JPH0330850Y2 - - Google Patents
Info
- Publication number
- JPH0330850Y2 JPH0330850Y2 JP17343885U JP17343885U JPH0330850Y2 JP H0330850 Y2 JPH0330850 Y2 JP H0330850Y2 JP 17343885 U JP17343885 U JP 17343885U JP 17343885 U JP17343885 U JP 17343885U JP H0330850 Y2 JPH0330850 Y2 JP H0330850Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- internal liquid
- electrode body
- thin tube
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 56
- 239000007789 gas Substances 0.000 description 24
- 239000012528 membrane Substances 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000011148 porous material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は、例えば溶存酸素測定用隔膜電極など
の電極本体内に内部液を封入した電極に関し、更
に詳述すると、電極本体内の圧変動が確実に補償
され、電極に急激な温度変化が加わつた場合でも
安定に測定を行なうことができる電極に関する。[Detailed description of the invention] Industrial application field The present invention relates to an electrode in which an internal liquid is sealed in the electrode body, such as a diaphragm electrode for measuring dissolved oxygen. The present invention relates to an electrode that is compensated for and can perform stable measurements even when rapid temperature changes are applied to the electrode.
従来の技術及び考案が解決しようとする問題点
従来、試料液中の溶存酸素量を測定する隔膜電
極として、例えば第3図に示すような構造のもの
が知られている。Problems to be Solved by Conventional Techniques and Ideas Conventionally, as a diaphragm electrode for measuring the amount of dissolved oxygen in a sample liquid, one having a structure as shown in FIG. 3, for example, is known.
即ち、第3図において1は基体1aに電極外管
1bが固定されてなる電極本体、2は本体1の電
極外管1b先端開口部を覆つて配設された溶存酸
素ガスを透過させるためのガス透過性膜で、この
ガス透過性膜2はリング状隔膜支持体3によつて
電極外管1b先端部に取り付けられている。本体
1の基体1a先端部は上記ガス透過性膜2近傍ま
で突出しており、この突出部1c先端にはガス透
過膜2に対向して金や白金等の貴金属で構成され
る指示極4が配設されている。なお、5は本体1
内に入れられた塩化カリウムを含む内部液、6は
上記突出部1cに巻き付けられた銀に塩化銀を鍍
金した対極、7は指示極のリード線、8は対極の
リード線、9は溶存酸素濃度によつて生じた電流
を取り出すための接合部であるコネクター、10
は電極を電極ホルダーに取り付けるための取付け
ねじ、11は電極ホルダーと電極をシールするた
めのOリング、12はガス透過性膜2の隔膜支持
体3からの剥離を防ぐための隔膜押えである。 That is, in FIG. 3, 1 is an electrode body formed by fixing an electrode outer tube 1b to a base 1a, and 2 is an electrode body provided to cover the tip opening of the electrode outer tube 1b of the main body 1 for transmitting dissolved oxygen gas. This gas permeable membrane 2 is attached to the tip of the electrode outer tube 1b by a ring-shaped diaphragm support 3. The tip of the base 1a of the main body 1 protrudes to the vicinity of the gas permeable membrane 2, and an indicator electrode 4 made of a noble metal such as gold or platinum is disposed at the tip of the protrusion 1c facing the gas permeable membrane 2. It is set up. In addition, 5 is the main body 1
6 is a counter electrode made of silver plated with silver chloride wrapped around the protrusion 1c, 7 is an indicator lead wire, 8 is a counter electrode lead wire, and 9 is dissolved oxygen. A connector, which is a joint for taking out the current generated by the concentration, 10
1 is a mounting screw for attaching the electrode to the electrode holder; 11 is an O-ring for sealing the electrode holder and the electrode; and 12 is a diaphragm holder for preventing the gas permeable membrane 2 from peeling off from the diaphragm support 3.
