JPH05190194A - Inside reforming type molten carbonate type fuel cell - Google Patents

Inside reforming type molten carbonate type fuel cell

Info

Publication number
JPH05190194A
JPH05190194A JP3276227A JP27622791A JPH05190194A JP H05190194 A JPH05190194 A JP H05190194A JP 3276227 A JP3276227 A JP 3276227A JP 27622791 A JP27622791 A JP 27622791A JP H05190194 A JPH05190194 A JP H05190194A
Authority
JP
Japan
Prior art keywords
zirconia
catalyst
carbonate
electrolyte
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3276227A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
健 斎藤
Kayo Taga
香代 多賀
彰 ▲さい▼合
Akira Saiai
Satoshi Sakurada
智 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3276227A priority Critical patent/JPH05190194A/en
Publication of JPH05190194A publication Critical patent/JPH05190194A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the cell performance and durability by using a platinum group element group regenerating catalyst loaded on a zirconia group carrier and a specific mixed alkaline carbonate electrolyte. CONSTITUTION:As a regenerating catalyst 7, is used a platinum group element group reforming catalyst loaded on a zirconia group carrier. As the zirconia carrier, is used a partially stabilized zirconia, and the yttria containing zirconia is preferable. As the platinum group element, are preferable rhodium and ruthenium. Further, as an electrolyte, is used a two-component substance consisting of lithium carbonate and sodium carbonate, or a mixed substance consisting of the above-described two-component substance as main component and other carbonate compounded. The groove of a fuel gas passge 6 of a regeneration reactor 1 is filled with the catalyst 7, and a Ni porous plate 2 impregnated with the electrolyte and an electrolyte holding plate 3 are laminated, and sealed by a sealing plate 4. Accordingly, performance can be maintained for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒の劣化を抑制し、
触媒を長寿命化して、電池性能及び耐用性を高めうる直
接内部改質式溶融炭酸塩型燃料電池に関するものであ
る。
FIELD OF THE INVENTION The present invention suppresses deterioration of a catalyst,
The present invention relates to a direct internal reforming molten carbonate fuel cell capable of extending the life of the catalyst and enhancing the cell performance and durability.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池の電解質としては
通常アルカリ金属炭酸塩の混合物が用いられている。す
なわち、炭酸リチウム‐炭酸カリウム、炭酸リチウム‐
炭酸ナトリウム、炭酸リチウム‐炭酸カリウム‐炭酸ナ
トリウムなどであり、特に炭酸リチウム‐炭酸カリウム
の二元系(モル比62:38)の混合物が最もよく検討
され、用いられている。
2. Description of the Related Art A mixture of alkali metal carbonates is usually used as an electrolyte for molten carbonate fuel cells. That is, lithium carbonate-potassium carbonate, lithium carbonate-
Among them, sodium carbonate, lithium carbonate-potassium carbonate-sodium carbonate, etc., and particularly, a binary mixture of lithium carbonate-potassium carbonate (molar ratio 62:38) is most studied and used.

