情に鑑みてなされたものであって、高い発電効率を実現する太陽電池モジュールを提供することを目的の一つとする。また、上述の太陽電池モジュールを用いることにより、高い発電効率を実現する太陽光発電装置を提供することをあわせて目的の一つとする。 An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module that realizes high power generation efficiency. Another object is to provide a solar power generation device that achieves high power generation efficiency by using the solar cell module described above.
 上記の課題を解決するため、本発明の一形態の太陽電池モジュールは、集光部と、前記集光部の第1端面に沿って設けられた第1の導光部と、前記導光部の延在方向の端部に設けられた第1の太陽電池素子と、を有し、前記集光部は、前記第1端面に接する第1の面および第2の面を有し、 前記集光部は、前記第1の面から内部に入射する光を、前記内部を伝播させて少なくとも前記第1端面に集光させて射出するよう構成され、前記第1の導光部は、前記集光部の前記第1端面から射出された光を、前記第1の導光部と前記第1端面との接続面から内部に入射させ、前記第1の導光部の延在方向に伝播させて前記端部から射出させ、前記第1の太陽電池素子に入射させるよう構成され、前記集光部の少なくとも前記第2の面には、前記第1の面から入射した光を反射させ、前記第1の面の面内方向において、前記入射した光の進行方向を、前記第1端面の延在方向に対して斜めに交差する方向に変更する複数の第1反射部が設けられている。 In order to solve the above-described problems, a solar cell module according to an aspect of the present invention includes a light collecting unit, a first light guide unit provided along a first end surface of the light collecting unit, and the light guide unit. A first solar cell element provided at an end in the extending direction of the first and second concentrators, and the condensing unit has a first surface and a second surface in contact with the first end surface, The light unit is configured to propagate the light incident on the inside from the first surface to be condensed and emitted to at least the first end surface, and the first light guide unit is configured to emit the light collecting unit. Light emitted from the first end surface of the light portion is incident on the inside from the connection surface between the first light guide portion and the first end surface, and propagates in the extending direction of the first light guide portion. The light is emitted from the end portion and incident on the first solar cell element, and at least the second surface of the light collecting portion The light incident from the first surface is reflected, and the traveling direction of the incident light is changed to a direction obliquely intersecting the extending direction of the first end surface in the in-plane direction of the first surface. A plurality of first reflecting portions are provided.
 本発明の一形態においては、前記第1の導光部の厚さは、前記集光部の前記第1端面の、前記集光部の厚さ方向における寸法よりも大きくてもよい。 In one embodiment of the present invention, the thickness of the first light guide unit may be larger than the dimension of the first end surface of the light collecting unit in the thickness direction of the light collecting unit.
 本発明の一形態においては、前記接続面に対向する前記第1の導光部の面が、前記接続面と交差する方向に設定されていてもよい。 In one embodiment of the present invention, the surface of the first light guide portion facing the connection surface may be set in a direction intersecting with the connection surface.
 本発明の一形態においては、前記接続面に対向する前記第1の導光部の面が、曲面であってもよい。 In one embodiment of the present invention, the surface of the first light guide portion facing the connection surface may be a curved surface.
 本発明の一形態においては、前記集光部が一対をなすよう二つ設けられ、前記一対の集光部が共通する前記第1の導光部を挟持して設けられていてもよい。 In one embodiment of the present invention, two of the light collecting portions may be provided so as to form a pair, and the pair of light collecting portions may be provided so as to sandwich the first light guide portion.
 本発明の一形態においては、前記集光部には、前記第2の面に、前記第1の面から内部に入射する光を、前記集光部の内部を伝播させて前記第1端面に対向する第2端面から射出させる複数の第2反射部がさらに設けられ、前記第2反射部は、前記第1の面から入射した光を反射させ、前記第1の面の面内方向において、前記入射した光の進行方向を、前記第2端面の延在方向に対して斜めに交差する方向に変更し、前記第2端面には、前記第2端面に沿って設けられた第2の導光部と、前記第2の導光部の端部に設けられた第2の太陽電池素子と、を有し、前記第2の導光部は、前記第2端面から射出された光を、前記第2の導光部と前記第2端面との接続面から入射させ、前記第2の導光部の延在方向に伝播させて前記端部から射出させ、前記第2の太陽電池素子に入射させてもよい。 In one form of this invention, the said condensing part is made to propagate in the inside of the said condensing part to the said 1st end surface with the light which injects into the inside from the said 1st surface to the said 2nd surface. A plurality of second reflecting portions that are emitted from opposing second end faces are further provided, the second reflecting portion reflects light incident from the first surface, and in the in-plane direction of the first surface, The traveling direction of the incident light is changed to a direction obliquely intersecting with the extending direction of the second end face, and a second guide provided along the second end face is provided on the second end face. And a second solar cell element provided at an end of the second light guide, and the second light guide emits light emitted from the second end surface, Incident from the connection surface between the second light guide and the second end surface, propagated in the extending direction of the second light guide and emitted from the end. , It may be incident on the second solar cell element.
 本発明の一形態においては、複数の前記集光部と複数の前記第1および第2の導光部とが、前記第1の面の面内方向に交互に繰り返し配置され、接続されていてもよい。 In one embodiment of the present invention, a plurality of the light collecting portions and a plurality of the first and second light guide portions are alternately arranged and connected alternately in the in-plane direction of the first surface. Also good.
 本発明の一形態においては、前記集光部が、前記第1の面および前記第2の面が略平行になる姿勢で複数、積層されていてもよい。 In one embodiment of the present invention, a plurality of the light collecting portions may be stacked in a posture in which the first surface and the second surface are substantially parallel.
 また、本発明の一形態の太陽光発電装置は、上述の太陽電池モジュールを備えている。 Moreover, the solar power generation device of one form of the present invention includes the above-described solar cell module.
 本発明の態様によれば、高い発電効率を実現する太陽電池モジュール、およびこれを用いた太陽光発電装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a solar cell module that realizes high power generation efficiency and a solar power generation apparatus using the solar cell module.
本実施形態の太陽光発電装置および太陽電池モジュールを示す説明図である。It is explanatory drawing which shows the solar power generation device and solar cell module of this embodiment. 本発明の第1実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池モジュールの平面図である。It is a top view of the solar cell module concerning a 1st embodiment of the present invention. 太陽電池モジュールを構成する集光部の断面図である。It is sectional drawing of the condensing part which comprises a solar cell module. 本発明の第1実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係る太陽電池モジュールの平面図である。It is a top view of the solar cell module which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池モジュールの平面図である。It is a top view of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 3rd Embodiment of this invention. 本発明の第3実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 6th Embodiment of this invention.
[第1実施形態]
 以下、図1~図8Bを参照しながら、本発明の第1実施形態に係る太陽電子モジュールおよび太陽光発電装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[First Embodiment]
Hereinafter, the solar electronic module and the photovoltaic power generation apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 8B. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
 図1は、本実施形態の太陽光発電装置100および太陽電池モジュール1の概略構成を示す説明図である。 FIG. 1 is an explanatory diagram showing a schematic configuration of the solar power generation device 100 and the solar cell module 1 of the present embodiment.
 図に示す太陽光発電装置100では、光照射により発電する太陽電池モジュール1を複数(図では4つ)集積することにより、配線150を介して接続された外部機器200を駆動するための電力を供給する。このような太陽光発電装置100では、従来と同じく建物の屋根に設置することにより、照射された太陽光を用いた太陽光発電が行われる。太陽光発電装置100は、太陽電池モジュール1の他に、例えば、太陽電池モジュール1から得られる電力を蓄える蓄電池などを備えていても良い。 In the photovoltaic power generation apparatus 100 shown in the figure, by integrating a plurality (four in the figure) of the solar cell modules 1 that generate power by light irradiation, electric power for driving the external device 200 connected via the wiring 150 is obtained. Supply. In such a solar power generation device 100, solar power generation using irradiated sunlight is performed by installing the solar power generation device 100 on the roof of a building as in the past. The solar power generation device 100 may include, for example, a storage battery that stores electric power obtained from the solar cell module 1 in addition to the solar cell module 1.
 図2は、本実施形態の太陽電池モジュール1の概略構成を示す斜視図である。図3は、太陽電池モジュール1の概略構成を示す平面図である。図4は、太陽電池モジュール1を構成する集光部10の断面図である。図5A及び5Bは、太陽電池モジュール1の側面図である。 FIG. 2 is a perspective view showing a schematic configuration of the solar cell module 1 of the present embodiment. FIG. 3 is a plan view showing a schematic configuration of the solar cell module 1. FIG. 4 is a cross-sectional view of the light collecting unit 10 constituting the solar cell module 1. 5A and 5B are side views of the solar cell module 1.
 図2に示すように、本実施形態の太陽電池モジュール1は、板状の集光部10と、集光部10に接して設けられた導光部20と、導光部20に接して設けられた太陽電池素子30と、を備えている。集光部10および導光部20は、入射した光Lをその内部で伝播させ、太陽電池素子30に導く機能を有する。すなわち、太陽電池モジュール1においては、集光部10から採り入れた光Lは、導光部20に伝えられ、導光部20を介して太陽電池素子30に導かれ、太陽電池素子30に照射される。太陽電池素子30では、入射する光を用いて光電変換し、電気エネルギーとして取り出す。 As shown in FIG. 2, the solar cell module 1 of the present embodiment is provided with a plate-shaped light collecting unit 10, a light guide unit 20 provided in contact with the light collection unit 10, and a contact with the light guide unit 20. The solar cell element 30 is provided. The condensing unit 10 and the light guide unit 20 have a function of propagating incident light L therein and guiding the light L to the solar cell element 30. That is, in the solar cell module 1, the light L taken from the light collecting unit 10 is transmitted to the light guide unit 20, guided to the solar cell element 30 through the light guide unit 20, and irradiated to the solar cell element 30. The In the solar cell element 30, photoelectric conversion is performed using incident light, which is extracted as electric energy.
