JPH051904B2 - - Google Patents

Info

Publication number
JPH051904B2
JPH051904B2 JP59154683A JP15468384A JPH051904B2 JP H051904 B2 JPH051904 B2 JP H051904B2 JP 59154683 A JP59154683 A JP 59154683A JP 15468384 A JP15468384 A JP 15468384A JP H051904 B2 JPH051904 B2 JP H051904B2
Authority
JP
Japan
Prior art keywords
pressure
electrode
liquid
temperature
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59154683A
Other languages
Japanese (ja)
Other versions
JPS6131953A (en
Inventor
Fumito Nakamura
Yasuhiro Sasada
Tadao Sudo
Noryuki Oonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15468384A priority Critical patent/JPS6131953A/en
Publication of JPS6131953A publication Critical patent/JPS6131953A/en
Publication of JPH051904B2 publication Critical patent/JPH051904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高温高圧環境下にある原子炉構造体
の腐食電位の測定に用いられる高温高圧水用参照
電極体に係わり、特に内部参照電極法に好適な構
造の高温高圧水用参照電極体に関するものであ
る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a high-temperature, high-pressure water reference electrode body used for measuring the corrosion potential of a nuclear reactor structure under a high-temperature, high-pressure environment, and particularly relates to an internal reference electrode method. The present invention relates to a high-temperature, high-pressure water reference electrode body having a structure suitable for use in the present invention.

〔発明の背景〕[Background of the invention]

従来の高温高圧水中における金属材料等の電気
化学的試験用として用いられる参照電極には、大
気圧下に設置された参照電極と高温水中の試料電
極を液絡させる外部参照電極法と、参照電極を高
温高圧水中に直接設置する内部参照電極法とがあ
る。外部参照電極法により測定した電位は熱力学
的に意味のある電位に換算することが困難である
ため、内部参照電極法によることが望ましい。こ
の内部参照電極法では、高温高圧環境下で長期間
安定に腐食電位を測定できる電極を用いなければ
ならない。しかし、従来の電極は、液絡部からの
漏洩による電極液の減少などにより、長期間にわ
たつて安定した測定をすることが困難であるとい
う問題があつた。本発明は、この内部参照電極体
の構造の改良に関するものである。
Conventional reference electrodes used for electrochemical testing of metal materials in high-temperature, high-pressure water include the external reference electrode method, in which a reference electrode installed under atmospheric pressure and a sample electrode in high-temperature water are connected, and the reference electrode method. There is an internal reference electrode method in which the electrode is placed directly in high-temperature, high-pressure water. Since it is difficult to convert the potential measured by the external reference electrode method into a thermodynamically meaningful potential, it is preferable to use the internal reference electrode method. This internal reference electrode method requires the use of an electrode that can stably measure corrosion potential over a long period of time in a high-temperature, high-pressure environment. However, conventional electrodes have a problem in that it is difficult to perform stable measurements over a long period of time due to a decrease in the electrode liquid due to leakage from the liquid junction. The present invention relates to an improvement in the structure of this internal reference electrode body.

内部参照電極法では、圧力容器内の圧力及び温
度が、70〜80Kg/cm2g、250〜300℃程度の炉水条
件に保たれる。電極室内の電極液も同程度に加圧
加熱され、電極液の体積が膨脹し、増加分の電極
液が液絡部材を通つて電極室外へ漏出する。一
方、降圧降温時には電極液の体積が収縮するた
め、今度は逆に液絡部材を通つて試験水が電極室
内に流入し、電極液の濃度が薄くなり、長期間安
定した測定が困難である。従つて、腐食電位を長
期間安定して測定するには、電極室の構造を、高
温高圧環境下でも電極液が漏出しないようにする
必要がある。
In the internal reference electrode method, the pressure and temperature inside the pressure vessel are maintained at reactor water conditions of approximately 70 to 80 kg/cm 2 g and 250 to 300°C. The electrode solution in the electrode chamber is also pressurized and heated to the same extent, the volume of the electrode solution expands, and the increased amount of electrode solution leaks out of the electrode chamber through the liquid junction member. On the other hand, when the pressure and temperature are lowered, the volume of the electrode solution contracts, so the test water flows into the electrode chamber through the liquid junction member, reducing the concentration of the electrode solution and making stable measurements over a long period of time difficult. . Therefore, in order to measure corrosion potential stably over a long period of time, the structure of the electrode chamber must be such that the electrode solution does not leak even under high temperature and high pressure environments.

従来の高温高圧用参照電極体(特開昭56−
108949高温高圧水用参照電極体)を第4図を用い
て説明する。
Conventional reference electrode body for high temperature and high pressure
108949 (reference electrode body for high-temperature, high-pressure water) will be explained using FIG.