【0003】一方、燃料電池に供給する燃料の改質方式
に関しては改質装置を燃料電池本体とは別に設ける外部
改質方式に代え、電池内部で燃料を改質する内部改質方
式がシステムの小型化、発電効率の向上などを期待でき
ることから近年注目され開発が進められている。この内
部改質方式は、陰極に開かれた燃料ガス室内に改質触媒
を配置する直接内部改質式と、上記燃料ガス室と隣接す
る位置に触媒室を設け、そこで改質されたガスを燃料ガ
ス室に導く間接内部改質式に分けられる。直接内部改質
式においては、触媒が多孔質の陰極層によって隔てられ
た電解質層の近傍に配置されるため、電解質であるアル
カリ炭酸塩によって汚染、被毒されやすいという問題が
ある。従って、直接内部改質式燃料電池の実用化にはこ
のアルカリ炭酸塩による触媒の劣化、活性低下を防ぎ、
電池の長寿命化を図ることが重要な課題である。
On the other hand, regarding the reforming method of the fuel supplied to the fuel cell, an internal reforming method of reforming the fuel inside the cell is used instead of the external reforming method in which the reforming device is provided separately from the fuel cell body. Since it can be expected to be downsized and power generation efficiency, it has been attracting attention in recent years and is under development. The internal reforming system is a direct internal reforming system in which a reforming catalyst is arranged in a fuel gas chamber opened to the cathode, and a catalyst chamber is provided in a position adjacent to the fuel gas chamber, and the reformed gas is supplied there. It is divided into an indirect internal reforming type that leads to the fuel gas chamber. In the direct internal reforming system, since the catalyst is arranged in the vicinity of the electrolyte layer separated by the porous cathode layer, there is a problem that the catalyst is easily contaminated and poisoned by the alkali carbonate as the electrolyte. Therefore, in order to put a direct internal reforming fuel cell into practical use, it is possible to prevent the catalyst from being deteriorated and the activity from being lowered by the alkali carbonate.
It is an important issue to extend the battery life.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来の直接内部改質式溶融炭酸塩型燃料電池のもつ欠点
を克服し、アルカリ炭酸塩から触媒を保護するため、特
別な保護材を設けたり、燃料ガス室の構造を改善するな
ど複雑な処置をすることなしに、触媒の劣化を抑制し、
触媒寿命を長くして電池性能及び耐用性に優れた直接内
部改質式溶融炭酸塩型燃料電池を提供することを目的と
してなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of the conventional direct internal reforming molten carbonate fuel cell and protects the catalyst from alkali carbonate, and therefore, a special protective material is used. Or suppressing the deterioration of the catalyst without complicated measures such as providing a structure or improving the structure of the fuel gas chamber,
The purpose of the present invention is to provide a direct internal reforming molten carbonate fuel cell having a long catalyst life and excellent cell performance and durability.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する直接内部改質式溶融炭酸塩型燃料電
池を開発するために種々研究を重ねた結果、電解質とし
て従来の炭酸リチウム‐炭酸カリウム混合系に代えて炭
酸リチウム‐炭酸ナトリウム混合系あるいはこれを主と
し、さらに他の炭酸塩を配合した混合系を用いるととも
に、電解質の影響を受ける改質触媒としてジルコニア系
担体に担持した白金属元素系触媒を採択し、かくして特
定の電解質と特定の改質触媒とを組み合わせて用いるこ
とにより、その目的を達成しうることを見出し、この知
見に基づいて本発明を完成するに至った。
The inventors of the present invention have conducted various researches to develop a direct internal reforming molten carbonate fuel cell having the above-mentioned preferable characteristics, and as a result, the conventional lithium carbonate was used as an electrolyte. -A mixture of lithium carbonate-sodium carbonate or a mixture system mainly containing this and another carbonate was used instead of the potassium carbonate mixed system, and it was supported on a zirconia-based carrier as a reforming catalyst affected by the electrolyte. It has been found that the object can be achieved by adopting a white metal element-based catalyst and thus using a specific electrolyte and a specific reforming catalyst in combination, and has completed the present invention based on this finding. ..

【0006】すなわち、本発明は、ジルコニア系担体に
担持した白金属元素系改質触媒を有するとともに、電解
質として炭酸リチウムと炭酸ナトリウムからなる2成分
系のもの又はこれを主とし、さらに他の炭酸塩を配合し
た混合系のものを用いることを特徴とする直接内部改質
式溶融炭酸塩型燃料電池を提供するものである。
That is, the present invention has a white metal element reforming catalyst supported on a zirconia-based carrier, and is mainly composed of a two-component system composed of lithium carbonate and sodium carbonate as an electrolyte or another carbonate. The present invention provides a direct internal reforming molten carbonate fuel cell characterized by using a mixed system containing a salt.

【0007】本発明に用いる電解質としては、炭酸リチ
ウムと炭酸ナトリウムからなる混合系又はこれを主と
し、さらに第3成分としての他の炭酸塩を配合してなる
混合系のものが用いられる。リチウムとナトリウムのモ
ル比(Li:Na)は通常60:40〜40:60、好
ましくは55:45〜45:55の範囲で選ばれる。
As the electrolyte used in the present invention, a mixed system composed of lithium carbonate and sodium carbonate, or a mixed system mainly containing this and another carbonate as a third component is used. The molar ratio of lithium to sodium (Li: Na) is usually selected in the range of 60:40 to 40:60, preferably 55:45 to 45:55.