 以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明することがある。具体的には、集光部10の入射面と同じ面をXY平面とし、導光部20の延在方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。 In the following description, an XYZ orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to this XYZ orthogonal coordinate system. Specifically, the same plane as the incident surface of the light collecting unit 10 is the XY plane, the extending direction of the light guide unit 20 is the X axis direction, the direction orthogonal to the X axis direction in the horizontal plane is the Y axis direction, and the X axis The direction orthogonal to each of the direction and the Y-axis direction (that is, the vertical direction) is taken as the Z-axis direction.
 集光部10は、光透過性を有する材料を用いて形成される板状の部材である。図では、平面視台形状の部材として図示している。集光部10の形成材料としては、例えばアクリル樹脂、ポリカーボネート樹脂のような有機材料や、ガラスのような無機材料を用いることができるが、これらに限定されるものではない。 The condensing part 10 is a plate-like member formed using a light-transmitting material. In the figure, it is illustrated as a trapezoidal member in plan view. For example, an organic material such as an acrylic resin or a polycarbonate resin, or an inorganic material such as glass can be used as a material for forming the light collecting unit 10, but the material is not limited thereto.
 集光部10は、xy平面に平行な面であってz方向上側の面である第1主面(一方の面)10aから、光Lを内部に取り入れる構成となっている。また、第1主面10aに対向する面である第2主面(他方の面)10bには、内部に入射した光Lの進行方向を変更する機能を有する複数の反射部(第1反射部)18が設けられている。反射部18は、集光部10の第2主面10bに形成された複数の三角柱状の凸条から構成されている。第1主面10aから集光部10の内部に入射した光Lは、集光部10の内面で反射を繰り返しながら伝播し、導光部20との接続面である第1端面10cに集光されて射出される。 The condensing unit 10 is configured to take in the light L from a first main surface (one surface) 10a which is a surface parallel to the xy plane and is an upper surface in the z direction. The second main surface (the other surface) 10b, which is the surface facing the first main surface 10a, has a plurality of reflecting portions (first reflecting portions) having a function of changing the traveling direction of the light L incident on the inside. ) 18 is provided. The reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 10 b of the light collecting portion 10. The light L incident on the inside of the light collecting unit 10 from the first main surface 10 a propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is collected on the first end surface 10 c that is a connection surface with the light guide unit 20. Is injected.
 図3に示すように、複数の反射部18は、各反射部18の三角柱の稜線が平面視において第1端面10cの法線と角度θで交差する方向に、互いに離間して形成されている。図では、複数の反射部18の形状や寸法、隣接する反射部18間の間隔(ピッチ)を全て同じに描いている。このように、複数の反射部18の形状や寸法、隣接する反射部18間の間隔(ピッチ)は全て同じであっても良いし、異なっていても良い。 As shown in FIG. 3, the plurality of reflecting portions 18 are formed apart from each other in a direction in which the ridge line of the triangular prism of each reflecting portion 18 intersects the normal of the first end face 10 c at an angle θ in plan view. . In the figure, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between adjacent reflecting portions 18 are all drawn the same. As described above, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between the adjacent reflecting portions 18 may all be the same or different.
 このような反射部18を有する集光部10においては、内部を伝播する光の進行方向は、反射部18の延在方向と略直交する方向となる。そのため、集光部10に入射した光は、平面視において第1端面10cに対し入射角(90-θ)で入射する。 In the light collecting unit 10 having such a reflection unit 18, the traveling direction of light propagating through the inside is a direction substantially orthogonal to the extending direction of the reflection unit 18. Therefore, the light incident on the condensing unit 10 enters the first end surface 10c at an incident angle (90-θ) in plan view.
 本実施形態の反射部18は、集光部10自体が加工され、集光部10と一体に形成されている。反射部18は、例えば元々平坦な集光部10の面(該面は第2主面10bにほぼ相当する)を切削加工することによって形成することができる。あるいは、凸条の形状を反転させた凹形状を有する金型を用いて樹脂の射出成形を行うなどの方法によって反射部18を形成しても良い。 The reflection unit 18 of the present embodiment is formed integrally with the light collecting unit 10 by processing the light collecting unit 10 itself. The reflecting portion 18 can be formed, for example, by cutting the originally flat surface of the light collecting portion 10 (this surface substantially corresponds to the second main surface 10b). Or you may form the reflection part 18 by methods, such as performing resin injection molding using the metal mold | die which has the concave shape which reversed the shape of the protruding item | line.
 反射部18は三角柱状であると説明したが、図4に示すように、本実施形態においては、集光部10を反射部18の稜線に直交する平面で切断したときの反射部18の断面形状は、直角三角形である。すなわち、各反射部18は、第2主面10bに対して傾斜角θAで傾斜した面である第1面T1と、第2主面10bに対して直交する(すなわち、傾斜角θBが90度)面である第2面T2とを有している。第1面T1は第1主面10aから入射した光を反射(全反射)させる反射面として機能する。 Although it has been described that the reflecting portion 18 has a triangular prism shape, as shown in FIG. 4, in the present embodiment, the cross section of the reflecting portion 18 when the condensing portion 10 is cut along a plane orthogonal to the ridgeline of the reflecting portion 18. The shape is a right triangle. That is, each reflector 18 is orthogonal to the first surface T1, which is a surface inclined at an inclination angle θA with respect to the second main surface 10b, and the second main surface 10b (that is, the inclination angle θB is 90 degrees). ) Surface and the second surface T2. The first surface T1 functions as a reflecting surface that reflects (totally reflects) light incident from the first main surface 10a.
 図4に示すように、集光部10の第1主面10aに対して光(太陽光)Lが入射角θ0で入射したとすると、光Lは第1主面10aにおいて屈折角θ1で屈折して集光部10内に入射する。その後、第1面T1に入射角θ2で入射した光は、反射角θ2で全反射し、第1主面10aに平行な仮想平面Xに対する角度θ3で集光部10内を伝播し、導光部20に向けて射出される。 As shown in FIG. 4, when light (sunlight) L is incident on the first main surface 10a of the light collector 10 at an incident angle θ0, the light L is refracted at the refraction angle θ1 on the first main surface 10a. Then, the light enters the condensing unit 10. Thereafter, the light incident on the first surface T1 at the incident angle θ2 is totally reflected at the reflection angle θ2, and propagates in the light collecting unit 10 at an angle θ3 with respect to the virtual plane X parallel to the first main surface 10a. It is injected toward the part 20.
 ここで、第1面T1への光の入射角θ2は第1面T1の傾斜角θAに応じて変化する。
そのため、第1面T1に入射する光の入射角θ2が第1面T1と空気との界面における臨界角以上となって光が全反射するように、第1面T1の傾斜角θAを予め設定しておく。
Here, the incident angle θ2 of the light on the first surface T1 changes according to the inclination angle θA of the first surface T1.
Therefore, the inclination angle θA of the first surface T1 is set in advance so that the incident angle θ2 of the light incident on the first surface T1 becomes equal to or greater than the critical angle at the interface between the first surface T1 and air and the light is totally reflected. Keep it.
 具体的には、一例として、第1面T1の傾斜角θAを24度、集光部10の屈折率を1.5、空気の屈折率を1.0とする。この場合、Snellの法則より、第1面T1もしくは第2傾斜面T2と空気との界面における臨界角は41度となる。ここで、集光部10の第1主面10aへの光Lの入射角θ0が27度以上であったとすると、光Lが集光部10内に入射する際の屈折角θ1は18度以上となる。すると、第1面T1への光の入射角θ2は41度以上となり、入射角θ2が臨界角以上であるため、光Lは第1面T1で全反射する。したがって、太陽電池モジュール1を窓に設置した際に集光部10に入射する光Lの入射角範囲内において、光が第1面T1で全反射する角度条件を満たすように、第1面T1の傾斜角θAを設定すれば良い。 Specifically, as an example, the inclination angle θA of the first surface T1 is 24 degrees, the refractive index of the light collecting unit 10 is 1.5, and the refractive index of air is 1.0. In this case, according to Snell's law, the critical angle at the interface between the first surface T1 or the second inclined surface T2 and the air is 41 degrees. Here, if the incident angle θ0 of the light L to the first main surface 10a of the light collecting unit 10 is 27 degrees or more, the refraction angle θ1 when the light L enters the light collecting part 10 is 18 degrees or more. It becomes. Then, the incident angle θ2 of the light on the first surface T1 is 41 degrees or more, and the incident angle θ2 is not less than the critical angle, so that the light L is totally reflected by the first surface T1. Therefore, the first surface T1 satisfies the angle condition in which the light is totally reflected by the first surface T1 within the incident angle range of the light L incident on the light collecting unit 10 when the solar cell module 1 is installed on the window. It is sufficient to set the inclination angle θA.