上述したように隔膜電極を用いて溶存酸素を測
定する場合、安定性良く測定を行なうためにはガ
ス透過性膜2と支持極4の膜面との位置関係が常
に一定していることが重要なポイントであるが、
電極に温度変化が加わつた場合には電極本体1内
の内部液5や空気が膨脹したり収縮したり、本体
1内に圧変動が生じるため、ガス透過性膜2が外
方或いは内方に膨らんでガス透過性膜2と支持極
4の膜面との位置関係が一定に保たれない。 As mentioned above, when measuring dissolved oxygen using a diaphragm electrode, it is important that the positional relationship between the gas permeable membrane 2 and the membrane surface of the support electrode 4 is always constant in order to perform the measurement with good stability. This is a very important point.
When a temperature change is applied to the electrode, the internal liquid 5 and air within the electrode body 1 expand or contract, and pressure fluctuations occur within the electrode body 1, causing the gas permeable membrane 2 to move outward or inward. Due to the swelling, the positional relationship between the gas permeable membrane 2 and the membrane surface of the support electrode 4 cannot be maintained constant.
そこで、このような電極本体1内の圧変動を補
償し、本体1内の圧力を一定に保つ手段として、
例えば第3図に示すように、本体1の電極外管1
b上部に外管1b内の気相14に連通する孔13
を穿設し、この孔13にベローズ15を配設する
ことが行なわれている。 Therefore, as a means to compensate for such pressure fluctuations within the electrode body 1 and keep the pressure within the body 1 constant,
For example, as shown in FIG.
A hole 13 communicating with the gas phase 14 in the outer tube 1b is provided in the upper part of b.
A bellows 15 is disposed in the hole 13.
しかしながら、上述したようにベローズ15に
よつて電極本体1内の圧力変動を補償する方法に
おいては、ベローズ15が充分な弾性を有さない
ため、本体1に急激な温度変化が加わつて本体1
内が急激に圧変動した場合、ベローズ15がこの
圧変動に追随できない上、ベローズ15が抵抗に
なるため、圧変動を補償しきれず、その結果ガス
透過性膜2と支持極4膜面との位置関係が変化し
て正常な測定信号が得られなくなるという欠点が
ある。この場合、電極本体1内の圧変動によつて
ガス透過性膜2が隔膜支持体3から外れてしま
い、内部液が漏れて測定不能になることもある。 However, in the method of compensating pressure fluctuations within the electrode body 1 using the bellows 15 as described above, since the bellows 15 does not have sufficient elasticity, a sudden temperature change is applied to the body 1.
If there is a sudden pressure change inside, the bellows 15 cannot follow this pressure change, and the bellows 15 becomes a resistance, so it cannot fully compensate for the pressure change, and as a result, the contact between the gas permeable membrane 2 and the supporting electrode 4 membrane surface There is a drawback that the positional relationship changes, making it impossible to obtain a normal measurement signal. In this case, the gas permeable membrane 2 may come off from the diaphragm support 3 due to pressure fluctuations within the electrode body 1, and the internal liquid may leak, making measurement impossible.
なお、電極本体1内の圧変動を補償するための
他の手段として、例えば第4図に示すように電極
外管1b上部に内部の気相14と連通する圧力補
償用透孔16を穿設し、外管1bの孔16より下
方のみを試料液17中に浸漬する方法や、第5図
に示すように上記第4図の電極上部を更に圧力補
償用透孔18を穿設したホルダー19内に挿入し
て使用する方法も知られている。しかしながら、
前者の方法は電極全体を試料液に浸漬すると試料
液が電極内に侵入して内部液を変質させるという
問題があり、後者の方法は装置が複雑になるとい
う欠点を有している。 As another means for compensating for pressure fluctuations within the electrode body 1, for example, as shown in FIG. However, there is a method in which only the portion below the hole 16 of the outer tube 1b is immersed in the sample liquid 17, or as shown in FIG. There is also a known method of inserting it into the body. however,
The former method has a problem in that when the entire electrode is immersed in the sample liquid, the sample liquid enters the electrode and alters the internal liquid, while the latter method has the disadvantage that the apparatus becomes complicated.