【0008】本発明に用いる改質触媒の触媒活性成分と
しての白金属元素(以下、触媒金属という)には、ロジ
ウム、ルテニウム、パラジウム、白金又はこれらの混合
物が用いられ、特にロジウム又はルテニウムが好まし
い。この触媒金属の割合は特に限定されないが、触媒全
量すなわち触媒金属と担体の合計量に対して通常0.0
1〜10重量%、好ましくは0.1〜3重量%の範囲で
選ばれる。この割合が少なすぎると触媒活性が低く炭化
水素の改質が十分ではないし、また多すぎても使用量に
見合う改質効果が得られないので不経済である。
Rhodium, ruthenium, palladium, platinum or a mixture thereof is used as a white metal element (hereinafter referred to as a catalyst metal) as a catalytically active component of the reforming catalyst used in the present invention, and rhodium or ruthenium is particularly preferable. .. The ratio of the catalyst metal is not particularly limited, but is usually 0.0 with respect to the total amount of the catalyst, that is, the total amount of the catalyst metal and the carrier.
It is selected in the range of 1 to 10% by weight, preferably 0.1 to 3% by weight. If this ratio is too small, the catalytic activity is low and reforming of the hydrocarbon is not sufficient, and if it is too large, the reforming effect commensurate with the amount used cannot be obtained, which is uneconomical.

【0009】この触媒金属を担持させる担体はジルコニ
ア系担体あるいはジルコニア系担体成分に所定割合以下
のアルミナ系成分を含んだ混合系担体である。
The carrier on which the catalytic metal is supported is a zirconia-based carrier or a mixed carrier in which the zirconia-based carrier component contains an alumina-based component in a predetermined ratio or less.

【0010】ジルコニア系担体成分としては、例えば部
分安定化ジルコニア、安定化ジルコニアなどが挙げら
れ、特にイットリアを含有するジルコニアが有利に用い
られる。イットリア含有ジルコニアにおいて、イットリ
アの含有割合は0.5〜20モル%、好ましくは1.5
〜10モル%の範囲で選ばれる。この割合が0.5モル
%未満ではその含有効果が十分ではないし、また20モ
ル%を超えると結晶系の安定化が不十分となる。
Examples of the zirconia-based carrier component include partially stabilized zirconia and stabilized zirconia. Particularly, zirconia containing yttria is advantageously used. In the yttria-containing zirconia, the content ratio of yttria is 0.5 to 20 mol%, preferably 1.5.
It is selected in the range of 10 mol%. If this proportion is less than 0.5 mol%, the effect of inclusion is not sufficient, and if it exceeds 20 mol%, the stabilization of the crystal system becomes insufficient.

【0011】イットリアを含有するジルコニアを製造す
るには、例えば所定割合のイットリアとジルコニアの粉
末混合物を焼成する方法、イットリウム化合物とジルコ
ニウム化合物を用いた共沈法、加水分解法又はアルコキ
シド法などの方法により行われる。中でも有利には共沈
法、特にYCl3のようなイットリウムハライドとZr
OCl2のようなジルコニウムオキシハライドを用いた
共沈法が用いられる。
To produce zirconia containing yttria, for example, a method of firing a powder mixture of yttria and zirconia in a predetermined ratio, a coprecipitation method using a yttrium compound and a zirconium compound, a hydrolysis method or an alkoxide method is used. Done by. Of these, the coprecipitation method is preferred, particularly yttrium halide such as YCl 3 and Zr.
A coprecipitation method using zirconium oxyhalide such as OCl 2 is used.

【0012】前記混合系担体におけるアルミナ系成分
は、触媒担体の機械的強度を高めるとともに、高価なジ
ルコニア系担体の割合を、高活性、炭素生成の抑制効果
などのジルコニア系担体の触媒性能をそこなわない範囲
で減少させ、それにより触媒ひいては燃料電池全体のコ
ストダウンに寄与するものである。
The alumina-based component in the mixed carrier enhances the mechanical strength of the catalyst carrier, and the ratio of the expensive zirconia-based carrier to the catalytic performance of the zirconia-based carrier such as high activity and the effect of suppressing carbon formation. The amount is reduced within a range not touched, thereby contributing to the cost reduction of the catalyst and thus the fuel cell as a whole.