 なお、本実施形態の集光部10は、図3中二点鎖線で示した部分(領域AR)を除いた平面視台形の形状を有するものとした。これは、仮に領域ARに集光部10が存在し、上述の反射部18が延在して形成されていたとしても、領域ARに入射した光は反射部18の形成角度から、第1端面10cに達することができない、または迷光となるため、発電に寄与しないと考えられるためである。しかし、成型のしやすさなど加工上の観点から、領域ARにも集光部10を延在して形成し、平面視矩形の形状としても構わない。 In addition, the condensing part 10 of this embodiment shall have the trapezoid shape of planar view except the part (area | region AR) shown with the dashed-two dotted line in FIG. Even if the condensing part 10 exists in the area AR and the above-described reflecting part 18 is formed to extend, the light incident on the area AR is changed from the angle at which the reflecting part 18 is formed to the first end face. This is because it is considered that it cannot reach 10c or does not contribute to power generation because it becomes stray light. However, from the viewpoint of processing such as ease of molding, the light converging portion 10 may be formed so as to extend in the area AR to have a rectangular shape in plan view.
 導光部20は、集光部10と同様の光透過性を有する材料を用いて形成される柱状の部材である。図では、角柱状の部材として図示している。導光部20の形成材料は、集光部10の形成材料と異なることとしてもよい。 The light guide unit 20 is a columnar member formed using a light-transmitting material similar to that of the light collecting unit 10. In the figure, it is illustrated as a prismatic member. The forming material of the light guide unit 20 may be different from the forming material of the light collecting unit 10.
 また、導光部20は、自身の第1主面20aにおけるz方向の中央において、集光部10の第1端面10cが対向するように隣接して配置されている。第1主面20aにおいて集光部10の第1端面10cと接する領域を、接続面20xとする。集光部10内を伝播し第1端面10cから射出される光Lは、接続面20xから導光部20の内部に入射される。導光部20の内部に入射した光Lは、導光部20の内壁面で反射を繰り返しながら伝播し、導光部20の一端面である第1端面20cに集光して射出する。 Further, the light guide unit 20 is disposed adjacent to the first end surface 10c of the light collecting unit 10 at the center in the z direction of the first main surface 20a of the light guide unit 20 so as to face each other. A region in contact with the first end surface 10c of the light collector 10 in the first main surface 20a is defined as a connection surface 20x. The light L propagating through the condensing unit 10 and emitted from the first end surface 10c is incident on the inside of the light guide unit 20 from the connection surface 20x. The light L that has entered the light guide unit 20 propagates while being repeatedly reflected on the inner wall surface of the light guide unit 20, and is condensed and emitted to the first end surface 20 c that is one end surface of the light guide unit 20.
 ここで、導光部20は、図5Aに示すように、集光部10の厚さ方向(z軸方向)において、導光部20の厚さd2が、集光部10の第1端面10cの幅よりも大きくなっている。また図5Aおよび図5Bには、第1端面10cから導光部20内に入射した光の軌跡を二点鎖線で示している。図5Aに示すように、導光部20の厚さd2が第1端面10cの幅よりも大きいと、集光部10から所定の角度で導光部20に入射する光が、導光部20の内壁面で反射を繰り返しやすい。 Here, as shown in FIG. 5A, the light guide 20 has a thickness d <b> 2 of the light guide 20 that is equal to the first end face 10 c of the light collector 10 in the thickness direction (z-axis direction) of the light collector 10. It is larger than the width. 5A and 5B show the locus of light incident on the light guide 20 from the first end face 10c with a two-dot chain line. As shown in FIG. 5A, when the thickness d2 of the light guide 20 is larger than the width of the first end face 10c, the light incident on the light guide 20 from the light collector 10 at a predetermined angle is guided. It is easy to repeat the reflection on the inner wall surface.
 対して、図5Bに示すように、仮に導光部20の厚さd2が第1端面10cの幅d1と同等であるとすると、導光部20の内壁面で反射した光Lが再度集光部10に入射しやすく、多くの光が迷光となることで損失しやすい。 On the other hand, as shown in FIG. 5B, assuming that the thickness d2 of the light guide 20 is equal to the width d1 of the first end face 10c, the light L reflected by the inner wall surface of the light guide 20 is condensed again. It is easy to be incident on the portion 10 and easily lost because a lot of light becomes stray light.
 すなわち、本実施形態のように、導光部20の厚さを第1端面10cの幅よりも大きくなるように制御することで、導光部20内の光Lが、再度集光部10に入射して迷光となる確率が下がる。そのため、本実施形態の導光部20では、効果的に導光部20内を伝播させることができる。 That is, by controlling the thickness of the light guide 20 to be larger than the width of the first end face 10c as in the present embodiment, the light L in the light guide 20 is again applied to the light collector 10. Reduces the probability of incident stray light. Therefore, in the light guide part 20 of this embodiment, the inside of the light guide part 20 can be effectively propagated.
 なお、導光部20の接続面20xおよび第1端面20c以外の面には、反射膜が形成されていることとしてもよい。このようにすると、導光部20内を伝播する光は、外部に漏れることなく、確実に第1端面20cに導かれる。 A reflective film may be formed on a surface other than the connection surface 20x and the first end surface 20c of the light guide unit 20. If it does in this way, the light which propagates the inside of the light guide part 20 will be reliably guide | induced to the 1st end surface 20c, without leaking outside.
 また、導光部20に上述の反射膜を形成しない場合には、導光部20に入射した光は、導光部20の内壁で全反射することにより、導光部20内を伝播する。そのため、このような導光部20と共に用いる集光部10としては、集光部10から導光部20に入射する光が、導光部20の内壁における全反射条件を満たす角度で入射するものを選択する。 Further, when the above-described reflection film is not formed on the light guide unit 20, the light incident on the light guide unit 20 propagates through the light guide unit 20 by being totally reflected by the inner wall of the light guide unit 20. Therefore, as the condensing part 10 used with such a light guide part 20, the light which injects into the light guide part 20 from the light condensing part 10 injects at the angle which satisfy | fills the total reflection conditions in the inner wall of the light guide part 20. Select.
 集光部10から導光部20に入射する光の角度は、反射部18の延在方向を制御することにより変更可能である。また、導光部20の屈折率を集光部10の屈折率と異ならせることにより、集光部10と導光部20との界面で光を屈折させて変更することとしても構わない。 The angle of light incident on the light guide unit 20 from the light collecting unit 10 can be changed by controlling the extending direction of the reflection unit 18. Further, by changing the refractive index of the light guide unit 20 to be different from the refractive index of the light collecting unit 10, light may be refracted and changed at the interface between the light collecting unit 10 and the light guide unit 20.
 図2に戻って、太陽電池素子30は、自身の受光面30aと、導光部20の第1端面20cとが対向するように隣接して配置されている。太陽電池素子30には、導光部20から射出される光が照射され、光電変換される。導光部20と太陽電池素子30とは、光学接着剤等により直接固定されていても良いし、直接固定されておらず、不図示の枠体に収容されることで位置が固定される構成であっても良い。 Referring back to FIG. 2, the solar cell element 30 is disposed adjacent to the light receiving surface 30a of the solar cell element 30 so that the first end surface 20c of the light guide unit 20 faces the light receiving surface 30a. The solar cell element 30 is irradiated with light emitted from the light guide unit 20 and subjected to photoelectric conversion. The light guide unit 20 and the solar cell element 30 may be directly fixed by an optical adhesive or the like, or are not directly fixed, and the position is fixed by being accommodated in a frame (not shown). It may be.
 太陽電池素子30としては、公知のものを使用することができ、例えばアモルファスシリコン太陽電池、多結晶シリコン太陽電池、単結晶シリコン太陽電池等を用いることができる。太陽電池素子30の形状および寸法は特に限定されることはないが、導光部20の第1端面20cの形状および寸法と一致していることが望ましい。太陽電池素子30の形状および寸法を導光部20の第1端面20cの形状および寸法と一致させることにより、太陽電池素子30は、導光部20内を伝播してきた光を効率良く受光することができる。 As the solar cell element 30, a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used. Although the shape and dimension of the solar cell element 30 are not particularly limited, it is desirable to match the shape and dimension of the first end face 20c of the light guide unit 20. By making the shape and size of the solar cell element 30 coincide with the shape and size of the first end face 20c of the light guide unit 20, the solar cell element 30 efficiently receives the light propagating through the light guide unit 20. Can do.
 以上のような構成の太陽電池モジュール1においては、反射部18により、光Lを受光する集光部10から採り入れた光は、平面視において第1端面10cに対して斜めに交差する方向に進行方向が変更され、第1端面10cから射出される。すなわち、導光部20に入射する光は、導光部20の内壁面に対して斜めに交差する方向に入射することとなる。そのため、導光部20においては、導光部20の内壁面に入射光の進行方向を変更するための凹凸形状のような特段の加工をすることなく、入射した光を反射させながら良好に伝播させることができる。 In the solar cell module 1 configured as described above, the light taken from the light collecting unit 10 that receives the light L by the reflecting unit 18 travels in a direction that obliquely intersects the first end surface 10c in plan view. A direction is changed and it inject | emits from the 1st end surface 10c. That is, the light incident on the light guide unit 20 is incident in a direction that obliquely intersects the inner wall surface of the light guide unit 20. Therefore, in the light guide unit 20, the incident light is propagated well without reflecting the inner wall surface of the light guide unit 20 with special processing such as an uneven shape for changing the traveling direction of the incident light. Can be made.