参照電極体1は、圧力容器蓋板2に強固に密着
固定され、その下半分は試験水3中に、上半分は
大気中に在る。参照電極体1は、ステンレススチ
ール製の円柱体で、その下部にはKCl溶液の電極
液5と塩化銀電極からなる参照電極6とを収容し
た電極室4を形成し、封止材7で封止してある。
この封止材7に設けた孔には、アスベスト紐を挿
入して液絡部材8としている。電極室4の上に設
けた通路9は、電極室4の上部で屈曲し、圧力伝
達孔10を介して試験水3と連通している。この
圧力伝達孔10と通路9とによつて試験水3と電
極液5との圧力平衡が保たれるようにしてある。
また、通路9には耐食性の合成ゴムからなる小円
柱状ピストン11を移動可能に、しかも電極液5
と試験水3とに両端を接触させて設置している。
参照電極6に接続した白金線は、フツ素樹脂例え
ばテフロン(デユポン社商品名:以下同じ)チユ
ーブ12で絶縁されて通路9の立上り部の中に入
つており、更に圧力シール部13と封止材14を
気密に通過して大気中に引出され、リード線15
と接続されている。このリード線15は、電圧計
を介して試験水3中に浸漬した被検材に接続され
ている。
The reference electrode body 1 is tightly fixed to the pressure vessel lid plate 2, and its lower half is in the test water 3 and its upper half is in the atmosphere. The reference electrode body 1 is a cylindrical body made of stainless steel, and an electrode chamber 4 containing an electrode liquid 5 of KCl solution and a reference electrode 6 made of a silver chloride electrode is formed in the lower part of the body, and the electrode chamber 4 is sealed with a sealing material 7. It's stopped.
Asbestos string is inserted into the hole provided in the sealing material 7 to form a liquid junction member 8. A passage 9 provided above the electrode chamber 4 is bent at the upper part of the electrode chamber 4 and communicates with the test water 3 via a pressure transmission hole 10 . The pressure transmission hole 10 and the passage 9 maintain the pressure balance between the test water 3 and the electrode liquid 5.
In addition, a small cylindrical piston 11 made of corrosion-resistant synthetic rubber is movable in the passage 9, and an electrode liquid 5
and test water 3 with both ends in contact with each other.
The platinum wire connected to the reference electrode 6 is insulated with a tube 12 of a fluorine resin such as Teflon (trade name of Dupont Co., the same hereinafter), enters the rising part of the passage 9, and is further sealed with a pressure seal part 13. The lead wire 15 is passed through the material 14 airtight and drawn out into the atmosphere.
is connected to. This lead wire 15 is connected to the test material immersed in the test water 3 via a voltmeter.

この圧力容器を加熱して試験水3を300℃程度
に昇温させると電極液5も同程度に加熱される。
従つて、電極液5の体積が膨脹するが、その体積
増加分は通路9中のピストン11を押し下げ、試
験水3の圧力と電極液5の圧力とが平衡となつた
所で停止する。一方、圧力容器の加熱を中止して
試験水3の温度を降下させた時は、電極液5の温
度も降下し体積が収縮する。これにつれてピスト
ン11は、通路9を上昇して電極液5と試験水3
との圧力が平衡する所まで移動する。即ち、電極
液5の温度変化による体積変化は、ピストン11
の移動により大部分が吸収される構造となつてい
る。
When this pressure vessel is heated to raise the temperature of the test water 3 to about 300°C, the electrode solution 5 is also heated to the same degree.
Therefore, the volume of the electrode liquid 5 expands, but the increased volume pushes down the piston 11 in the passage 9, and stops when the pressure of the test water 3 and the pressure of the electrode liquid 5 are in equilibrium. On the other hand, when the heating of the pressure vessel is stopped and the temperature of the test water 3 is lowered, the temperature of the electrode solution 5 is also lowered and the volume contracts. Along with this, the piston 11 moves up the passage 9 and the electrode solution 5 and the test water 3 are removed.
Move to a place where the pressure is balanced. That is, the volume change due to the temperature change of the electrode liquid 5 causes the piston 11 to
The structure is such that most of it is absorbed by the movement of

しかしながら、この構造には以下に示す欠点が
あつた。
However, this structure had the following drawbacks.

(1) ピストン11が通路9を上昇または下降する
可動部を持つため、ピストンと通路の隙間から
電極液5が徐々に漏出し、長期間の安定使用が
不可能となる。
(1) Since the piston 11 has a movable part that moves up and down the passage 9, the electrode liquid 5 gradually leaks from the gap between the piston and the passage, making long-term stable use impossible.

(2) 上記の可動部を持つため、ピストン11と通
路9とが接する部分には、製作上高い精度が要
求される。又、合成ゴムのピストン11と
SUS304製の参照電極体の通路との材質の違い
による体積膨脹差を充分考慮して設計製作にあ
たる必要があり、この点は、装置製作上大きな
欠点(コストアツプ等)につながる。更にこの
様な可動部を有することは、電極の長期間の使
用に対する信頼性を損うことになり兼ねない。
(2) Since it has the above-mentioned movable part, high precision is required in manufacturing the part where the piston 11 and the passage 9 come into contact. In addition, synthetic rubber piston 11 and
It is necessary to design and manufacture the device by fully considering the difference in volumetric expansion due to the difference in material between the channel of the reference electrode body made of SUS304, and this point leads to a major drawback (increased cost, etc.) in device manufacturing. Furthermore, having such a movable part may impair the reliability of the electrode for long-term use.

次に、第5図を用いて従来の高温高圧水用参照
電極体(特開昭57−125841高温高圧環境におけ
る腐食試験槽用内部照合電極体)を説明する。
Next, a conventional reference electrode body for high-temperature, high-pressure water (internal reference electrode body for a corrosion test tank in a high-temperature, high-pressure environment according to JP-A-57-125841) will be explained with reference to FIG.