【0013】アルミナ系成分としてはアルミナ単独ある
いはアルミナに金属元素の酸化物及び半金属元素の酸化
物の中から選ばれた少なくとも1種を配合したものが用
いられる。上記金属元素としては、例えばMg、Ca、
Baなどのアルカリ土類金属、Ti、Cr、Mn、Fe
などが挙げられ、また半金属元素としては、例えばS
i、B、Pなどが挙げられる。
As the alumina-based component, alumina alone or a mixture of alumina with at least one selected from oxides of metal elements and oxides of metalloid elements is used. Examples of the metal element include Mg, Ca,
Alkaline earth metals such as Ba, Ti, Cr, Mn, Fe
Examples of the semi-metal element include S
i, B, P and the like can be mentioned.

【0014】アルミナ系成分の割合は担体全量に対し好
ましくは80重量%以下、より好ましくは70重量%以
下の範囲である。この割合が80重量%を超えると触媒
の改質特性及びコーキング抑制効果が低下する。
The proportion of the alumina component is preferably 80% by weight or less, more preferably 70% by weight or less, based on the total amount of the carrier. If this proportion exceeds 80% by weight, the reforming characteristics of the catalyst and the effect of suppressing coking are deteriorated.

【0015】本発明の好適な改質触媒としては、イット
リアを含有するジルコニア担体、又は該ジルコニア担体
にアルミナ系成分を配合した担体に触媒金属としてロジ
ウム、ルテニウム、パラジウム、白金又はこれらの混合
物を担持させたものであり、特に触媒金属としてはロジ
ウム又はルテニウムが最適である。
As a preferable reforming catalyst of the present invention, a zirconia carrier containing yttria, or a carrier prepared by blending the zirconia carrier with an alumina-based component is loaded with rhodium, ruthenium, palladium, platinum or a mixture thereof as a catalyst metal. The most suitable catalyst metal is rhodium or ruthenium.

【0016】触媒金属を担体に担持させるには慣用の方
法が用いられるが、通常は含浸法でよい。担体の形状は
特に制限されず、例えば円柱状、リング状、球状などが
挙げられるが、燃料電池の燃料ガス室内に配置するため
には大きさは0.5〜5mm、好ましくは1〜2mmの
範囲とするのがよい。
A conventional method is used for supporting the catalyst metal on the carrier, but an impregnation method is usually used. The shape of the carrier is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. The size of the carrier is 0.5 to 5 mm, preferably 1 to 2 mm for placement in the fuel gas chamber of the fuel cell. It is good to set the range.

【0017】触媒を用いた水蒸気改質反応は通常300
〜1000℃で行われるが、本発明に用いられる触媒は
反応温度700℃以下でもコーキングを生じにくいの
で、特に溶融炭酸塩型燃料電池の内部改質触媒として好
ましい。また、触媒による改質反応において、反応圧力
は、通常0.01〜50kg/cm2G、好ましくは
0.1〜30kg/cm2Gの範囲で選ばれる。水蒸気
と原料ガス中の炭素とのモル比(以下、S/Cという)
は反応にできるだけ余分の水蒸気を用いないのが経済的
に有利なので小さい方が好ましいが、一方S/Cを小さ
くしすぎるとコーキングを生じやすくなるので、S/C
は好ましくはコーキングの生じにくい1.2以上、より
好ましくは1.5以上である。
The steam reforming reaction using a catalyst is usually 300
It is carried out at ˜1000 ° C., but since the catalyst used in the present invention hardly causes coking even at a reaction temperature of 700 ° C. or lower, it is particularly preferable as an internal reforming catalyst for a molten carbonate fuel cell. In the reforming reaction with a catalyst, the reaction pressure is usually selected in the range of 0.01 to 50 kg / cm 2 G, preferably 0.1 to 30 kg / cm 2 G. Molar ratio of water vapor and carbon in the source gas (hereinafter referred to as S / C)
Is preferably as small as possible because it is economically advantageous not to use excess steam for the reaction, but on the other hand, if S / C is too small, coking tends to occur, so S / C
Is preferably 1.2 or more, more preferably 1.5 or more, in which caulking is less likely to occur.