 また、集光部10から採り入れた光は、集光部10、導光部20と伝播するにしたがって集光するため、導光部20の第1端面20cに相当する大きさの太陽電池素子30を用いることで効率的に光電変換をすることができ、大型の太陽電池素子を準備する必要がない。そのため、製造コストを低減できる。さらに、集光部10や導光部20の大きさをx軸方向に拡大し、集光量を増やすこととしても、太陽電池素子30の大きさには変化がないため、低コストで大型化することが可能である。 In addition, since light collected from the light collecting unit 10 is collected as it propagates through the light collecting unit 10 and the light guide unit 20, the solar cell element 30 having a size corresponding to the first end surface 20 c of the light guide unit 20. Can be used for efficient photoelectric conversion, and there is no need to prepare a large-sized solar cell element. Therefore, the manufacturing cost can be reduced. Furthermore, even if the size of the light collecting unit 10 or the light guide unit 20 is enlarged in the x-axis direction and the amount of light collected is increased, the size of the solar cell element 30 does not change, so the size is increased at low cost. It is possible.
 加えて、太陽電池素子30に対して、通常の太陽光よりも強い光を照射することが可能となるため、太陽電池素子30の単位面積あたりの発電量を増加させ、効果的に発電させることができる。 In addition, since it is possible to irradiate the solar cell element 30 with light stronger than normal sunlight, the amount of power generation per unit area of the solar cell element 30 is increased, and power can be generated effectively. Can do.
 したがって、本実施形態の太陽電池モジュール1では、低コストで高い発電効率を実現することができる。また、本実施形態の太陽光発電装置100は、上述の太陽電池モジュール1を備えているため、高い発電効率を実現することが可能となる。 Therefore, in the solar cell module 1 of the present embodiment, high power generation efficiency can be realized at low cost. Moreover, since the solar power generation device 100 of the present embodiment includes the solar cell module 1 described above, high power generation efficiency can be realized.
 ここで、本発明者は、本実施形態の太陽電池モジュール1の効果を実証するために、発電量のシミュレーションを行った。なお、太陽電池素子30の出力条件は、JISで規定されたエアマスAM1.5を基準としている。 Here, the present inventor performed a simulation of the power generation amount in order to verify the effect of the solar cell module 1 of the present embodiment. The output condition of the solar cell element 30 is based on the air mass AM1.5 defined by JIS.
 集光部10の寸法は、第1主面10aの短手方向の長さL1を100mm、長手方向の長さL2を100mm、厚さd1を10mm、反射部18の第1端面10cの法線方向に対する傾斜角θを30度、集光部10の第1傾斜面T1の傾斜角θAを30度、第2傾斜面T2の傾斜角θBを90度、第1傾斜面T1の幅(ピッチ)を200μmとし、屈折率を1.5とした。 The dimensions of the condensing part 10 are: the length L1 in the short direction of the first main surface 10a is 100 mm, the length L2 in the longitudinal direction is 100 mm, the thickness d1 is 10 mm, and the normal line of the first end face 10c of the reflecting part 18 The inclination angle θ with respect to the direction is 30 degrees, the inclination angle θA of the first inclined surface T1 of the light collector 10 is 30 degrees, the inclination angle θB of the second inclined surface T2 is 90 degrees, and the width (pitch) of the first inclined surface T1. Was 200 μm and the refractive index was 1.5.
 また、導光部20の寸法は、長さL2を100mm、幅を20mm、厚さd2を60mmとし、屈折率を1.5とした。さらに、太陽電池素子30の寸法は、導光部20の断面と同じく60mm×20mmとした。 The dimensions of the light guide unit 20 were a length L2 of 100 mm, a width of 20 mm, a thickness d2 of 60 mm, and a refractive index of 1.5. Furthermore, the dimensions of the solar cell element 30 were set to 60 mm × 20 mm, similar to the cross section of the light guide unit 20.
 この太陽電池モジュール1に対して集光部10の第1主面10a側から太陽光を照射したときには、集光部10の第1主面10aへの太陽光の入射角は略42度となり、得られる電力は略20Wであった。 When the solar cell module 1 is irradiated with sunlight from the first main surface 10a side of the light collecting unit 10, the incident angle of sunlight on the first main surface 10a of the light collecting unit 10 is approximately 42 degrees, The power obtained was approximately 20W.
 一方、集光部10や導光部20を用いることなく、上記の太陽電池素子30に太陽光を直接照射したときに得られる電力は略2Wであった。このように、本実施形態の太陽電池モジュール1によれば、小型の太陽電池素子30を使用しても十分に大きな電力を得られることが判った。 On the other hand, the electric power obtained when the solar cell element 30 was directly irradiated with sunlight without using the light collecting unit 10 and the light guide unit 20 was about 2 W. Thus, according to the solar cell module 1 of this embodiment, it turned out that sufficiently large electric power can be obtained even if the small solar cell element 30 is used.
 なお、本実施形態の太陽電池モジュール1は、建物の窓部分に、集光部10の第1主面10aが屋外に向くように組み込むことにより、室内に採光を行いながら、窓に照射された太陽光の一部を用いて太陽光発電を行うこととしてもよい。 In addition, the solar cell module 1 of this embodiment was irradiated to the window, daylighting indoors by incorporating in the window part of a building so that the 1st main surface 10a of the condensing part 10 may face the outdoors. It is good also as performing solar power generation using a part of sunlight.
 また、本実施形態においては、反射部18は、断面形状が直角三角形である三角柱状の形状であることとしたが、これに限らない。反射部18は、第1面T1で反射した光Lを集光部10の第1端面10cの方に反射させる機能を有しているならば、種々の形状を採用することができる。 In the present embodiment, the reflecting portion 18 has a triangular prism shape whose cross-sectional shape is a right triangle. However, the present invention is not limited to this. As long as the reflection part 18 has the function to reflect the light L reflected by the 1st surface T1 toward the 1st end surface 10c of the condensing part 10, various shapes can be employ | adopted.
 例えば、断面形状は直角三角形でなくてもよく、例えば、第1面に対応する面を有しているならば、不等辺三角形やその他の多角形であってもよい。また、第1面T1に対応する面は平面でなくてもよく、曲面であってもよい。さらに、反射部18は柱状の形状が延在した凸条である必要もなく、断続的に形成された凸部であっても構わない。 For example, the cross-sectional shape does not have to be a right triangle, and for example, if it has a surface corresponding to the first surface, it may be an unequal triangle or another polygon. Further, the surface corresponding to the first surface T1 may not be a flat surface but may be a curved surface. Furthermore, the reflection part 18 does not need to be a protrusion with a columnar shape extending, and may be a protrusion formed intermittently.
 また、本実施形態においては、導光部20を角柱状であることとしたが、集光部10の第1端面10cから射出された光を自身の延在方向に伝播させることが可能であれば、他の形状であることとしてもよい。例えば、柱状に限らず、図のx方向に対称軸を有する錘状(角錐)であることとしても構わない。ただし、導光部20が柱状であると、集光部10をx方向に大型化しても導光部20のy方向、z方向の幅が変化しないため、モジュール全体が大きくなることがなく好ましい。 In the present embodiment, the light guide unit 20 has a prismatic shape, but it is possible to propagate the light emitted from the first end face 10c of the light collecting unit 10 in its extending direction. For example, other shapes may be used. For example, the shape is not limited to a column shape, and may be a pyramid shape (pyramid) having an axis of symmetry in the x direction in the figure. However, it is preferable that the light guide unit 20 is columnar because the width of the light guide unit 20 in the y direction and the z direction does not change even if the light collecting unit 10 is enlarged in the x direction. .
 また、本実施形態では、導光部20の断面形状が矩形であることとしたが、これに限らず、内部に入射する光を内壁面で反射させながら伝播させることが可能であれば、種々の断面形状を採用することができる。 In the present embodiment, the light guide 20 has a rectangular cross-sectional shape. However, the present invention is not limited to this, and various light sources can be used as long as the light incident on the light can be propagated while being reflected by the inner wall surface. The cross-sectional shape can be adopted.
 例として、図6Aに示す導光部21は、断面形状が五角形となっている。このような導光部21においては、第1端面10cと対向する面21xを有し、さらに第1端面10cと対向する面(図中、符号21y,21zで示す)が、第1端面10cと交差する方向に設定されている。そのため、集光部10から所定の角度で導光部21に入射する光が、導光部21の内壁面で反射を繰り返しやすく、導光部21においては、効率的に光Lを伝播させることができる。 As an example, the light guide 21 shown in FIG. 6A has a pentagonal cross-sectional shape. In such a light guide unit 21, the first end surface 10c has a surface 21x facing the first end surface 10c, and the surfaces facing the first end surface 10c (indicated by reference numerals 21y and 21z in the figure) are the first end surface 10c and It is set in the intersecting direction. Therefore, the light incident on the light guide unit 21 at a predetermined angle from the light collecting unit 10 is easily reflected on the inner wall surface of the light guide unit 21, and the light L efficiently propagates in the light guide unit 21. Can do.