参照電極体1と試験水3との液絡部材8として
は、多孔性ジルコニアの液絡プラグ16を電極保
護管の先端に設置し、電極液5の漏出を防ぎつつ
試験水3と液絡させている。この液絡プラグ16
は電極容器23に固定されている。電極体1は、
酸化ジルコニウムなどの絶縁体であり、この中に
絶縁性樹脂のピストン11を有する。このピスト
ン11の中にAg/AgCl電極棒17を挿入し、ピ
ストン11と液絡プラグ16の間にKCl溶液等の
電極液5を満たす。試験水3と電極液5との間
は、ピストン11の外面にあるパツキン19と内
面にあるパツキン20とによりシールされてい
る。ピストン11は、電極体1の内面とAg電極
棒21を電気的に絶縁している絶縁チユーブ22
の表面を摺動可能に取り付けられている。ピスト
ン11とシールプラグ18の間には、ピストン1
1の上方に位置する電極体の孔24を通り、圧力
容器中の圧力が加えられており、電極容器23の
外面や内面と同圧力となり平衡が保たれている。
このため、電極液5が液絡部材8から漏出しにく
くなつている。
As the liquid junction member 8 between the reference electrode body 1 and the test water 3, a liquid junction plug 16 made of porous zirconia is installed at the tip of the electrode protection tube to prevent leakage of the electrode liquid 5 and to form a liquid junction with the test water 3. ing. This liquid junction plug 16
is fixed to the electrode container 23. The electrode body 1 is
It is an insulator such as zirconium oxide, and has an insulating resin piston 11 therein. An Ag/AgCl electrode rod 17 is inserted into this piston 11, and an electrode liquid 5 such as a KCl solution is filled between the piston 11 and the liquid junction plug 16. The space between the test water 3 and the electrode liquid 5 is sealed by a packing 19 on the outer surface of the piston 11 and a packing 20 on the inner surface. The piston 11 has an insulating tube 22 that electrically insulates the inner surface of the electrode body 1 and the Ag electrode rod 21.
attached so that it can slide over the surface of the Between the piston 11 and the seal plug 18, the piston 1
The pressure in the pressure vessel is applied through the hole 24 of the electrode body located above the electrode body 1, and the pressure is the same as that of the outer and inner surfaces of the electrode vessel 23, and equilibrium is maintained.
Therefore, the electrode liquid 5 is less likely to leak from the liquid junction member 8.

しかしながら、上記電極体も可動部ピストン
11をもつため、電極体と同様にピストンと電
極体の内面及び絶縁チユーブ22の表面(以下摺
動面という)との隙間からの電極液5が漏洩する
危険性、ピストン11と摺動面の製作上の難し
さ、ピストンと摺動面の材質の違いに起因する熱
膨脹率の差でピストンの移動が阻害される可能性
等の問題点があり、腐食電位を長期間安定して測
定するには、まだ最適な構造とはなつていない。
However, since the electrode body also has a movable piston 11, there is a risk that the electrode liquid 5 may leak from the gap between the piston and the inner surface of the electrode body and the surface of the insulating tube 22 (hereinafter referred to as the sliding surface), similar to the electrode body. There are problems such as difficulty in manufacturing the piston 11 and the sliding surface, and the possibility that movement of the piston will be inhibited due to the difference in coefficient of thermal expansion caused by the difference in the materials of the piston and the sliding surface. The structure is not yet optimal for stable long-term measurements.

一方、実公昭46−29673号は、電極室、圧力吸
収機構、液絡部材等を備えた高圧水用比較電極を
開示している。この場合は、ばねを用いてピスト
ンで加圧し、電極液すなわち内部液の圧力を測定
液槽の圧力より正圧に保持しており、電極液を常
に加圧しているために、フアイバー形液絡部から
の電極液の漏出しを助長する方向にある。これで
は、数年オーダーの長期間の使用には適しない。
On the other hand, Utility Model Publication No. 46-29673 discloses a reference electrode for high-pressure water that is equipped with an electrode chamber, a pressure absorption mechanism, a liquid junction member, and the like. In this case, a spring is used to pressurize the piston, and the pressure of the electrode liquid, that is, the internal liquid, is maintained at a more positive pressure than the pressure of the measurement liquid tank. Because the electrode liquid is constantly pressurized, the fiber type liquid This is in a direction that encourages leakage of the electrode solution from the area. This is not suitable for long-term use on the order of several years.

また、本願発明のような高温高圧環境下では使
用できない。測定液の液位の上昇に対して、気相
部が保護管内に侵入した測定液の液面上昇を抑制
する際に、測定液槽の圧力が、測定液の液位の上
昇後に著しく高くならない限り、ピストンの露出
したスリ合わせ面が測定液に浸漬されることはな
いという前提が、原子力プラントの場合には成立
せず、圧力が大気圧から約80Kg/cm2gまで上昇す
るために、液位もそれにつれて上昇し、外筒の上
部から測定液が侵入する可能性があるからであ
る。
Further, it cannot be used in a high-temperature, high-pressure environment like the present invention. When the gas phase part suppresses the rise in the level of the measured liquid that has entered the protection tube, the pressure in the measured liquid tank does not rise significantly after the level of the measured liquid rises. The assumption that the exposed mating surface of the piston is never immersed in the measuring liquid does not hold true in the case of nuclear power plants, and the pressure rises from atmospheric pressure to approximately 80 kg/cm 2 g. This is because the liquid level will rise accordingly, and there is a possibility that the measuring liquid may enter from the upper part of the outer cylinder.