【0018】本発明の触媒が有効に用いられる水蒸気改
質反応は特に限定されず、例えばLNG、LPGのよう
な軽質炭化水素含有ガス、ナフサや灯油のような石油留
分や、石炭液化油など主として炭化水素、特に分子量の
あまり大きくない炭化水素(C1〜C20程度)からなる
原料を水蒸気接触分解することにより、水素、一酸化炭
素、二酸化炭素、あるいはメタンを生成させる反応など
が挙げられる。
The steam reforming reaction in which the catalyst of the present invention is effectively used is not particularly limited. For example, light hydrocarbon-containing gas such as LNG and LPG, petroleum fraction such as naphtha and kerosene, coal liquefied oil and the like. Examples include a reaction in which hydrogen, carbon monoxide, carbon dioxide, or methane is produced by catalytically cracking a raw material mainly composed of a hydrocarbon, particularly a hydrocarbon having a relatively small molecular weight (about C 1 to C 20 ). ..

【0019】原料は炭化水素のみからなるのが好ましい
が、微量の異種成分を含有していてもよい。原料は、有
利には比重は0.80以下、好ましくは0.75以下
で、C/H重量比は6.5以下、好ましくは6.0以下
のものである。異種成分がイオウ化合物の場合、その含
有量の多い原料では触媒を劣化させる原因になるため、
水素化脱硫などにより好ましくは1ppm以下、より好
ましくは0.5ppm以下とするのが適当である。
The raw material preferably consists of only hydrocarbons, but may contain a trace amount of different components. The raw materials advantageously have a specific gravity of 0.80 or less, preferably 0.75 or less and a C / H weight ratio of 6.5 or less, preferably 6.0 or less. When the heterogeneous component is a sulfur compound, a raw material with a high content will cause deterioration of the catalyst.
It is preferably 1 ppm or less, more preferably 0.5 ppm or less, due to hydrodesulfurization.

【0020】本発明に用いられる水蒸気改質触媒は、活
性が高く、かつ水素の生成割合が高い上に、低いS/C
及び600〜700℃の燃料電池の作動温度範囲でもコ
ーキングを生じにくいという非常に優れた性質を有する
ものであるが、さらにまた、炭酸リチウム‐炭酸ナトリ
ウムを主とする電解質に対して優れた安定性を有し、電
解質蒸気の影響を受けやすい直接内部改質式燃料電池の
改質触媒として極めて有利である。
The steam reforming catalyst used in the present invention has a high activity, a high hydrogen production rate, and a low S / C ratio.
And has a very excellent property that coking hardly occurs even in the operating temperature range of a fuel cell of 600 to 700 ° C., and also has excellent stability against an electrolyte mainly composed of lithium carbonate-sodium carbonate. Therefore, it is extremely advantageous as a reforming catalyst for a direct internal reforming fuel cell that is easily affected by electrolyte vapor.

【0021】[0021]

【発明の効果】本発明の内部改質式燃料電池は、反応活
性が高く、コーキングを生成しにくい優れた改質触媒と
該触媒に対して汚染、劣化の影響を最少限にする特定の
混合アルカリ炭酸塩電解質との組合せにより、長期間に
わたり性能を維持することができ、耐用性を向上しうる
という顕著な効果を奏する。
INDUSTRIAL APPLICABILITY The internal reforming fuel cell of the present invention has an excellent reforming catalyst which has high reaction activity and hardly causes coking, and a specific mixture which minimizes the influence of pollution and deterioration on the catalyst. The combination with the alkali carbonate electrolyte has the remarkable effect that the performance can be maintained for a long period of time and the durability can be improved.

【0022】[0022]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0023】実施例 3モル%イットリアを含有するジルコニア粉末を2.5
mm径、2.5mm長さの円柱状に成形し、1000℃
で3時間焼成し担体を作成した。この担体に0.5重量
%のロジウムが担持されるように塩化ロジウム水溶液に
よる含浸処理を施し、100℃で3時間乾燥し触媒粒子
を得た。
Example 2 2.5 parts of zirconia powder containing 3 mol% yttria
Molded into a cylinder with a diameter of 2.5 mm and a length of 2.5 mm, 1000 ° C
It was baked for 3 hours to prepare a carrier. The carrier was impregnated with an aqueous rhodium chloride solution so that 0.5% by weight of rhodium was supported, and dried at 100 ° C. for 3 hours to obtain catalyst particles.