 また、図6Bに示す導光部22は、断面形状が、180度より大きい中心角を有する円弧と円弧の端部同士を結ぶ弦とで囲まれた弓形となっている。導光部22は、第1端面10cと対向する面22xを有する。また、このような導光部22においては、第1端面10cに曲面22rが面するため、集光部10から所定の角度で導光部21に入射する光が、導光部22の内壁面で反射を繰り返しやすく、効率的に光Lを伝播させることができる。 Further, the light guide portion 22 shown in FIG. 6B has a cross-sectional shape of an arc surrounded by an arc having a central angle larger than 180 degrees and a string connecting ends of the arc. The light guide 22 has a surface 22x that faces the first end surface 10c. Moreover, in such a light guide part 22, since the curved surface 22r faces the 1st end surface 10c, the light which injects into the light guide part 21 at a predetermined angle from the condensing part 10 is the inner wall surface of the light guide part 22. Therefore, the reflection can be easily repeated and the light L can be efficiently propagated.
 また、本実施形態では、導光部20には、第1主面20aの略中央で集光部10と接続していることとしたが、これに限らない。 In the present embodiment, the light guide unit 20 is connected to the light collecting unit 10 at the approximate center of the first main surface 20a. However, the present invention is not limited to this.
 図7Aには、集光部10と導光部20とが、第1主面20aにおけるz方向上端部で接続する太陽電池モジュールの例を示す。また、図7Bには、第1端面11cがz方向に対して斜めに傾斜するように形成された集光部11と、導光部22とが接続されている太陽電池モジュールの例を示す。 FIG. 7A shows an example of a solar cell module in which the light collecting unit 10 and the light guide unit 20 are connected at the upper end in the z direction on the first main surface 20a. FIG. 7B shows an example of a solar cell module in which the light collecting unit 11 and the light guide unit 22 formed so that the first end face 11c is inclined obliquely with respect to the z direction.
 このような配置で接続されていても、集光部10から所定の角度で導光部21に入射する光が、導光部20または導光部22の内壁面で反射を繰り返しやすく、効率的に光Lを伝播させることができる。 Even if it is connected in such an arrangement, light incident on the light guide unit 21 at a predetermined angle from the light collecting unit 10 can easily be reflected on the inner wall surface of the light guide unit 20 or the light guide unit 22, which is efficient. Can propagate the light L.
 また、本実施形態においては、集光部10の平面視形状が台形であることとしたが、これに限らない。集光部内の光の伝播方向が導光部20に対して斜めに入射する方向であるならば、種々の形状を採用することができる。 Further, in the present embodiment, the planar view shape of the light collecting unit 10 is a trapezoid, but is not limited thereto. Various shapes can be adopted as long as the light propagation direction in the light condensing part is obliquely incident on the light guide part 20.
 例えば、図8Aに示す太陽電池モジュール7は、平面視三角形の板状の集光部16を有している。集光部16は、第2主面16bに複数の反射部18を有しており、第1主面16aから内部に入射した光は、内壁面で反射しながら第1端面16cから導光部20に向けて射出される。 For example, the solar cell module 7 shown in FIG. 8A has a plate-shaped condensing part 16 having a triangular shape in plan view. The condensing unit 16 has a plurality of reflecting units 18 on the second main surface 16b, and light incident on the inside from the first main surface 16a is reflected from the inner wall surface and guided from the first end surface 16c. It is injected towards 20.
 このような太陽電池モジュール7を用いると、図8Bのように集光部16の斜辺同士を対向させるようにして並べることで、設置箇所に隙間無く配置することができる。 When such a solar cell module 7 is used, it is possible to arrange the concentrating portions 16 with their oblique sides facing each other as shown in FIG.
[第2実施形態]
 以下、図9~図10A、図10Bを参照して、本発明の第2実施形態に係る太陽電池モジュール2を説明する。本実施形態の太陽電池モジュール2は、第1実施形態の太陽電池モジュール1と一部共通している。異なるのは、導光部20に対し、2つの集光部10が接続していることである。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, a solar cell module 2 according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 10A and 10B. The solar cell module 2 of this embodiment is partially in common with the solar cell module 1 of the first embodiment. The difference is that the two light collecting portions 10 are connected to the light guide portion 20. Therefore, in this embodiment, the same code | symbol is attached | subjected about the component which is common in 1st Embodiment, and detailed description is abbreviate | omitted.
 図9は、太陽電池モジュール2の平面図である。図に示すように、太陽電池モジュール2は、1つの導光部20に対し、第1主面20aに接続する第1の集光部10と、第1主面20aに対向する第2主面20bに接続する第2の集光部12と、を有している。第1の集光部10と第2の集光部12とは、互いに鏡像の関係にある。 FIG. 9 is a plan view of the solar cell module 2. As shown in the figure, the solar cell module 2 includes, for one light guide unit 20, a first light collecting unit 10 connected to the first main surface 20a and a second main surface facing the first main surface 20a. And a second condensing unit 12 connected to 20b. The 1st condensing part 10 and the 2nd condensing part 12 have a mirror image relationship mutually.
 第1の集光部10および第2の集光部12は、それぞれ内部に入射した光Lの進行方向を変更する機能を有する複数の反射部(第1反射部)18A,18Bが設けられている。
 第1の集光部10の内部に入射した光Lは、集光部10の内面で反射を繰り返しながら伝播し、導光部20との接続面である第1端面10cに集光されて射出される。同様に、第2の集光部12の内部に入射した光Lは、集光部12の内面で反射を繰り返しながら伝播し、導光部20との接続面である第1端面12cに集光されて射出される。
The first condensing unit 10 and the second condensing unit 12 are provided with a plurality of reflecting units (first reflecting units) 18A and 18B each having a function of changing the traveling direction of the light L incident therein. Yes.
The light L incident on the inside of the first light collecting unit 10 propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is condensed and emitted to the first end surface 10 c that is a connection surface with the light guide unit 20. Is done. Similarly, the light L incident on the inside of the second light collecting unit 12 propagates while being repeatedly reflected on the inner surface of the light collecting unit 12, and is collected on the first end surface 12 c that is a connection surface with the light guide unit 20. Is injected.
 導光部20内では、第1の集光部10および第2の集光部12から入射される光Lは、第1端面20cに集光され、第1端面20cに対向して配置されている太陽電池素子30に入射する。太陽電池素子30は、第1の実施形態と同じ大きさのものを用いることができる。 In the light guide unit 20, the light L incident from the first light collecting unit 10 and the second light collecting unit 12 is collected on the first end surface 20c and arranged to face the first end surface 20c. Is incident on the solar cell element 30. The solar cell element 30 can be the same size as in the first embodiment.
 図10Aおよび図10Bは、太陽電池モジュール2の側面図である。 10A and 10B are side views of the solar cell module 2.
 図10Aには、太陽電池モジュール2において、第1の集光部10と第2の集光部12との高さ方向(z方向)の位置が、互いに同じとなっている例を示す。すなわち、第1の集光部10と第2の集光部12とは、第1主面10aと、第2の集光部12において第1主面10aと対応する面である第1主面12aと、が、導光部20の上端面20dと同一の面となるように接続されている。このように形成された太陽電池モジュール2では、採光を妨げる塵やほこりなどが第1主面10a,12aに付着したとしても、段差が少なく清掃しやすいため、メンテナンスが容易となる。 FIG. 10A shows an example in which the positions of the first light collecting unit 10 and the second light collecting unit 12 in the height direction (z direction) are the same in the solar cell module 2. That is, the 1st condensing part 10 and the 2nd condensing part 12 are the 1st main surface which is a surface corresponding to the 1st main surface 10a in the 1st main surface 10a and the 2nd condensing part 12. 12a is connected to be the same surface as the upper end surface 20d of the light guide unit 20. In the solar cell module 2 formed in this way, even if dust or dust that interferes with daylight adheres to the first main surfaces 10a and 12a, there are few steps and it is easy to clean, so that maintenance becomes easy.
 また、図10Bに示すように、第1の集光部10と第2の集光部12との高さ方向(z方向)の位置が、互いに異なっていてもよい。仮に同じ高さに設けられていたとすると、一方の集光部(図では第1の集光部10)から他方の集光部(図では第2の集光部12)に入射してしまうような光(符号Lx)も存在してしまう。しかし、第1の集光部10と第2の集光部12とが、互いに異なる高さ位置に設けられていると、一方の集光部から他方の集光部に入射する前に、導光部20の内壁面で反射を繰り返しことができ、効率的に光Lを伝播させることができる。 Further, as shown in FIG. 10B, the positions in the height direction (z direction) of the first light collecting unit 10 and the second light collecting unit 12 may be different from each other. If it is provided at the same height, it will be incident on the other light collecting part (second light collecting part 12 in the figure) from one light collecting part (first light collecting part 10 in the figure). Light (symbol Lx) also exists. However, if the first light collecting unit 10 and the second light collecting unit 12 are provided at different height positions, the light is introduced before entering the other light collecting unit from one light collecting unit. Reflection can be repeated on the inner wall surface of the light part 20, and the light L can be propagated efficiently.
 以上のような構成の太陽電池モジュール2では、太陽電池素子30において、第1の集光部10および第2の集光部12で集められた光が照射されるため、高出力の発電が可能となる。一方で、光量の増加に伴って太陽電池素子30を大型化する必要がない。そのため、太陽電池モジュール2では、比較的低コストで高出力の発電を行うことが可能となる。 In the solar cell module 2 configured as described above, the solar cell element 30 is irradiated with the light collected by the first light collecting unit 10 and the second light collecting unit 12, so that high-output power generation is possible. It becomes. On the other hand, it is not necessary to increase the size of the solar cell element 30 with an increase in the amount of light. Therefore, the solar cell module 2 can perform high-output power generation at a relatively low cost.