さらに、実公昭52−14476号は、海水中のPH測
定のように外圧の大きい場所での測定に適すると
いう比較電極を提案している。
Furthermore, Utility Model Publication No. 52-14476 proposes a reference electrode that is suitable for measurements in places with high external pressure, such as pH measurement in seawater.

しかし、高温環境での使用を示唆する記述がな
く、原子炉のように高温かつ高圧環境下における
使用は予定に無く、全体を測定液中にひたすこと
を前提に開発されている。このような構造では原
子炉の炉水の環境(約280℃、約80Kg/cm2g)に
は、耐えられない。
However, there is no description suggesting use in a high-temperature environment, and there are no plans to use it in a high-temperature, high-pressure environment like a nuclear reactor, and the device was developed on the premise that the entire device would be immersed in the measurement liquid. Such a structure cannot withstand the reactor water environment (approximately 280°C, approximately 80 kg/cm 2 g).

次に、内部液すなわち電極液の流出を許容して
おり、ベローズに収縮力を備えさせ、内部液の流
出を促進させる方式を採用している。したがつ
て、海水の進入による比較電極電位の不安定さを
解消するために、電極液の流出方向だけを目指し
ており、減少した電極液は、この比較電極を海上
の船舶に引き上げる毎に、補充する方式である。
Next, the internal liquid, that is, the electrode liquid, is allowed to flow out, and a method is adopted in which the bellows is provided with a contraction force to promote the outflow of the internal liquid. Therefore, in order to eliminate the instability of the reference electrode potential due to the intrusion of seawater, we aim only in the direction of the outflow of the electrode solution, and the reduced electrode solution is removed each time the reference electrode is brought up to a ship at sea. This is a replenishment method.

この場合も、実公昭46−29673号と同様に、電
極液の漏出しを積極的に進める方向に加圧する方
式であることから、比較的短期間に電極液を補充
せざるを得ず、電極液の補充無しで数年オーダー
の使用を目的としている利用分野には、適しな
い。
In this case, as in Utility Model Publication No. 46-29673, the method is to apply pressure in a direction that actively promotes leakage of the electrode solution, so the electrode solution has to be replenished in a relatively short period of time. It is not suitable for applications where the purpose is to use it for several years without replenishing the liquid.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高温高圧水環境下において、
各種構造材料の腐食電位等を長期間安定して測定
するために、電極液の漏出を防止し拡散を抑制す
る構造を備えた高温高圧水用参照電極体を提供す
ることである。
The purpose of the present invention is to:
An object of the present invention is to provide a reference electrode body for high-temperature, high-pressure water having a structure that prevents leakage and suppresses diffusion of an electrode liquid in order to stably measure the corrosion potential of various structural materials over a long period of time.

〔発明の概要〕[Summary of the invention]

以下に第1図を用いて発明の要点を説明する。 The main points of the invention will be explained below using FIG.

(1) 電極液の漏出防止構造 圧力容器蓋板2に保護管1Aを固定された参
照電極体1は高温高圧の試験水3により加熱加
圧される。そこで、電極室4内に充填されてい
る電極液5も同程度に加熱され体積膨脹を起こ
す。この電極液5の体積膨脹により、電極室4
内の内圧Pi0は上昇しPiとなる。電極室内圧Pi
液絡部材8の漏洩圧力Plよりかなり大きな値と
なれば、電極液5は液絡部材8を通つて試験水
3中に漏洩速度Riで漏出してしまい、参照電極
としての性能が劣化してしまう。電極室内圧Pi
と液絡部材8の漏洩圧力Plとの差を小さくし、
試験水への電極液5の漏洩速度Riをできるだけ
小さくすることが、参照電極の性能を長期間に
わたつて維持する条件となる。
(1) Electrode liquid leakage prevention structure The reference electrode body 1 with the protective tube 1A fixed to the pressure vessel cover plate 2 is heated and pressurized by high temperature and high pressure test water 3. Therefore, the electrode liquid 5 filled in the electrode chamber 4 is also heated to the same extent and causes volume expansion. Due to this volumetric expansion of the electrode solution 5, the electrode chamber 4
The internal pressure P i0 inside increases to become P i . If the electrode chamber pressure P i becomes considerably larger than the leakage pressure P l of the liquid junction member 8, the electrode liquid 5 will leak through the liquid junction member 8 into the test water 3 at a leakage rate R i , and as shown in FIG. The performance as an electrode will deteriorate. Electrode chamber pressure P i
and the leakage pressure P l of the liquid junction member 8,
Reducing the leakage rate R i of the electrode solution 5 into the test water as low as possible is a condition for maintaining the performance of the reference electrode over a long period of time.