本考案は、上記事情に鑑みなされたもので、溶
存酸素測定用隔膜電極などの電極本体内に内部液
を封入した電極において、電極に急激な熱変化が
加わつて電極本体内に急激な圧変動が生じた場合
でも、この圧変動を確実に補償して電極本体内を
一定の圧力に維持することができる電極を提供す
ることを目的とする。 The present invention was developed in view of the above-mentioned circumstances.In electrodes such as diaphragm electrodes for measuring dissolved oxygen, in which internal liquid is sealed in the electrode body, sudden thermal changes are applied to the electrode, causing rapid pressure fluctuations within the electrode body. An object of the present invention is to provide an electrode that can reliably compensate for pressure fluctuations and maintain a constant pressure within the electrode body even when pressure fluctuations occur.
問題点を解決するための手段及び作用
即ち、本考案は上記目的を達成するため、電極
本体内に内部液を封入した電極において、一端が
上記電極本体内の内部液に連通し、かつ他端が電
極本体外に連通する細管を電極本体に配設すると
共に、この柔管内に内部液を充満して、電極本体
内の圧変動を上記内部液を充満した細管によつて
補償するよう構成したものである。Means and operation for solving the problems That is, in order to achieve the above object, the present invention provides an electrode in which an internal liquid is sealed within the electrode body, one end of which communicates with the internal liquid within the electrode body, and the other end of which is connected to the internal liquid within the electrode body. A thin tube communicating with the outside of the electrode body is disposed in the electrode body, and this soft tube is filled with an internal liquid, so that pressure fluctuations within the electrode body are compensated for by the thin tube filled with the internal liquid. It is something.
本考案電極においては、電極の内部構造を以上
述べた構造としたことにより、測定系の急激な温
度変化等に起因する圧力変動は内部液を充満した
細管を介して補償される。即ち、ベローズ法はベ
ローズが抵抗となつて急激な圧力変動に100%追
従出来ず、支持極膜面とガス透過性膜の位置関係
がずれ、応答速度が大巾に遅くなつたり、指示変
動を生むのに対し、本考案電極は電極本体内の内
部液が細管中の内部液を介して被検液とつながつ
て抵抗となりえないため、ガス透過性膜と支持極
膜面の位置関係をずらすことなく100%圧力補償
され、安定な測定が出来る。被検液は細管中の内
部液を介して電極本体内の内部液と通じているた
め電極内部に侵入して内部液を変質させることは
ない。 In the electrode of the present invention, by adopting the internal structure of the electrode as described above, pressure fluctuations caused by rapid temperature changes in the measurement system can be compensated for through the thin tube filled with internal liquid. In other words, in the bellows method, the bellows acts as a resistance and cannot 100% follow sudden pressure fluctuations, and the positional relationship between the support electrode membrane surface and the gas permeable membrane becomes misaligned, resulting in a significant slowdown in response speed and a problem with indication fluctuations. In contrast, with the electrode of this invention, the internal liquid in the electrode body is connected to the test liquid via the internal liquid in the capillary and cannot create resistance, so the positional relationship between the gas permeable membrane and the support electrode membrane surface is shifted. 100% pressure compensation is achieved without any problems, allowing stable measurements. Since the test liquid communicates with the internal liquid in the electrode body via the internal liquid in the capillary, it does not enter the electrode and alter the quality of the internal liquid.
次に実施例を示し、本考案を具体的に説明する
が、本考案は下記実施例に限定されるものではな
い。 Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.
実施例
第1図は本考案の一実施例に係る溶存酸素測定
用隔膜電極を示すものである。なお、第1図にお
いて第3図の電極と同一の構成部分には同一参照
符号を付してその説明を省略する。Embodiment FIG. 1 shows a diaphragm electrode for measuring dissolved oxygen according to an embodiment of the present invention. In FIG. 1, the same constituent parts as those of the electrode in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted.