 なお、本実施形態においては、第1の集光部10と第2の集光部20とが鏡像であることとして説明したが、これに限らず、各々独立して設計された集光部であっても構わない。例えば、反射部18A,18Bのピッチはそれぞれ異なっていてもよく、また、反射部の形状も異なっていてよい。 In addition, in this embodiment, although demonstrated as the 1st condensing part 10 and the 2nd condensing part 20 being a mirror image, it is not restricted to this, It is a condensing part designed independently, respectively. It does not matter. For example, the pitches of the reflecting portions 18A and 18B may be different from each other, and the shapes of the reflecting portions may be different.
[第3実施形態]
 以下、図11~図14Bを参照して、本発明の第3実施形態に係る太陽電池モジュール3を説明する。本実施形態の太陽電池モジュール3においても、第1実施形態の太陽電池モジュール1と一部共通している。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
Hereinafter, a solar cell module 3 according to a third embodiment of the present invention will be described with reference to FIGS. 11 to 14B. The solar cell module 3 of the present embodiment is also partly in common with the solar cell module 1 of the first embodiment. Therefore, in this embodiment, the same code | symbol is attached | subjected about the component which is common in 1st Embodiment, and detailed description is abbreviate | omitted.
 図11~図13は、太陽電池モジュール3の概略構成を示す説明図であり、図11は平面図、図12は斜視図、図13は側面図である。 11 to 13 are explanatory views showing a schematic configuration of the solar cell module 3. FIG. 11 is a plan view, FIG. 12 is a perspective view, and FIG. 13 is a side view.
 図11,図12、図13に示すように、太陽電池モジュール3は、板状の集光部13と、導光部20および導光部(第2の導光部)23と、太陽電池素子30と、太陽電池素子(第2の太陽電池素子)33と、を備えている。導光部20および導光部(第2の導光部)23は、集光部13に接して設けられている。太陽電池素子30は、導光部20に接して設けられている。太陽電池素子(第2の太陽電池素子)33は、導光部23に接して設けられている。 As shown in FIGS. 11, 12, and 13, the solar cell module 3 includes a plate-shaped condensing unit 13, a light guide unit 20 and a light guide unit (second light guide unit) 23, and a solar cell element. 30 and a solar cell element (second solar cell element) 33. The light guide 20 and the light guide (second light guide) 23 are provided in contact with the light collector 13. The solar cell element 30 is provided in contact with the light guide unit 20. The solar cell element (second solar cell element) 33 is provided in contact with the light guide portion 23.
 集光部13は、第1端面13cが導光部20の第1主面20aに面するように設けられている。また、集光部13は、第1端面13cと対向する第2端面13dが導光部23の第1主面23aに面するように設けられている。導光部20と導光部23とは、第1主面20aと第1主面23aとが、互いに平行であり且つz軸に平行に設けられている。 The condensing unit 13 is provided such that the first end surface 13 c faces the first main surface 20 a of the light guide unit 20. The light condensing unit 13 is provided so that the second end surface 13 d facing the first end surface 13 c faces the first main surface 23 a of the light guide unit 23. In the light guide 20 and the light guide 23, the first main surface 20a and the first main surface 23a are provided in parallel to each other and in parallel to the z-axis.
 また、図11に示すように、集光部13には、第1主面13aに対向する面である第2主面13bに、集光部13の内部に入射した光Lの進行方向を変更し第1端面13cに導く機能を有する複数の反射部18が設けられている。また、第2主面13bには、内部に入射した光Lの進行方向を変更し第1端面13cと対向する第2端面13dに導く機能を有する複数の反射部19も設けられている。 In addition, as shown in FIG. 11, the condensing unit 13 changes the traveling direction of the light L incident on the inside of the condensing unit 13 on the second main surface 13b that is a surface facing the first main surface 13a. A plurality of reflecting portions 18 having a function of leading to the first end face 13c are provided. The second main surface 13b is also provided with a plurality of reflecting portions 19 having a function of changing the traveling direction of the light L incident on the inside and guiding the light L to the second end surface 13d facing the first end surface 13c.
 集光部13の内部に入射した光のうち、反射部18に照射される光Laは、集光部13の内面で反射を繰り返しながら伝播し、導光部20との接続面である第1端面13cに集光されて射出される。同様に、反射部19に照射される光Lbは、集光部13の内面で反射を繰り返しながら伝播し、導光部23との接続面である第1端面13dに集光されて射出される。 Of the light incident on the inside of the condensing unit 13, the light La irradiated on the reflecting unit 18 propagates while repeating reflection on the inner surface of the condensing unit 13, and is a first connection surface with the light guide unit 20. The light is condensed on the end face 13c and emitted. Similarly, the light Lb irradiated to the reflecting portion 19 propagates while being repeatedly reflected on the inner surface of the light collecting portion 13, and is condensed and emitted to the first end surface 13 d that is a connection surface with the light guide portion 23. .
 導光部20内では、集光部13から入射される光Laは、第1端面20cに集光され、第1端面20cに対向して配置されている太陽電池素子30に入射する。同様に、導光部23内では、集光部13から入射される光Lbは、第1端面23cに集光され、第1端面23cに対向して配置されている太陽電池素子33に入射する。太陽電池素子30,33では、集光部13で集められた光が照射され発電が行われる。 In the light guide unit 20, the light La incident from the light condensing unit 13 is collected on the first end surface 20c and incident on the solar cell element 30 disposed to face the first end surface 20c. Similarly, in the light guide part 23, the light Lb incident from the light condensing part 13 is condensed on the first end face 23c, and enters the solar cell element 33 arranged opposite to the first end face 23c. . In the solar cell elements 30 and 33, the light collected by the light collecting unit 13 is irradiated to generate power.
 以上のような構成の太陽電池モジュール3では、設置箇所における光Lの入射方向が時間とともに変化した場合であっても、集光部13においては角度の異なる2種の反射部18,19が設けられていることにより、効果的に光を集光し伝播することができる。そのため、太陽電池素子30,33のいずれかに効果的に光を照射し、高い発電効率を実現することができる。 In the solar cell module 3 configured as described above, even if the incident direction of the light L at the installation location changes with time, the light converging unit 13 is provided with two types of reflecting units 18 and 19 having different angles. Therefore, it is possible to effectively collect and propagate light. Therefore, it is possible to effectively irradiate any one of the solar cell elements 30 and 33 and realize high power generation efficiency.
 また、板状の集光部13が、両側に設けられた導光部20,23により保持されることとなる。この導光部20,23は、集光部13の枠体として機能し、モジュール全体として強度が増す。そのため、大型化した場合に、破損しにくく信頼性が高い太陽電池モジュールとすることができる。 Further, the plate-like light collecting portion 13 is held by the light guide portions 20 and 23 provided on both sides. The light guides 20 and 23 function as a frame of the light collecting unit 13 and increase the strength of the entire module. Therefore, when it enlarges, it can be set as a highly reliable solar cell module which is hard to be damaged.
 なお、本実施形態では、導光部20の第1主面20aと導光部23の第1主面23aとが、互いに平行であり且つz軸に平行に設けられていることとしたが、これに限らない。 In the present embodiment, the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are provided in parallel to each other and in parallel to the z axis. Not limited to this.
 図14Aには、導光部20の第1主面20aと導光部23の第1主面23aとが、z方向に対して傾斜し且つ互いに平行となっている太陽電池モジュールの例を示す。集光部14において導光部20,23と接続する両端面14c,14dは、第1主面20aおよび第1主面23aと同方向に傾斜した面となっている。 FIG. 14A shows an example of a solar cell module in which the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are inclined with respect to the z direction and are parallel to each other. . Both end surfaces 14c and 14d connected to the light guide portions 20 and 23 in the light collecting portion 14 are surfaces inclined in the same direction as the first main surface 20a and the first main surface 23a.
 また、図14Bには、導光部20の第1主面20aと導光部23の第1主面23aとが、z方向に対して異なる方向に傾斜している太陽電池モジュールの例を示す。集光部15においても、導光部20,23と接続する両端面15c,15dは、第1主面20aおよび第1主面23aと同方向に傾斜した面となっている。 FIG. 14B shows an example of a solar cell module in which the first main surface 20a of the light guide unit 20 and the first main surface 23a of the light guide unit 23 are inclined in different directions with respect to the z direction. . Also in the condensing part 15, both end surfaces 15c and 15d connected to the light guide parts 20 and 23 are surfaces inclined in the same direction as the first main surface 20a and the first main surface 23a.
 このような配置で導光部20,23が設けられた太陽電池モジュールでは、集光部14または集光部15から所定の角度で導光部20,23に入射する光が、導光部の内壁面で反射を繰り返しやすく、効率的に光Lを伝播させることができる。そのため、高い発電効率を実現することができる。 In the solar cell module in which the light guide units 20 and 23 are provided in such an arrangement, light incident on the light guide units 20 and 23 from the light collecting unit 14 or the light collecting unit 15 at a predetermined angle is transmitted from the light guide unit. It is easy to repeat reflection on the inner wall surface, and the light L can be propagated efficiently. Therefore, high power generation efficiency can be realized.