ここで、参照電極の性能を維持するための電
極液5の希釈度は、測定上の要求精度によつて
も異なるが、経験上通常は約1/10位である電極
液5の漏洩速度Rcは、電極液5の交換頻度に
より決まつてくる。電極液5の交換頻度を設計
要求上n年としたい場合、電極液5の濃度をA
〔N〕とすれば、許容漏洩速度Rcは、Rc
0.1A/n〔N/年〕となる。従つて、Ri<Rc
(第2図参照)となる様な電極室内圧Piと液絡
部材8の漏洩圧力Plとの関係を実証してやれ
ば、電極液5を交換することなく長期間(N年
以上)の使用が可能になる。
Here, the dilution rate of the electrode solution 5 to maintain the performance of the reference electrode varies depending on the accuracy required for measurement, but from experience, the leakage rate R of the electrode solution 5 is usually about 1/10. c is determined by the frequency of replacing the electrode solution 5. If the frequency of replacing the electrode solution 5 is n years due to design requirements, the concentration of the electrode solution 5 should be set to A.
[N], the allowable leakage rate R c is R c =
0.1A/n [N/year]. Therefore, R i <R c
(See Figure 2) If the relationship between the electrode chamber pressure P i and the leakage pressure P l of the liquid junction member 8 is demonstrated, the electrode liquid 5 can be used for a long period of time (N years or more) without being replaced. becomes possible.

それには、電極室4の一部に電極液5の熱膨
脹による内圧上昇を吸収する圧力吸収機構を設
け電極室内圧Piの上昇を抑制し、Piと液絡部材
8の漏洩圧力Plとの圧力差を小さくすることが
必要である。
To do this, a pressure absorption mechanism is provided in a part of the electrode chamber 4 to absorb the increase in internal pressure due to thermal expansion of the electrode liquid 5, suppressing the increase in the electrode chamber pressure P i , and reducing the leakage pressure P l of P i and the liquid junction member 8. It is necessary to reduce the pressure difference between

以上の条件をまとめると、高温時における電
極液5の体積膨脹による電極室内圧Piの上昇を
抑制すべく電極室4の一部に摺動部のない可撓
性のベローズまたはダイヤフラムの如き圧力吸
収機構26を設け、これと液絡部材8の漏洩圧
力Plとの差圧を小さくして、Ri(液絡部材8か
らの電極液5の漏洩速度)<Rc(液絡部材8か
らの電極液5の許容漏洩速度)を実現し、参照
電極の性能を長期間にわたつて維持することが
本発明の第1の要点である。
To summarize the above conditions, in order to suppress the increase in electrode chamber pressure P i due to volumetric expansion of the electrode liquid 5 at high temperatures, a flexible bellows or diaphragm without sliding parts is installed in a part of the electrode chamber 4 to suppress the increase in electrode chamber pressure P i due to volumetric expansion of the electrode solution 5 at high temperatures. The absorption mechanism 26 is provided to reduce the differential pressure between this and the leakage pressure P l of the liquid junction member 8, so that R i (leakage rate of the electrode liquid 5 from the liquid junction member 8) < R c (liquid junction member 8 The first key point of the present invention is to maintain the performance of the reference electrode over a long period of time by achieving a permissible leakage rate of the electrode solution 5 from the electrode.

(2) 電極液の拡散抑制構造 高温時、液絡部材8から漏出した電極液5
は、従来、直接試験水3中に拡散していた。逆
に降温時は、試験水3が液絡部材8を経て、電
極室4内に流れ込み、電極液が希釈され、電極
性能劣化の一因となつていた。そこで、第1図
に示す如く、液絡部材8を覆うように液絡部カ
バー25を設け、液絡部材8と試験水3との間
に濃度緩衝領域を設け、液絡部材8から漏洩し
た電極液5を液洛部カバー25内に滞留させ、
試験水3中への拡散を抑制する様に改良した。
又、降温時には、この滞留している電極液が液
絡部を経て、電極室4内へ流れ込む様な構造と
した。試験水との液絡は、液絡部カバー25の
細孔27により行なわれる。
(2) Electrode liquid diffusion suppression structure Electrode liquid 5 leaking from the liquid junction member 8 at high temperatures
has conventionally been directly diffused into the test water 3. Conversely, when the temperature drops, the test water 3 flows into the electrode chamber 4 through the liquid junction member 8, diluting the electrode solution and contributing to deterioration of electrode performance. Therefore, as shown in FIG. 1, a liquid junction cover 25 is provided to cover the liquid junction member 8, and a concentration buffer area is provided between the liquid junction member 8 and the test water 3 to prevent leakage from the liquid junction member 8. The electrode liquid 5 is retained in the liquid tank cover 25,
Improvements were made to suppress diffusion into Test Water 3.
Further, when the temperature is lowered, the structure is such that the stagnant electrode liquid flows into the electrode chamber 4 through the liquid junction. The liquid junction with the test water is performed through the pores 27 of the liquid junction cover 25.

この様に、従来は電極体の降温時に電極液が
希釈され、腐食電位の長期間安定した測定が不
可能であつた欠点を改善したことが本発明の第
2の要点である。
Thus, the second point of the present invention is to improve the conventional drawback that the electrode solution was diluted when the temperature of the electrode body was lowered, making it impossible to stably measure the corrosion potential over a long period of time.

なお、ここでは濃度緩衝領域を液絡部材と試験
水との間に設けるとして説明したが、電極室と液
絡部材との間に設けても同様の効果が得られる。
Note that although the concentration buffer region has been described here as being provided between the liquid junction member and the test water, the same effect can be obtained even if it is provided between the electrode chamber and the liquid junction member.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明の好適な一実施例である高温
高圧水用参照電極体の装着状態を示す垂直断面図
である。
FIG. 3 is a vertical cross-sectional view showing a state in which a high-temperature, high-pressure water reference electrode body according to a preferred embodiment of the present invention is attached.

参照電極体1の保護管1Aは、圧力容器蓋板2
に強固に密着固定され、その下半分は試験水3中
に、また、上半分は大気中に在る。この参照電極
体1の保護管1Aは、ステンレス製の円柱体で、
外部にはフイン29を設け空冷している。一方内
部には、参照電極6と電極液(KCl溶液等)5を
有する電極室4があり、テフロンホルダー28に
より封止されている。このテフロンホルダー28
には、多孔質テフロン(又はセラミツク)製の液
絡部材8が取り付けられており、更にテフロンホ
ルダー28の外側には、試験水3と液絡を行なう
細孔27を有する液絡部カバー25が取り付けら
れている。
The protection tube 1A of the reference electrode body 1 is connected to the pressure vessel lid plate 2.
The lower half is in the test water 3, and the upper half is in the atmosphere. The protection tube 1A of this reference electrode body 1 is a cylindrical body made of stainless steel.
A fin 29 is provided on the outside for air cooling. On the other hand, inside there is an electrode chamber 4 having a reference electrode 6 and an electrode solution (KCl solution, etc.) 5, which is sealed with a Teflon holder 28. This Teflon holder 28
A liquid junction member 8 made of porous Teflon (or ceramic) is attached to the holder 28, and a liquid junction cover 25 having pores 27 for forming a liquid junction with the test water 3 is provided on the outside of the Teflon holder 28. installed.

又、電極室4の上部には、圧力吸収機構の一つ
としてダイヤフラム26を設けている。このダイ
ヤフラム26の外側には、圧力伝達孔10及び圧
力伝達通路9を通して試験水3の圧力が伝えられ
る。高温時における電極液5の体積膨脹による内
圧の上昇分をダイヤフラム26で吸収するもので
ある。
Further, a diaphragm 26 is provided above the electrode chamber 4 as one of the pressure absorption mechanisms. The pressure of the test water 3 is transmitted to the outside of the diaphragm 26 through the pressure transmission hole 10 and the pressure transmission passage 9. The diaphragm 26 absorbs an increase in internal pressure due to volumetric expansion of the electrode liquid 5 at high temperatures.

この様に構成された参照電極体1を用いて原子
炉構造材の耐腐食性を試験する方法を次に説明す
る。
Next, a method of testing the corrosion resistance of a nuclear reactor structural material using the reference electrode body 1 configured in this manner will be described.

圧力容器の中に試験水3を充満させて、被検材
を浸漬させ密封し、圧力容器を加圧加熱する(例
えば、炉水環境条件では、70〜80Kg/cm2gで250
〜300℃)。電極室4内の電極液5も同程度に加熱
され、体積が膨脹し、電極室4内の内圧Piが上昇
する。この内圧上昇分ΔPiが、電極室4の上部に
設けられた圧力吸収機構であるダイヤフラム26
により(電極液5の体積膨脹分を摺動部のないダ
イヤフラム26の変形で吸収する)ほとんど吸収
され、内圧Piは液絡部材8の許容漏洩圧力Plc
り低く保たれる。これにより、液絡部材8からの
電極液5の漏洩速度Riが許容速度Rcよりも小さ
くなり、参照電極体1の性能を長期間に渡り安定
して維持できる。
The pressure vessel is filled with test water 3, the material to be tested is immersed and sealed, and the pressure vessel is heated under pressure (for example, under reactor water environmental conditions, 70 to 80 kg/cm 2 g and 250
~300℃). The electrode liquid 5 in the electrode chamber 4 is also heated to the same extent, expands in volume, and the internal pressure P i in the electrode chamber 4 increases. This internal pressure increase ΔP i is caused by the diaphragm 26 which is a pressure absorption mechanism provided at the upper part of the electrode chamber 4.
(the volumetric expansion of the electrode liquid 5 is absorbed by the deformation of the diaphragm 26 without a sliding part), and the internal pressure P i is kept lower than the allowable leakage pressure P lc of the liquid junction member 8. Thereby, the leakage rate R i of the electrode liquid 5 from the liquid junction member 8 becomes smaller than the permissible rate R c , and the performance of the reference electrode body 1 can be stably maintained over a long period of time.

又、テフロンホルダー28の液絡部材8から直
接試験水3中へ電極液5が拡散するのを防ぐため
に、テフロンホルダー28の外側に液絡部カバー
25を設ける。拡散した電極液5をこの液絡部カ
バー25内に滞留させ、試験水3中にまで拡散す
るのを抑制し、電極液5の劣化を防ぐ。
Further, in order to prevent the electrode solution 5 from directly diffusing into the test water 3 from the liquid junction member 8 of the Teflon holder 28, a liquid junction cover 25 is provided on the outside of the Teflon holder 28. The diffused electrode solution 5 is retained in this liquid junction cover 25, suppressing diffusion into the test water 3, and preventing deterioration of the electrode solution 5.

以上のことにより、腐食電位の長期間安定した
測定が可能になつた。
As a result of the above, stable measurement of corrosion potential over a long period of time has become possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果が得られる。 According to the present invention, the following effects can be obtained.

(1) 高温高圧水環境下において、電極液の体積膨
脹による電極室内圧の上昇分を、電極室の一部
に設けた摺動部のない圧力吸収機構(ダイヤフ
ラム等)で吸収し、かつ、(電極室内圧Pi)<
(液絡部材の許容漏洩圧力Plc)となる様な液絡
部材を用いて(液絡部材からの漏洩速度Ri)<
(液絡部材からの許容漏洩速度Rc)を実現し
て、液絡部材からの電極液の漏出を許容値以下
に抑えたので、電極液の劣化を防ぐことがで
き、高温高圧下においても、腐食電位を長期間
安定して測定可能である。
(1) In a high-temperature, high-pressure water environment, the increase in pressure within the electrode chamber due to volumetric expansion of the electrode liquid is absorbed by a pressure absorption mechanism (diaphragm, etc.) with no sliding parts provided in a part of the electrode chamber, and (Electrode chamber pressure P i )<
(Leakage rate from liquid junction member R i ) <
(allowable leakage rate R c from the liquid junction member) and suppressed the leakage of the electrode liquid from the liquid junction member to below the allowable value, preventing deterioration of the electrode liquid and even under high temperature and high pressure. , corrosion potential can be measured stably over a long period of time.

(2) テフロンホルダーの外側に液絡部カバーを取
り付けて液絡部材と試験水との間に濃度緩衝領
域を設け、電極室から試験水中への電極液の拡
散を抑制し、電極室内の電極液の希釈を防いだ
ので、腐食電位を長期間安定して測定できる。
(2) Attach a liquid junction cover to the outside of the Teflon holder to create a concentration buffer area between the liquid junction member and the test water, suppress the diffusion of the electrode liquid from the electrode chamber into the test water, and prevent the electrode inside the electrode chamber from spreading. Since dilution of the liquid is prevented, corrosion potential can be measured stably over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による高温高圧水用参照電極体
の概略図、第2図は経過年数と電極液許容漏洩量
の関係を示すグラフ、第3図は本発明を適用した
高温高圧水用参照電極体の断面図、第4図と第5
図は従来の高温高圧水用参照電極体の断面図であ
る。 1……参照電極体、1A……保護管、2……圧
力容器蓋板、3……試験水、4……電極室、5…
…電極液、6……参照電極、7……封止材、8…
…液絡部材、9……通路、10……圧力伝達孔、
11……ピストン、12……テフロンチユーブ、
13……圧力シール部、14……封止材、15…
…リード線、16……液絡プラグ、17……
Ag/AgCl電極棒、18……シールプラグ、19
……パツキン、20……パツキン、21……Ag
電極棒、22……絶縁チユーブ、23……電極容
器、24……孔、25……液絡部カバー、26…
…ダイヤフラム、27……細孔、28……テフロ
ンホルダー、29……フイン。
Fig. 1 is a schematic diagram of a reference electrode body for high-temperature, high-pressure water according to the present invention, Fig. 2 is a graph showing the relationship between elapsed years and allowable leakage amount of electrode liquid, and Fig. 3 is a reference electrode body for high-temperature and high-pressure water to which the present invention is applied. Cross-sectional view of the electrode body, Figures 4 and 5
The figure is a cross-sectional view of a conventional reference electrode body for high-temperature, high-pressure water. DESCRIPTION OF SYMBOLS 1... Reference electrode body, 1A... Protection tube, 2... Pressure vessel cover plate, 3... Test water, 4... Electrode chamber, 5...
... Electrode liquid, 6 ... Reference electrode, 7 ... Sealing material, 8 ...
... Liquid junction member, 9 ... Passage, 10 ... Pressure transmission hole,
11...Piston, 12...Teflon tube,
13... Pressure seal portion, 14... Sealing material, 15...
...Lead wire, 16...Liquid junction plug, 17...
Ag/AgCl electrode rod, 18... Seal plug, 19
...Patsukin, 20...Patsukin, 21...Ag
Electrode rod, 22... Insulating tube, 23... Electrode container, 24... Hole, 25... Liquid junction cover, 26...
...diaphragm, 27...pore, 28...Teflon holder, 29...fin.

Claims (1)

【特許請求の範囲】 1 試験水中に浸漬した被検材の電位を測定する
ための高温高圧水用参照電極体において、 内部に参照電極と電極液とを収容し、摺動部が
無く可撓性の圧力吸収機構を上部に有し、電極室
自体の内圧Piよりも大きな許容漏洩圧力Plcをも
つ液絡部材を下部に配置した電極室と、 前記電極室を収納し、前記試験水の圧力伝達孔
と圧力伝達通路とを有し、前記試験水の圧力を前
記電極室上部の圧力吸収機構に導く保護管と、 前記試験水と液絡する細孔を有し、前記電極室
の下部と前記液絡部材との周囲に濃度緩衝領域を
形成する液洛部カバーと からなることを特徴とする高温高圧水用参照電極
体。 2 特許請求の範囲第1項に記載の高温高圧水用
参照電極体において、 液洛部カバー内部の前記電極液と前記試験水と
の濃度緩衝領域を前記液絡部材と前記試験水との
間に形成したことを特徴とする高温高圧水用参照
電極体。 3 特許請求の範囲第1項に記載の高温高圧水用
参照電極体において、 液洛部カバー内部の前記電極液と前記試験水と
の濃度緩衝領域を前記電極室と前記液絡部材との
間に形成したことを特徴とする高温高圧水用参照
電極体。 4 特許請求の範囲第1項ないし第3項のいずれ
か一項に記載の高温高圧水用参照電極体におい
て、 前記電極室の少なくとも圧力吸収機構を内蔵し
た部分の前記保護管を前記試験水を収納する容器
外に突出させ、前記保護管外部に前記圧力吸収機
構を冷却する手段を備えたことを特徴とする高温
高圧水用参照電極体。
[Scope of Claims] 1. A high-temperature, high-pressure water reference electrode body for measuring the potential of a test material immersed in test water, which houses a reference electrode and an electrode solution inside, and is flexible and has no sliding parts. an electrode chamber having a pressure absorption mechanism in the upper part and a liquid junction member having an allowable leakage pressure Plc greater than the internal pressure Pi of the electrode chamber itself arranged in the lower part; a protection tube having a transmission hole and a pressure transmission passage and guiding the pressure of the test water to a pressure absorption mechanism in the upper part of the electrode chamber; and a protection tube having a pore in liquid contact with the test water and connecting the lower part of the electrode chamber A reference electrode body for high-temperature, high-pressure water, characterized in that it comprises a liquid junction member and a liquid droplet cover that forms a concentration buffer region around the liquid junction member. 2. In the reference electrode body for high-temperature and high-pressure water according to claim 1, a concentration buffering area between the electrode solution and the test water inside the liquid droplet cover is arranged between the liquid junction member and the test water. A reference electrode body for high-temperature, high-pressure water, characterized by being formed in. 3. In the reference electrode body for high-temperature and high-pressure water according to claim 1, a concentration buffering area between the electrode solution and the test water inside the liquid chamber cover is located between the electrode chamber and the liquid junction member. A reference electrode body for high-temperature, high-pressure water, characterized by being formed in. 4. In the reference electrode body for high-temperature, high-pressure water according to any one of claims 1 to 3, the protective tube in at least a portion of the electrode chamber containing a built-in pressure absorption mechanism is filled with the test water. 1. A reference electrode body for high-temperature, high-pressure water, characterized in that the reference electrode body for high-temperature and high-pressure water is provided with a means for cooling the pressure absorption mechanism, which is made to protrude outside the container in which it is housed, and is provided outside the protection tube.
JP15468384A 1984-07-25 1984-07-25 Reference electrode body for high-temperature and high-pressure water Granted JPS6131953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15468384A JPS6131953A (en) 1984-07-25 1984-07-25 Reference electrode body for high-temperature and high-pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15468384A JPS6131953A (en) 1984-07-25 1984-07-25 Reference electrode body for high-temperature and high-pressure water

Publications (2)

Publication Number Publication Date
JPS6131953A JPS6131953A (en) 1986-02-14
JPH051904B2 true JPH051904B2 (en) 1993-01-11

Family

ID=15589633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15468384A Granted JPS6131953A (en) 1984-07-25 1984-07-25 Reference electrode body for high-temperature and high-pressure water

Country Status (1)

Country Link
JP (1) JPS6131953A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146459U (en) * 1984-08-30 1986-03-28 株式会社 堀場製作所 High voltage reference electrode
JP5402881B2 (en) * 2010-08-30 2014-01-29 東亜ディーケーケー株式会社 Electrode body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214476U (en) * 1975-07-18 1977-02-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214476U (en) * 1975-07-18 1977-02-01

Also Published As

Publication number Publication date
JPS6131953A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
CA1136217A (en) Pressure balanced external reference electrode assembly and method
US4406766A (en) Apparatus for measuring the pH of a liquid
US20180328881A1 (en) Sensor and measurement method for measuring hydrogen content in metal melt
US5516413A (en) Rugged electrode for electrochemical measurements at high temperatures and pressures
JPH051904B2 (en)
Åkerlöf et al. Thermodynamics of concentrated aqueous solutions of sodium hydroxide1, 2
RU2379672C1 (en) Hydrogen detector in liquid and gas mediums
US4455213A (en) Pressure equalization system for membrane type amperometric sensors
Lucero Design of membrane-covered polarographic gas detectors
JPH05196592A (en) Reference electrode probe used in high- temperature water environment
US3929603A (en) Electrolytic sensor with pressure compensating means
RU66056U1 (en) DEVICE FOR MEASURING HYDROGEN CONTENT IN LIQUIDS AND GASES
US4139421A (en) Method of determining oxygen content
KR102278286B1 (en) Hydrogen detector for gas media
JPS59190648A (en) Reference electrode for high temperature
US5425871A (en) Solid state reference electrode for high temperature electrochemical measurements
US4166019A (en) Electrochemical oxygen meter
JPH0422290Y2 (en)
US6554015B1 (en) Single piece silver/palladium cell for adjusting or measuring a level of hydrogen and methods therefor
US4410409A (en) Amperometric gas sensor, cathode assembly therefor and method of making said cathode assembly
US3444067A (en) Method of filling an electrode tube with liquid
JP2001174397A (en) Corrosion potential measuring device
JPH0330850Y2 (en)
KR102199059B1 (en) Hydrogen detector for gas and fluid media
JPH0452407B2 (en)