【0024】この触媒の水蒸気改質活性を10cm2
ステンレス製円盤面に燃料ガス通路溝を設けた単電池型
反応器を使用し、プロパンを改質原料として評価した。
The steam reforming activity of this catalyst was evaluated using propane as a reforming raw material by using a single cell type reactor in which a fuel gas passage groove was provided on a stainless steel disc surface of 10 cm 2 .

【0025】図1に改質反応器のガス流路に垂直方向の
縦断面の概略図を示す。すなわち、図1において、改質
触媒7は反応器1の燃料ガス流路6の溝に充填され、電
解質の炭酸リチウム‐炭酸ナトリウム(Li/Naモル
比=52/48)を予め含浸したニッケル多孔板2、電
解質保持板3が積層され、ステンレス製封止板4で封止
されている。
FIG. 1 shows a schematic view of a vertical cross section perpendicular to the gas flow path of the reforming reactor. That is, in FIG. 1, the reforming catalyst 7 is filled in the groove of the fuel gas flow path 6 of the reactor 1 and is preliminarily impregnated with lithium carbonate-sodium carbonate (Li / Na molar ratio = 52/48) as an electrolyte. The plate 2 and the electrolyte holding plate 3 are stacked and sealed with a stainless steel sealing plate 4.

【0026】反応器を昇温する過程で最初に加熱空気を
供給し、次いで加熱H2、CO2、H2O混合ガスに切換
え、燃料電池の作動温度である650℃の定常状態に達
したのち、改質反応を開始した。プロパン、水蒸気及び
窒素ガスをそれぞれ2.5、21、48ガス‐ml/m
inの割合で反応器に供給し、改質反応を行った。供給
ガスのS/Cは2.8、空間速度GHSVは1020h
−1であった。図2に反応経過時間とプロパンの反応率
(%)との関係をグラフで示す。
In the process of raising the temperature of the reactor, first, heated air was supplied, and then heated H 2 , CO 2 , H 2 O mixed gas was switched to reach a steady state of 650 ° C. which is the operating temperature of the fuel cell. After that, the reforming reaction was started. Propane, water vapor and nitrogen gas are 2.5, 21, 48 gas-ml / m, respectively
The reforming reaction was carried out by supplying the reactor at an in ratio. S / C of supply gas is 2.8, space velocity GHSV is 1020h
It was -1 . FIG. 2 is a graph showing the relationship between the reaction elapsed time and the propane reaction rate (%).

【0027】参考例 電解質含浸ニッケル多孔板2に代えて、電解質フリー
の、換言すれば電解質が存在しないニッケル多孔板を用
いたこと以外は実施例と同様にして改質反応を行った結
果をブランク試験として図2に示す。
Reference Example The result of the reforming reaction was carried out in the same manner as in the example except that an electrolyte-free nickel porous plate without an electrolyte was used instead of the electrolyte-impregnated nickel porous plate 2. The test is shown in FIG.

【0028】比較例 電解質を炭酸リチウム‐炭酸カリウム(Li/Kモル比
=62/38)に代えたこと以外は実施例と同様にして
改質反応を行った結果を図2に示す。
Comparative Example FIG. 2 shows the results of the reforming reaction carried out in the same manner as in the Example except that the electrolyte was changed to lithium carbonate-potassium carbonate (Li / K molar ratio = 62/38).

【0029】これより、イットリア含有ジルコニア担体
に担持したロジウム触媒を使用し、炭酸リチウム‐炭酸
ナトリウム二元系電解質を用いた本発明の実施例では、
反応経過時間400時間以後も反応率は約98%とほぼ
一定であり、ブランク試験との差は約2%と極めて小さ
いのに対し、他の従来の炭酸リチウム‐炭酸カリウム系
電解質を用いた比較例では反応率は反応経過時間ととも
に大きく低下し、反応経過時間300時間以後の反応率
は、90%にも達しないことから、本発明の効果が特有
のものであることが分る。
Therefore, in the embodiment of the present invention using a rhodium catalyst supported on a yttria-containing zirconia carrier and using a lithium carbonate-sodium carbonate binary electrolyte,
The reaction rate is almost constant at about 98% even after the reaction time of 400 hours, and the difference from the blank test is about 2%, which is extremely small, whereas the comparison using other conventional lithium carbonate-potassium carbonate electrolytes In the examples, the reaction rate greatly decreases with the reaction elapsed time, and the reaction rate after the reaction elapsed time of 300 hours does not reach 90%, which shows that the effect of the present invention is unique.

【図面の簡単な説明】[Brief description of drawings]

【図1】 単電池型反応器の説明図。FIG. 1 is an explanatory view of a single cell type reactor.

【図2】 単電池型改質反応における反応経過時間とプ
ロパン反応率との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a reaction elapsed time and a propane reaction rate in a single cell type reforming reaction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲さい▼合 彰 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 櫻田 智 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Sai ▼ Akira Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Tonen Co., Ltd. Research Institute (72) Satoshi Sakurada Oi-cho, Iruma-gun, Saitama Nishitsurugaoka 1-3-1, Tonen Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニア系担体に担持した白金属元素
系改質触媒を有するとともに、電解質として炭酸リチウ
ムと炭酸ナトリウムからなる2成分系のもの又はこれを
主とし、さらに他の炭酸塩を配合した混合系のものを用
いることを特徴とする直接内部改質式溶融炭酸塩型燃料
電池。
1. A zirconia-based carrier having a white metal element-based reforming catalyst and a two-component system comprising lithium carbonate and sodium carbonate as an electrolyte, or mainly containing this, and further containing another carbonate. A direct internal reforming molten carbonate fuel cell characterized by using a mixed system.
JP3276227A 1991-09-30 1991-09-30 Inside reforming type molten carbonate type fuel cell Pending JPH05190194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3276227A JPH05190194A (en) 1991-09-30 1991-09-30 Inside reforming type molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3276227A JPH05190194A (en) 1991-09-30 1991-09-30 Inside reforming type molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH05190194A true JPH05190194A (en) 1993-07-30

Family

ID=17566467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3276227A Pending JPH05190194A (en) 1991-09-30 1991-09-30 Inside reforming type molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH05190194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806346B2 (en) 2014-07-07 2017-10-31 Korea Institute Of Science And Technology Direct reforming catalyst for molten carbonate fuel cells, method for preparing the same and method for improving long-term stability thereof by wettability control on molten carbonate electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806346B2 (en) 2014-07-07 2017-10-31 Korea Institute Of Science And Technology Direct reforming catalyst for molten carbonate fuel cells, method for preparing the same and method for improving long-term stability thereof by wettability control on molten carbonate electrolyte

Similar Documents

Publication Publication Date Title
US8343456B2 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
US6361757B1 (en) Catalyst for manufacturing hydrogen or synthesis gas and manufacturing method of hydrogen or synthesis gas
JP2812486B2 (en) Hydrocarbon steam reforming method
EP0414573B1 (en) Steam reforming catalyst for hydrocarbon and method for manufacturing the same
KR100692411B1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
US20070167323A1 (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPH04281845A (en) Catalyst for reforming of high temperature steam by hydrocarbon
US4088608A (en) Catalysts for reforming hydrocarbon fuels
US20050153835A1 (en) Modification catalyst composition
US20070197377A1 (en) Reforming catalyst composition
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
US7585810B2 (en) Method for partial oxidation of hydrocarbons, catalyst member therefor and method of manufacture
TWI611839B (en) Catalyst applied in hydrogen production by low temperature partial oxidation of light hydrocarbon
JPH06104002A (en) Internal reform type fused carbonate fuel cell
JPH05168924A (en) Steam reforming catalyst
JPH05190194A (en) Inside reforming type molten carbonate type fuel cell
EP1852181A1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP2625170B2 (en) Steam reforming catalyst for fuel cells
JP4418063B2 (en) Method for producing hydrogen
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JPH06339633A (en) Steam reforming catalyst
JP2001172651A (en) Fuel oil for fuel cell