[第4実施形態]
 以下、図15,16を参照して、本発明の第4実施形態に係る太陽電池モジュール4を説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
Hereinafter, the solar cell module 4 according to the fourth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図15に示すように、本実施形態の太陽電池モジュール4では、複数の集光部13が同姿勢で一方向に配列し、隣り合う集光部13の間にはそれぞれ導光部20が配置されている。集光部13は、上述の第3実施形態で示したものと同様のものである。 As shown in FIG. 15, in the solar cell module 4 of the present embodiment, the plurality of light collecting portions 13 are arranged in one direction in the same posture, and the light guide portions 20 are arranged between the adjacent light collecting portions 13. Has been. The condensing part 13 is the same as that shown in the third embodiment.
 各集光部13は、第1端面13cが、第1端面13cに面する導光部20の第1主面20aと接続している。また、第2端面13dが、第2端面13dに面する導光部20において第1主面20aに対向する第2主面20bと接続している。そして、全体として、集光部13,導光部20,集光部13…という繰り返し構造を形成している。 Each condensing part 13 has the 1st end surface 13c connected with the 1st main surface 20a of the light guide part 20 which faces the 1st end surface 13c. Further, the second end surface 13d is connected to the second main surface 20b facing the first main surface 20a in the light guide section 20 facing the second end surface 13d. And as a whole, the repeating structure of the condensing part 13, the light guide part 20, the condensing part 13 ... is formed.
 以上のような太陽電池モジュール4では、複数の集光部13で集光された光は、各々接続された導光部20に伝播され、各導光部20の第1端面20cに面して設けられた複数の太陽電池素子30に照射される。各太陽電池素子30では、照射された光に応じて光電変換する。そのため、太陽電池モジュール4を用いると、広い面積で光を集光しつつ、高い発電効率を実現することができる。 In the solar cell module 4 as described above, the light collected by the plurality of light collecting portions 13 is propagated to the light guide portions 20 connected to each other and faces the first end face 20c of each light guide portion 20. A plurality of solar cell elements 30 provided are irradiated. Each solar cell element 30 performs photoelectric conversion according to the irradiated light. Therefore, when the solar cell module 4 is used, high power generation efficiency can be realized while condensing light over a wide area.
 また、複数の集光部13と導光部20とを連結した形状で生産することができるため、例えば、第3実施形態の太陽電池モジュール3を個別に製造するより低コストで製造することができる。 Moreover, since it can produce in the shape which connected the several condensing part 13 and the light guide part 20, it can manufacture at low cost rather than manufacturing the solar cell module 3 of 3rd Embodiment separately, for example. it can.
 さらに、太陽電池モジュール4を用いると、第3実施形態の太陽電池モジュール3を複数用意して設置箇所に並べるよりも、隙間無く設置することが容易となる。2つの太陽電池モジュール4を用いる場合には、例えば図16に示すように、一方の太陽電池モジュール4の切り欠き部13xに、他方の太陽電池モジュール4の太陽電池素子30が近接するように配置することで、隙間無く並べることができる。 Furthermore, when the solar cell module 4 is used, it becomes easier to install the solar cell modules 3 without a gap than to prepare a plurality of the solar cell modules 3 of the third embodiment and arrange them at the installation location. When two solar cell modules 4 are used, for example, as shown in FIG. 16, the solar cell elements 30 of the other solar cell module 4 are arranged close to the notch 13x of one solar cell module 4. By doing so, it can be arranged without gaps.
[第5実施形態]
 以下、図17Aおよび図17Bを参照して、本発明の第5実施形態に係る太陽電池モジュール5を説明する。本実施形態において、上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Fifth Embodiment]
Hereinafter, with reference to FIG. 17A and FIG. 17B, the solar cell module 5 which concerns on 5th Embodiment of this invention is demonstrated. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図17Aに示すように、本実施形態の太陽電池モジュール5は、第3実施形態の太陽電池モジュール3に、さらに集光部13を加え、縦方向(z方向)に2つの集光部13(符号13A,13Bで示す)が積層した構成となっている。各集光部13A,13Bに設けられた反射部18,19は、互い平面的に重なる位置に設けられていてもよく、平面的に重ならない位置に設けられていてもよい。 As shown to FIG. 17A, the solar cell module 5 of this embodiment adds the condensing part 13 further to the solar cell module 3 of 3rd Embodiment, and has two condensing parts 13 (in the vertical direction (z direction) ( The reference numerals 13A and 13B) are stacked. The reflecting portions 18 and 19 provided in the respective light collecting portions 13A and 13B may be provided at positions that overlap each other in a plane, or may be provided at positions that do not overlap in a plane.
 また、図17Bに示すように、集光部13A,13Bは、各々の第1端面13cが導光部20の第1主面20aに面するように、また各々の第2端面13dが導光部23の第1主面23aに面するように設けられている。導光部20と導光部23とは、第1主面20aと第1主面23aとが、z方向に平行であり且つ互いに平行に設けられている。 Moreover, as shown to FIG. 17B, as for condensing part 13A, 13B, each 1st end surface 13c faces the 1st main surface 20a of the light guide part 20, and each 2nd end surface 13d is light guide. It is provided so as to face the first main surface 23 a of the portion 23. In the light guide unit 20 and the light guide unit 23, the first main surface 20a and the first main surface 23a are provided in parallel to each other in parallel to the z direction.
 以上のような構成の太陽電池モジュール5では、上方に位置する集光部13Aを透過した光を、下方の集光部13Bで採光することができるため、設置面積当たりの採光量を増やし、多くの光を太陽電池素子30、33に照射することができる。そのため、高い発電効率を実現する太陽電池モジュールとすることができる。 In the solar cell module 5 having the above-described configuration, the light that has passed through the upper light collecting unit 13A can be collected by the lower light collecting unit 13B, so that the amount of light collected per installation area can be increased. Can be applied to the solar cell elements 30 and 33. Therefore, it can be set as the solar cell module which implement | achieves high power generation efficiency.
[第6実施形態]
 以下、図18Aおよび図18Bを参照して、本発明の第6実施形態に係る太陽電池モジュール6を説明する。本実施形態において、上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Sixth Embodiment]
Hereinafter, with reference to FIG. 18A and FIG. 18B, the solar cell module 6 which concerns on 6th Embodiment of this invention is demonstrated. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図18Aに示すように、本実施形態の太陽電池モジュール6は、第2実施形態の太陽電池モジュール2に、さらに集光部10,12を加え、縦方向(z方向)に集光部10,12が積層した構成となっている。すなわち、太陽電池モジュール6は、1つの導光部20に対し、第1主面20aに接続する集光部10A,10Bと、第1主面20aに対向する第2主面に接続する集光部12A,12Bと、を有している。 As shown to FIG. 18A, the solar cell module 6 of this embodiment adds the condensing part 10 and 12 further to the solar cell module 2 of 2nd Embodiment, and the condensing part 10 in the vertical direction (z direction). 12 is laminated. That is, the solar cell module 6 has, with respect to one light guide unit 20, condensing units 10A and 10B connected to the first main surface 20a and a condensing unit connected to the second main surface facing the first main surface 20a. Parts 12A and 12B.
 また、図18Bに示すように、太陽電池モジュール6においては、集光部10Aと集光部12Aとの高さ方向(z方向)の位置が、互いに同じとなっており、集光部10Bと集光部12Bとの高さ方向の位置が、互いに同じとなっている。すなわち、集光部10Aおよび集光部12Aは、第1主面10aと第1主面12aとが、導光部20の上端面20dと同一の面となるように接続されている。また、集光部10Bおよび集光部12Bは、第2主面10bと第2主面12bとが、導光部20の下端面20eと同一の面となるように接続されている。 Moreover, as shown in FIG. 18B, in the solar cell module 6, the positions in the height direction (z direction) of the light collecting unit 10A and the light collecting unit 12A are the same, and the light collecting unit 10B The height direction position with the light condensing part 12B is mutually the same. That is, the condensing unit 10A and the condensing unit 12A are connected such that the first main surface 10a and the first main surface 12a are the same surface as the upper end surface 20d of the light guide unit 20. Further, the light collector 10B and the light collector 12B are connected such that the second main surface 10b and the second main surface 12b are the same surface as the lower end surface 20e of the light guide unit 20.
 以上のような構成の太陽電池モジュール5では、上方に位置する集光部10A,12Aを透過した光を、下方の集光部10B,12Bで採光することができるため、設置面積当たりの採光量を増やし、多くの光を太陽電池素子30に照射することができる。そのため、高い発電効率を実現する太陽電池モジュールとすることができる。 In the solar cell module 5 having the above-described configuration, the light transmitted through the upper light collecting portions 10A and 12A can be collected by the lower light collecting portions 10B and 12B. The solar cell element 30 can be irradiated with a lot of light. Therefore, it can be set as the solar cell module which implement | achieves high power generation efficiency.
 以上、添付図面を参照しながら本発明の態様に係る好適な実施の形態例について説明したが、本発明の態様は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の態様の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments according to the aspects of the present invention have been described above with reference to the accompanying drawings. However, it goes without saying that the aspects of the present invention are not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the aspect of the present invention.
 本発明の態様は、太陽電池モジュール、もしくは太陽光発電装置に広く利用可能である。 The aspect of the present invention can be widely used for solar cell modules or solar power generation devices.