本電極においては、電極本体1内に粘性を有す
る内部液5が気相を残存させることなく封入され
ていると共に、本体1の突出部1c上部に内部に
同内部液を充満した細管20が巻き付けられて配
設され、この細管20の一端開口部21が本体1
内の内部液5に連通している。また、本体1の基
体1aには電極外管1b内と本体1外とを連通す
る細孔22が穿設されていると共に、この細孔2
2に上記細管20の他端が連結され、これにより
細管20の他端開口部23が電極本体1外に連通
している。なお、電極外管1b上部には一対の内
部液注入口24が穿設されており、この注入口2
4は内部液5の漏れを防ぐためにシール25によ
つて塞がれている。 In this electrode, a viscous internal liquid 5 is sealed in the electrode main body 1 without leaving any gas phase, and a thin tube 20 filled with the internal liquid is wound around the upper part of the protrusion 1c of the main body 1. The opening 21 at one end of the thin tube 20 is connected to the main body 1.
It communicates with the internal fluid 5 inside. Further, the base 1a of the main body 1 is provided with a pore 22 that communicates between the inside of the electrode outer tube 1b and the outside of the main body 1.
The other end of the capillary tube 20 is connected to the capillary tube 2, so that the other end opening 23 of the capillary tube 20 communicates with the outside of the electrode body 1. Note that a pair of internal liquid injection ports 24 are bored in the upper part of the electrode outer tube 1b, and these injection ports 2
4 is closed by a seal 25 to prevent internal liquid 5 from leaking.
上記細管20の材質は内部液の種類等により適
宜選定し得、内部液を変質させないものであれば
いずれのものでも使用し得るが、シリコンチユー
ブを用いることが特に好ましい。また、細管20
の長さ、径も限定されず、内部液の種類や温度変
化巾等に応じて決定し得るが、通常内容0.3〜6
mm、外径1〜8mm、長さ5〜300cm程度のものを
用いることが好適である。更に、内部液5の粘性
は0.9〜12cps程度とすることが好ましい。 The material of the thin tube 20 can be appropriately selected depending on the type of internal liquid, etc., and any material can be used as long as it does not alter the quality of the internal liquid, but it is particularly preferable to use a silicon tube. In addition, the thin tube 20
The length and diameter are also not limited and can be determined depending on the type of internal liquid and temperature change width, etc., but usually the content is 0.3 to 6.
It is preferable to use a material with an outer diameter of 1 to 8 mm and a length of 5 to 300 cm. Furthermore, the viscosity of the internal liquid 5 is preferably about 0.9 to 12 cps.
上記電極を組み立てる場合、例えば隔膜支持体
3を電極外管1b先端に取り付けた後、内部液注
入口24より注射筒等を用いて本体1内に気相が
残らないように内部液を注入し、直ちにシール2
5を張り付けると共に、同様に注射筒等を用いて
細管20内に内部液を充満するものである。 When assembling the above electrode, for example, after attaching the diaphragm support 3 to the tip of the electrode outer tube 1b, the internal liquid is injected from the internal liquid inlet 24 using a syringe or the like so that no gas phase remains inside the main body 1. , immediately seal 2
5 is attached, and the thin tube 20 is similarly filled with internal liquid using a syringe or the like.
本実施例の電極は、一端が電極本体1内の内部
液5に連通し、かつ他端が電極本体1外に連通す
る細管20を電極本体1内に配設すると共に、こ
の細管20内に内部液を充満したことにより、測
定系の急激な温度変化等に起因する圧力変動は内
部液を充満した細管20を介して確実に補償さ
れ、ガス透過性膜2と指示板4膜面との位置関係
が常に一定に保たれ、安定な測定結果を得ること
ができる。また、内部液が粘性を有するため、細
管20内に試料液が入つても、この試料液は細管
20内の内部液中に浸透拡散しにくく、しかも細
管が長いため、試硫液が細管20内の内部液中を
移動して本体1内に入り、内部液を変質させるこ
とが確実に防止される。従つて電極全体を試料液
中に浸漬して測定することが可能であり、測定操
作が容易になる。更に、電極本体1内に気相が残
存しないように内部液5を封入したので、空気膨
脹による圧変動をなくすことができ、これにより
圧変動の巾を小さくすることができると共に、気
相中の酸素が内部液に溶解し、電極の零復帰が遅
くなることを防止し得る。即ち、第3図に示すよ
うに、ベローズ15を使用した電極においては本
体1内に気相14が存在するため、温度変化によ
る空気膨脹によつて本体1内が大きく圧変動し易
くなる上、気相中の酸素が内部液に溶解し、電極
がこの酸素に感応してしまうので、電極が零復帰
するのに時間がかかるという問題があつたが、本
実施例はこのような問題点を解消したものであ
る。 The electrode of this embodiment has a thin tube 20 disposed inside the electrode body 1, one end of which communicates with the internal liquid 5 within the electrode body 1, and the other end of which communicates with the outside of the electrode body 1. By filling the internal liquid, pressure fluctuations caused by rapid temperature changes in the measurement system are reliably compensated for through the thin tube 20 filled with internal liquid, and the relationship between the gas permeable membrane 2 and the membrane surface of the indicator plate 4 is reduced. The positional relationship is always kept constant and stable measurement results can be obtained. Furthermore, since the internal liquid has viscosity, even if the sample liquid enters the thin tube 20, it is difficult for the sample liquid to permeate and diffuse into the internal liquid inside the thin tube 20. Moreover, since the thin tube is long, the test sulfur solution does not penetrate into the thin tube 20. It is reliably prevented from moving through the internal liquid inside the main body 1 and changing the quality of the internal liquid. Therefore, the entire electrode can be immersed in the sample liquid for measurement, which facilitates the measurement operation. Furthermore, since the internal liquid 5 is sealed so that no gas phase remains in the electrode body 1, pressure fluctuations due to air expansion can be eliminated, and the range of pressure fluctuations can be reduced. This can prevent the oxygen from dissolving in the internal liquid and delaying the return of the electrode to zero. That is, as shown in FIG. 3, in the electrode using the bellows 15, there is a gas phase 14 inside the main body 1, so that the pressure inside the main body 1 tends to fluctuate greatly due to air expansion due to temperature changes. Oxygen in the gas phase dissolves in the internal liquid, and the electrodes become sensitive to this oxygen, so there was a problem that it took a long time for the electrodes to return to zero, but this example solves this problem. It has been resolved.
なお、上記実施例においては、電極本体1の突
出部1cに細管20を巻き付けて配設したが、細
管20の配設態様はこれに限られない。また、基
体1aに細孔22を形成し、この細孔22に細管
20の他端を連結したが、細孔22は電極外管1
bに形成してもよく、その他の構成についても本
考案の要旨を逸脱しない範囲で種々変更して差支
えない。 In the above embodiment, the thin tube 20 is wound around the protruding portion 1c of the electrode body 1, but the manner in which the thin tube 20 is arranged is not limited to this. Further, a pore 22 was formed in the base 1a, and the other end of the thin tube 20 was connected to this pore 22, but the pore 22 was connected to the electrode outer tube 1.
b, and other configurations may be modified in various ways without departing from the gist of the present invention.
以下、実験例により本考案の効果を具体的に示
す。 Hereinafter, the effects of the present invention will be specifically illustrated by experimental examples.
実施例
第1図に示したものと同様の本考案電極及び比
較のため下記に示す比較のための電極を用いて発
電所のボイラー水の溶存酸素を測定した。結果を
第2図に示す。なお、細管20しては外径1mm、
内径0.5mmのシリコンチユーブを用いると共に、
長さは水の体積膨脹率から計算し、温度が25℃基
準に対し40℃上昇しても10mlの内部液が漏れない
長さの70cmとした。Example Dissolved oxygen in boiler water at a power plant was measured using an electrode of the present invention similar to that shown in FIG. 1 and a comparative electrode shown below for comparison. The results are shown in Figure 2. In addition, the outer diameter of the thin tube 20 is 1 mm,
In addition to using a silicon tube with an inner diameter of 0.5 mm,
The length was calculated from the volumetric expansion rate of water, and was set to 70 cm, which is a length that will not leak 10 ml of internal liquid even if the temperature rises by 40°C from the standard 25°C.
第2図においてaは本考案に係る電極によるも
ので、電極を20℃の大気中に曝らし計器を校正し
た後、直ちに水温が40℃であるボイラー給水に電
極を浸漬し、溶存酸素の測定を行つた時の計器指
示値と経過時間の関係を示したものである。計器
指示は1時間以内に管理基準濃度である7ppb以
下に到達している。図中bは本考案の効果を確か
めるための比較のための電極を用いた比較実験で
ある。即ち、電極本体の外部開放口を塞ぎ内部液
を満たすことなく内部液の上部に気相空間を作
り、液漏れ防止シールの代りに多孔性ガス透過性
膜を張り、急激な温度変化による空気の体積膨脹
で発生する圧変動を上記ガス透過性膜を用いて補
償しようとしたものであるが、図から分かる様に
管理基準濃度に達する迄に5.5時間を要し、本考
案による効果が明らかにされた。なお、本考案に
よる電極は、引き続き1年間に亘つて連続的に使
用可能であつたが、比較のための電極は僅かに2
回の使用でガス透過性膜が隔膜支持体から剥離
し、内部液漏れが生じ使用不能となつた。この事
実からもこの様な方法では急激な温度変化による
圧力変動を補償することができず、支持極膜面と
ガス透過性膜との位置がずれること、また内部液
上部の気相から内部液に溶けこんだ酸素を電極が
消費しながら平衡に達すること等により、応答時
間が大巾に遅くなつているものと予想される。 In Fig. 2, a shows the electrode according to the present invention. After calibrating the meter by exposing the electrode to the atmosphere at 20°C, the electrode is immediately immersed in boiler feed water with a water temperature of 40°C to measure dissolved oxygen. This figure shows the relationship between the meter reading and the elapsed time when the test was carried out. The meter indicated that the concentration had reached the control standard concentration of 7ppb or less within one hour. In the figure, b is a comparative experiment using electrodes for comparison to confirm the effect of the present invention. That is, a gas phase space is created above the internal liquid by closing the external opening of the electrode body without filling the internal liquid, and a porous gas permeable membrane is placed in place of a liquid leakage prevention seal to prevent air from flowing due to sudden temperature changes. An attempt was made to compensate for the pressure fluctuations caused by volumetric expansion using the gas permeable membrane described above, but as can be seen from the figure, it took 5.5 hours to reach the control standard concentration, making it clear that the effectiveness of this invention was achieved. It was done. The electrode according to the present invention could be used continuously for one year, but the electrode for comparison could only be used for 2 years.
After multiple uses, the gas permeable membrane peeled off from the diaphragm support, causing internal fluid leakage and rendering it unusable. From this fact, this method cannot compensate for pressure fluctuations caused by sudden temperature changes, and the position of the supporting electrode membrane and gas permeable membrane may shift, and the internal liquid may be removed from the gas phase above the internal liquid. It is expected that the response time is significantly slowed down due to factors such as reaching equilibrium while the electrode consumes the dissolved oxygen.
発明の効果
以上説明したように、本考案電極においては電
極本体内の急激な圧変動をも確実に補償し得、電
極本体内を常に一定の圧力に保持できる。従つ
て、本考案電極を隔膜電極に構成した場合、隔膜
と支持極との位置関係を常に一定にすることがで
き、安定な測定値が得られるものである。Effects of the Invention As explained above, the electrode of the present invention can reliably compensate for sudden pressure fluctuations within the electrode body, and can always maintain a constant pressure within the electrode body. Therefore, when the electrode of the present invention is configured as a diaphragm electrode, the positional relationship between the diaphragm and the support electrode can be kept constant at all times, and stable measured values can be obtained.
第1図は本考案の一実施例に係る溶存酸素測定
用隔膜電極を示す一部断面図、第2図は実験例に
おいて本考案電極及び比較のための電極を用いて
ボイラー給水中の溶存酸素を測定した結果を示す
グラフ、第3図の従来の溶存酸素測定用隔膜電極
の一例を示す一部断面図、第4図及び第5図はそ
れぞれ従来の電極内の圧変動補償手段の一例を示
す概略図である。
1……電極本体、20……細管、21……一端
開口部、23……他端開口部。
Figure 1 is a partial cross-sectional view showing a diaphragm electrode for measuring dissolved oxygen according to an embodiment of the present invention, and Figure 2 is a partial cross-sectional view showing dissolved oxygen in boiler feed water using the electrode of the present invention and an electrode for comparison in an experimental example. Figure 3 is a partial cross-sectional view of an example of a conventional diaphragm electrode for measuring dissolved oxygen, and Figures 4 and 5 are examples of conventional pressure fluctuation compensation means within the electrode. FIG. DESCRIPTION OF SYMBOLS 1... Electrode body, 20... Thin tube, 21... One end opening, 23... Other end opening.
Claims (1)
一端が上記電極本体内の内部液に連通し、かつ他
端が電極本体外に連通する細管を電極本体に配設
すると共に、この細管内に内部液を充満して、電
極本体内の圧変動を上記内部液が充満した細管に
よつて補償するよう構成したことを特徴とする電
極。 In an electrode with an internal liquid sealed inside the electrode body,
A thin tube having one end communicating with the internal liquid in the electrode body and the other end communicating with the outside of the electrode body is disposed in the electrode body, and this thin tube is filled with the internal liquid to cause pressure fluctuation inside the electrode body. An electrode characterized in that the electrode is configured to compensate for this by a capillary filled with the internal liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17343885U JPH0330850Y2 (en) | 1985-11-11 | 1985-11-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17343885U JPH0330850Y2 (en) | 1985-11-11 | 1985-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6281051U JPS6281051U (en) | 1987-05-23 |
JPH0330850Y2 true JPH0330850Y2 (en) | 1991-06-28 |
Family
ID=31110894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17343885U Expired JPH0330850Y2 (en) | 1985-11-11 | 1985-11-11 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0330850Y2 (en) |
-
1985
- 1985-11-11 JP JP17343885U patent/JPH0330850Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6281051U (en) | 1987-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4105509A (en) | Combination measuring and reference potential electrode and method of measuring ph in samples subject to large voltage gradients | |
CA1142227A (en) | Temperature compensation for disposable electrochemical sensors | |
US3227643A (en) | Oxygen detector | |
US4016866A (en) | Implantable electrochemical sensor | |
US3103480A (en) | Double bridge electrode for electro- | |
US3498899A (en) | Electrochemical electrode assembly | |
US4463593A (en) | Apparatus for monitoring the partial pressure of gases | |
US4115230A (en) | Partial oxygen measurement system | |
JPH03183943A (en) | Oxygen sensor | |
US3652439A (en) | Appratus for measuring ph in high-pressure environments | |
JPH0330850Y2 (en) | ||
US3357908A (en) | Electrolytic sensor with water diffusion compensation | |
EP0049264A1 (en) | Apparatus for measuring the partial pressure of oxygen and of a gas which in aqueous solution generates an acid or a base | |
EP0120108B1 (en) | Electrochemical cell for determining a particular component of a fluid | |
US3929603A (en) | Electrolytic sensor with pressure compensating means | |
US4065371A (en) | Electrochemical carbon meter | |
US4410409A (en) | Amperometric gas sensor, cathode assembly therefor and method of making said cathode assembly | |
GB2097539A (en) | Compound measuring electrode | |
US4803991A (en) | Three electrode hydroquinone subcutaneous equilibrating tonometer | |
JPH043255Y2 (en) | ||
JP2000346807A (en) | Reference electrode for electrochemiluminescent detector | |
JPH0422290Y2 (en) | ||
RU187673U1 (en) | Electrochemical sensor for measuring hydrogen in a metal melt | |
GB2074323A (en) | Apparatus for Detecting Hydrogen Cyanide Gas | |
GB2087567A (en) | Apparatus for monitoring partial pressure of gas in a flowing liquid |