1~7…太陽電池モジュール、10~16…集光部、10a,12a,13a,16a…第1主面(一方の面)、10b,12b,13b,16b…第2主面(他方の面)、10c、13c…第1端面、13d…第2端面、18…第1反射部、19…第2反射部、20~23…導光部、20x…接続面、30,33…太陽電池素子、30c…端部、d1…第1端面の幅、d2…導光部の厚さ、100…太陽光発電装置。 DESCRIPTION OF SYMBOLS 1-7 ... Solar cell module, 10-16 ... Condensing part, 10a, 12a, 13a, 16a ... 1st main surface (one surface), 10b, 12b, 13b, 16b ... 2nd main surface (the other surface) 10c, 13c ... first end face, 13d ... second end face, 18 ... first reflecting part, 19 ... second reflecting part, 20-23 ... light guide part, 20x ... connecting face, 30, 33 ... solar cell element , 30c ... end, d1 ... width of the first end face, d2 ... thickness of the light guide part, 100 ... solar power generation device.

Claims (9)

  1.  集光部と、
     前記集光部の第1端面に沿って設けられた第1の導光部と、
     前記第1の導光部の延在方向の端部に設けられた第1の太陽電池素子と、を有し、
     前記集光部は、前記第1端面に接する第1の面および第2の面を有し、
     前記集光部は、前記第1の面から内部に入射する光を、前記内部を伝播させて少なくとも前記第1端面に集光させて射出するよう構成され、
     前記第1の導光部は、前記集光部の前記第1端面から射出された光を、前記第1の導光部と前記第1端面との接続面から内部に入射させ、前記第1の導光部の延在方向に伝播させて前記端部から射出させ、前記第1の太陽電池素子に入射させるよう構成され、
     前記集光部の少なくとも前記第2の面には、前記第1の面から入射した光を反射させ、前記第1の面の面内方向において、前記入射した光の進行方向を、前記第1端面の延在方向に対して斜めに交差する方向に変更する複数の第1反射部が設けられている太陽電池モジュール。
    A light collecting part;
    A first light guide provided along a first end surface of the light collecting unit;
    A first solar cell element provided at an end in the extending direction of the first light guide,
    The condensing part has a first surface and a second surface in contact with the first end surface,
    The condensing unit is configured to propagate the light incident on the inside from the first surface to be condensed and emitted to at least the first end surface through the inside,
    The first light guide unit causes light emitted from the first end surface of the light collecting unit to enter the inside from a connection surface between the first light guide unit and the first end surface, and Is propagated in the extending direction of the light guide part, emitted from the end part, and made incident on the first solar cell element,
    The light incident from the first surface is reflected on at least the second surface of the condensing unit, and the traveling direction of the incident light in the in-plane direction of the first surface is changed to the first surface. The solar cell module in which the some 1st reflection part changed in the direction which cross | intersects diagonally with respect to the extension direction of an end surface is provided.
  2.  前記第1の導光部の厚さは、前記集光部の前記第1端面の、前記集光部の厚さ方向における寸法よりも大きい請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein a thickness of the first light guide part is larger than a dimension of the first end surface of the light collecting part in a thickness direction of the light collecting part.
  3.  前記接続面に対向する前記第1の導光部の面が、前記接続面と交差する方向に設定されている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a surface of the first light guide portion facing the connection surface is set in a direction intersecting with the connection surface.
  4.  前記接続面に対向する前記第1の導光部の面が、曲面である請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a surface of the first light guide portion facing the connection surface is a curved surface.
  5.  前記集光部が一対をなすよう二つ設けられ、前記一対の集光部が共通する前記第1の導光部を挟持して設けられている請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein two of the light collecting portions are provided so as to form a pair, and the pair of light collecting portions are provided so as to sandwich the first light guide portion.
  6.  前記集光部には、前記第2の面に、前記第1の面から内部に入射する光を、前記集光部の内部を伝播させて前記第1端面に対向する第2端面から射出させる複数の第2反射部がさらに設けられ、
     前記第2反射部は、前記第1の面から入射した光を反射させ、前記第1の面の面内方向において、前記入射した光の進行方向を、前記第2端面の延在方向に対して斜めに交差する方向に変更し、
     前記第2端面には、前記第2端面に沿って設けられた第2の導光部と、
     前記第2の導光部の端部に設けられた第2の太陽電池素子と、を有し、
     前記第2の導光部は、前記第2端面から射出された光を、前記第2の導光部と前記第2端面との接続面から入射させ、前記第2の導光部の延在方向に伝播させて前記端部から射出させ、前記第2の太陽電池素子に入射させる請求項1に記載の太陽電池モジュール。
    In the condensing unit, light incident on the second surface from the first surface is propagated through the condensing unit and emitted from the second end surface facing the first end surface. A plurality of second reflecting portions are further provided,
    The second reflecting portion reflects light incident from the first surface, and in the in-plane direction of the first surface, the traveling direction of the incident light is relative to the extending direction of the second end surface. Change the direction to cross diagonally,
    A second light guide provided along the second end surface on the second end surface;
    A second solar cell element provided at an end of the second light guide,
    The second light guide unit causes light emitted from the second end surface to enter from a connection surface between the second light guide unit and the second end surface, and the second light guide unit extends. The solar cell module according to claim 1, wherein the solar cell module is propagated in a direction, emitted from the end portion, and incident on the second solar cell element.
  7.  複数の前記集光部と複数の前記第1および第2の導光部とが、前記第1の面の面内方向に交互に繰り返し配置され、接続されている請求項6に記載の太陽電池モジュール。 The solar cell according to claim 6, wherein a plurality of the light collecting portions and a plurality of the first and second light guide portions are alternately arranged and connected alternately in an in-plane direction of the first surface. module.
  8.  前記集光部が、前記第1の面および前記第2の面が略平行になる姿勢で複数、積層されている請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein a plurality of the light collecting portions are stacked in a posture in which the first surface and the second surface are substantially parallel.
  9.  請求項1に記載の太陽電池モジュールを備えた太陽光発電装置。 A solar power generation apparatus comprising the solar cell module according to claim 1.
PCT/JP2011/075563 2010-11-16 2011-11-07 Solar cell module and solar power generation device WO2012066954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256201 2010-11-16
JP2010256201 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012066954A1 true WO2012066954A1 (en) 2012-05-24

Family

ID=46083889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075563 WO2012066954A1 (en) 2010-11-16 2011-11-07 Solar cell module and solar power generation device

Country Status (1)

Country Link
WO (1) WO2012066954A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078356A1 (en) * 2012-11-13 2014-05-22 AMI Research & Development, LLC Wideband light energy waveguide and detector
US9557480B2 (en) 2013-11-06 2017-01-31 R.A. Miller Industries, Inc. Graphene coupled MIM rectifier especially for use in monolithic broadband infrared energy collector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294941A (en) * 1993-04-07 1994-10-21 Nippon Polyester Kk Sunshine guiding device
JPH1127968A (en) * 1997-07-02 1999-01-29 Akira Hasegawa Power generation system
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
JP2008015034A (en) * 2006-07-03 2008-01-24 Fuji Xerox Co Ltd Optical transmitter, optical module, and optical transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294941A (en) * 1993-04-07 1994-10-21 Nippon Polyester Kk Sunshine guiding device
JPH1127968A (en) * 1997-07-02 1999-01-29 Akira Hasegawa Power generation system
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
JP2008015034A (en) * 2006-07-03 2008-01-24 Fuji Xerox Co Ltd Optical transmitter, optical module, and optical transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281424B2 (en) 2012-01-24 2016-03-08 AMI Research & Development, LLC Wideband light energy waveguide and detector
WO2014078356A1 (en) * 2012-11-13 2014-05-22 AMI Research & Development, LLC Wideband light energy waveguide and detector
US9557480B2 (en) 2013-11-06 2017-01-31 R.A. Miller Industries, Inc. Graphene coupled MIM rectifier especially for use in monolithic broadband infrared energy collector

Similar Documents

Publication Publication Date Title
JP6980032B2 (en) Photovoltaic power generation unit using optical fiber and power generation system using it
JP6600919B2 (en) Condensing mechanism, solar power generation device and window structure
WO2012070533A1 (en) Solar cell module and photovolatic power generation device
KR101021587B1 (en) building intergrated photovoltaic modules
EP2348342A1 (en) Non-Tracked Low Concentration Solar Concentrator, Solar Concentrator Array and Waveguide Concentrator
JP2013098496A (en) Solar battery module and manufacturing method thereof
US20120167951A1 (en) Solar cell module, solar power generating apparatus, and window
KR100934358B1 (en) A prism glass structure for enhancing the performance of sollar cell module
JP2006332113A (en) Concentrating solar power generation module and solar power generator
KR20190000222U (en) Solar power generation component
WO2012066954A1 (en) Solar cell module and solar power generation device
JP6146627B2 (en) Solar cell module
JP5929578B2 (en) Solar cell module and solar cell module assembly
JP5258805B2 (en) Photovoltaic power generation apparatus and method for manufacturing solar power generation apparatus
WO2012014539A1 (en) Solar cell module and solar power generation device
WO2011158548A1 (en) Solar cell module, and solar energy generator device comprising the solar cell module
JP2013214643A (en) Solar cell module
WO2012128339A1 (en) Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
KR102361351B1 (en) The Layer-Builted Solar Panel
WO2012066935A1 (en) Solar cell module and solar power generation device
WO2011152132A1 (en) Solar cell module, and solar photovoltaic device with same
JP2012156445A (en) Solar cell module and photovoltaic power generation device
TWI505489B (en) Light collection module and solar energy device
JP2014072479A (en) Solar cell panel
JP7336044B1 (en) Solar panel unit and solar panel installation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP