JPH05190062A - Electrode for vacuum circuit-breaker - Google Patents

Electrode for vacuum circuit-breaker

Info

Publication number
JPH05190062A
JPH05190062A JP545792A JP545792A JPH05190062A JP H05190062 A JPH05190062 A JP H05190062A JP 545792 A JP545792 A JP 545792A JP 545792 A JP545792 A JP 545792A JP H05190062 A JPH05190062 A JP H05190062A
Authority
JP
Japan
Prior art keywords
coil
electrode
magnetic field
current
axial magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP545792A
Other languages
Japanese (ja)
Inventor
Takashi Sato
隆 佐藤
Koji Suzuki
光二 鈴木
Takeshi Hashimoto
斌 橋本
Shunkichi Endo
俊吉 遠藤
Yukio Kurosawa
幸夫 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP545792A priority Critical patent/JPH05190062A/en
Publication of JPH05190062A publication Critical patent/JPH05190062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6644Contacts; Arc-extinguishing means, e.g. arcing rings having coil-like electrical connections between contact rod and the proper contact

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve breaking performance without increasing an electrode diameter by unifying axial magnetic field distribution. CONSTITUTION:An electrode is composed of an main electrode 11, a first coil 10a generating an axial magnetic field, a second coil 10b generating an axial magnetic field in the reversed direction to the first coil 10a and being provided inside the first coil 10a, a base electrode 13 and a rod 7. The axial magnetic field distribution can be uniformalized by a method wherein a current flowing at the time of current breaking is splitted into the first coil 10a and the second coil 10b, and the axial magnetic field generated by the second coil 10b weakens the axial magnetic field generated by the first coil 10a in the central part while conversely intensity it in the peripheral part. An arc can be uniformly dispersed on the electrode surface and the breaking performance can be improved without increasing an electrode diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空遮断器の電極、特
に軸方向磁界を発生する円筒状コイル電極の構造に係
り、特に、コイル電極により発生する軸方向磁界の分布
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an electrode of a vacuum circuit breaker, particularly a cylindrical coil electrode for generating an axial magnetic field, and more particularly to improvement of distribution of an axial magnetic field generated by the coil electrode.

【0002】[0002]

【従来の技術】従来の軸方向磁界式真空遮断器を、例え
ば、特公昭62−103928号公報に示されている真空遮断器
を例に図15ないし図16を用いて説明する。
2. Description of the Related Art A conventional axial magnetic field type vacuum circuit breaker will be described with reference to FIGS. 15 to 16 by taking the vacuum circuit breaker disclosed in Japanese Patent Publication No. 62-103928 as an example.

【0003】真空遮断器は図15に示すように、絶縁筒
1と端板2からなる真空容器3、真空容器内3に対応配
置された固定電極4と可動電極5、これらの電極裏面か
ら真空容器3の外部へ伸びるロッド7および8、気密を
保ちながら可動側を操作するためのベローズ8,絶縁筒
3の内縁面を汚損から保護するアークシールド22から
構成される。
As shown in FIG. 15, the vacuum circuit breaker includes a vacuum container 3 consisting of an insulating cylinder 1 and an end plate 2, a fixed electrode 4 and a movable electrode 5 arranged in the vacuum container 3, and a vacuum from the back surface of these electrodes. It comprises rods 7 and 8 extending to the outside of the container 3, a bellows 8 for operating the movable side while maintaining airtightness, and an arc shield 22 for protecting the inner edge surface of the insulating cylinder 3 from stains.

【0004】電流を遮断するには操作器によりロッド7
を移動すると、主電極11,コイル電極10,スペーサ
12,ベース電極13からなる可動電極5が同様の固定
電極4から開離し、両電極間にアーク9が発生する。こ
のとき図16に示すように主電極11からコイル電極上
部突出部15を経てコイル電極10に電流が流れ込み、
コイル電極下部突出部14を通じてベース電極13に電
流が流れ出し、コイル電極10を流れる電流23によっ
て磁界Hが発生する。この磁界Hをアーク9に印加する
と、アークは糸状のアークに分散して消弧する。
To cut off the electric current, the rod 7 is operated by an operating device.
When the electrode is moved, the movable electrode 5 including the main electrode 11, the coil electrode 10, the spacer 12 and the base electrode 13 is separated from the fixed electrode 4 similarly, and an arc 9 is generated between both electrodes. At this time, as shown in FIG. 16, a current flows from the main electrode 11 to the coil electrode 10 through the coil electrode upper protruding portion 15,
A current flows out to the base electrode 13 through the coil electrode lower protruding portion 14, and a magnetic field H is generated by the current 23 flowing through the coil electrode 10. When this magnetic field H is applied to the arc 9, the arc is dispersed into a filament-shaped arc and extinguished.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
発生する軸方向磁界を図13ないし図14を用いて説明
する。図13は軸方向磁界発生を説明するための電極の
縦断面模式図で、図16の電極の斜視図には示さなかっ
た補強板19およびコイル連結リブ21も示してある。
図に示すように、従来技術では円筒状のコイル電極10
によって単一極性の磁界を発生させるため、その軸方向
磁界20の分布は図14に示すように軸中心付近が最大
となり軸中心から離れるほど低下するという偏った分布
になる。その結果、アークを電極間に均一に分散させる
ことができず、遮断性能を向上するには電極直径を大き
くする必要があった。
The axial magnetic field generated in the above conventional technique will be described with reference to FIGS. FIG. 13 is a schematic vertical sectional view of an electrode for explaining the generation of an axial magnetic field, and also shows a reinforcing plate 19 and a coil connecting rib 21 which are not shown in the perspective view of the electrode of FIG.
As shown in the figure, in the conventional technique, a cylindrical coil electrode 10 is used.
Since a magnetic field having a single polarity is generated by the above, the distribution of the magnetic field 20 in the axial direction becomes a biased distribution in which the maximum in the vicinity of the axial center and decreases as the distance from the axial center decreases, as shown in FIG. As a result, the arc cannot be evenly distributed between the electrodes, and the electrode diameter needs to be increased to improve the breaking performance.

【0006】本発明の目的は、軸方向磁界分布を均一に
することによってアークを電極間に一様に拡散させ、電
極直径を増大することなしに遮断性能を向上させること
にある。
It is an object of the present invention to evenly distribute the arc between the electrodes by making the axial magnetic field distribution uniform and to improve the breaking performance without increasing the electrode diameter.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、円筒状コイル電極の内側に該円筒状コイル電極とは
逆方向の軸方向磁界を発生する第2の円筒状コイル電極
を備えることによって、電極間に印加する軸方向磁界の
分布を均一にするものである。
In order to achieve the above object, a second cylindrical coil electrode for generating an axial magnetic field in a direction opposite to that of the cylindrical coil electrode is provided inside the cylindrical coil electrode. This makes the distribution of the axial magnetic field applied between the electrodes uniform.

【0008】[0008]

【作用】本発明において、第2の円筒状コイル電極によ
って発生する磁界は第1の円筒状コイル電極によって発
生する磁界を軸中央付近では弱め、かつ外周付近では強
めることによって軸方向磁界の分布を均一にし、その結
果、アークを電極間に均一に拡散することができるた
め、電極直径を増大しなくても遮断性能が向上する。
In the present invention, the magnetic field generated by the second cylindrical coil electrode weakens the magnetic field generated by the first cylindrical coil electrode near the center of the axis and strengthens it near the outer circumference to thereby distribute the axial magnetic field. The homogenization results in an even diffusion of the arc between the electrodes, thus improving the breaking performance without increasing the electrode diameter.

【0009】[0009]

【実施例】以下、本発明の一実施例を添付図面について
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は本発明の一実施例を示す電極の斜視
図である。主電極11の裏面に取り付けられ軸方向磁界
を発生するコイル電極は、外周部付近の第1コイル10
aとその内側に設けられた第2コイル10bから構成さ
れ、各コイル電極は第1コイル〜第2コイル連結リブ1
7および第2コイル連結リブ18により連結されてい
る。
FIG. 1 is a perspective view of an electrode showing an embodiment of the present invention. The coil electrode, which is attached to the back surface of the main electrode 11 and generates an axial magnetic field, is the first coil 10 near the outer peripheral portion.
a and a second coil 10b provided inside thereof, each coil electrode includes a first coil to a second coil connecting rib 1
7 and the second coil connecting rib 18 are connected.

【0011】電流を遮断するために電極を開極してアー
クが発生したときに、第1コイル10aにはベース電極
13から第1コイル下部突出部14aを通じて電流9a
が流れ込み、コイル電極上部突出部15を通じて主電極
11に流れ出す。また第2コイル10bにはベース電極
13から第2コイル下部突出部14bを通じて電流9b
が流れ込み、コイル電極上部突出部15を通じて主電極
11に流れ出す。
When an electrode is opened to cut off an electric current and an arc is generated, a current 9a is applied to the first coil 10a from the base electrode 13 through the first coil lower protrusion 14a.
Flows into the main electrode 11 through the coil electrode upper protrusion 15. In addition, a current 9b is applied to the second coil 10b from the base electrode 13 through the second coil lower protrusion 14b.
Flows into the main electrode 11 through the coil electrode upper protrusion 15.

【0012】これら第1コイルと第2コイルに流れる電
流9a、9bは複数の円弧状電流通路を通じて流れるた
め、等価的に1ターンの電流を形成してそれぞれ逆向き
の軸方向磁界を発生する。
Since the currents 9a and 9b flowing through the first coil and the second coil flow through a plurality of arcuate current paths, they equivalently form one turn of current and generate opposite axial magnetic fields.

【0013】図2は図1に示す本発明の一実施例のコイ
ル電流を示すための縦断面模式図であり、図1に示さな
い補強板19も示してある。第1コイル10aと第2コ
イル10bにはそれぞれ逆方向の電流9a,9bが流れ
ている。
FIG. 2 is a schematic vertical sectional view showing the coil current of the embodiment of the present invention shown in FIG. 1, and also shows the reinforcing plate 19 not shown in FIG. Currents 9a and 9b in opposite directions respectively flow in the first coil 10a and the second coil 10b.

【0014】図3は図1に示す本発明の一実施例の軸方
向磁界強度分布である。第2コイルにより発生した軸方
向磁界20bは、第1コイルにより発生した軸方向磁界
20aを軸中心部付近では弱め逆に周辺部では強めるた
め、両者を合成した軸方向磁界は第1コイル10aのみ
の場合に発生する軸方向磁界20aの分布に比べて均一
になり、その結果、アークが主電極表面に均一に分散す
るため、電極直径を増大しなくても電流遮断性能を向上
させることができる。
FIG. 3 is an axial magnetic field strength distribution of the embodiment of the present invention shown in FIG. The axial magnetic field 20b generated by the second coil is the axial magnetic field generated by the first coil.
Since 20a is weakened near the center of the axis and strengthened in the peripheral part on the contrary, the axial magnetic field obtained by combining the two becomes more uniform than the distribution of the axial magnetic field 20a generated in the case of only the first coil 10a. Since the arc is uniformly dispersed on the surface of the main electrode, the current interruption performance can be improved without increasing the electrode diameter.

【0015】図4は図1に示す本発明の一実施例の各コ
イルに流れる電流の経路を示すための縦断面模式図であ
る。スペーサ12は例えばステンレス等の高抵抗材を使
用するため、ロッドを流れる電流の大部分はコイル電極
へ流れ込む。すなわち、ロッド7を流れる電流は、ベー
ス電極13から第1コイル下部突出部14aを通じて第
1コイル10aに流れる電流9aと第2コイル電極下部
突出部14bを通じて第2コイル10bに流れる電流9
bに分流し、コイル電極上部突出部15を経て主電極1
1に合流しながら流れ込んで、夫々のコイルで軸方向磁
界を発生する。本実施例では第2コイル下部突出部と第
2コイルの構造を最適にすることで第2コイルを流れる
電流と第2コイルによって発生する軸方向磁界を制御
し、軸方向磁界分布を均一にする。
FIG. 4 is a schematic vertical cross-sectional view showing a path of a current flowing through each coil of the embodiment of the present invention shown in FIG. Since the spacer 12 is made of a high resistance material such as stainless steel, most of the current flowing through the rod flows into the coil electrode. That is, the current flowing through the rod 7 is the current 9a flowing from the base electrode 13 through the first coil lower protrusion 14a to the first coil 10a and the current 9a flowing through the second coil electrode lower protrusion 14b to the second coil 10b.
b to the main electrode 1 through the coil electrode upper protruding portion 15.
1 merges with each other and flows in to generate an axial magnetic field in each coil. In the present embodiment, by optimizing the structures of the second coil lower protrusion and the second coil, the current flowing through the second coil and the axial magnetic field generated by the second coil are controlled, and the axial magnetic field distribution is made uniform. ..

【0016】図5と図6は図1に示す本発明の一実施例
において第2コイル10bを流れる電流9bを制御する
実施例である。図5は例えばステンレス等の高抵抗材を
使用したスペーサにフランジ部を設け、このフランジ部
を介して電流を流して、第2コイル10bに通じる電流
9bを制御するものであり、フランジ部の厚さによって
電流値を制御することができるという特徴がある。図6
は第2コイル下部突出部14bとベース電極13の間に
ギャップを設けたもので、第2コイルを流れる電流9b
はベース電極13からスペーサ12を介して第2コイル
10bに流れ込む。本実施例ではベース電極13と第2
コイル下部突出部14bのギャップを変えることにより
図5と同様に第2コイルを流れる電流を制御することが
できる。ところで、図1に示した本発明の実施例のコイ
ル電極は、第2コイルを分割するスリットと第1コイル
が半径方向に交錯する構成になっているため、第2コイ
ルのスリットを半径方向からフライス加工することがで
きないという工作上の問題がある。この点を改善したの
が図7に斜視図で示した本発明の他の実施例である。本
実施例は、第1コイルを分割するスリットと第2コイル
を分割するスリットを同時に半径方向からフライス加工
することができため、加工作業行程数を低減できるとい
う特徴がある。図8は図7の斜視図に示した実施例のコ
イルに流れる電流経路を説明するための縦断面図であ
る。ロッド7を流れる電流はベース電極13から第1コ
イル下部突出部14bを経て第1コイル10bに流れ込
み、第1コイル〜第2コイル連結リブ17を経て第1コ
イル10aに流れ込んだ後、第1コイル上部突出部15
aを経て主電極11に達する。本実施例では第2コイル
の構造を最適にして第2コイルで発生する磁界を制御
し、軸方向磁界分布を均一にする。
5 and 6 show an embodiment for controlling the current 9b flowing through the second coil 10b in the embodiment of the present invention shown in FIG. FIG. 5 shows a structure in which a flange portion is provided on a spacer made of a high resistance material such as stainless steel, and a current is passed through the flange portion to control the current 9b flowing to the second coil 10b. There is a feature that the current value can be controlled depending on the temperature. Figure 6
Is a gap provided between the lower protrusion 14b of the second coil and the base electrode 13, and the current 9b flowing through the second coil is
Flows from the base electrode 13 into the second coil 10b through the spacer 12. In this embodiment, the base electrode 13 and the second
By changing the gap of the coil lower protrusion 14b, the current flowing through the second coil can be controlled as in the case of FIG. By the way, in the coil electrode of the embodiment of the present invention shown in FIG. 1, since the slit for dividing the second coil and the first coil intersect in the radial direction, the slit of the second coil is changed in the radial direction. There is a working problem that it cannot be milled. This point is improved by another embodiment of the present invention shown in a perspective view in FIG. The present embodiment is characterized in that the slits for dividing the first coil and the slits for dividing the second coil can be milled at the same time in the radial direction, so that the number of working steps can be reduced. FIG. 8 is a vertical cross-sectional view for explaining a current path flowing through the coil of the embodiment shown in the perspective view of FIG. The current flowing through the rod 7 flows from the base electrode 13 into the first coil 10b through the first coil lower protruding portion 14b, into the first coil 10a through the first coil to second coil connecting ribs 17, and then the first coil. Upper protrusion 15
The main electrode 11 is reached via a. In the present embodiment, the structure of the second coil is optimized to control the magnetic field generated in the second coil and make the axial magnetic field distribution uniform.

【0017】次に、図9に本発明のさらに他の実施例の
斜視図を示す。本実施例は図7に示した実施例の通電能
力を向上するために、第1コイル10aに下部突出部1
4aを設けたもので、第1コイルと第2コイルを夫々分
割するスリットが半径方向に直線的に配置してあるた
め、両スリットを半径方向から一度にフライス加工する
ことができ、また、各コイルが下部突出部14a,14
bと上部突出部15a,15bでベース電極13と主電
極11に接続されるため、機械的強度にも優れるという
特長がある。図10は図9に示した実施例のコイルを流
れる電流の経路を説明するための縦断面模式図である。
ロッド7を流れる電流はベース電極13から第1コイル
下部突出部14aを経て第1コイル10aを流れ第1コ
イル上部突出部15aから主電極11に流れる電流9a
と、第2コイル下部突出部14bを経て第2コイル10
bをながれ第2コイル上部突出部15bから主電極11
に流れる電流9bに分流し、夫々のコイルで軸方向磁界
を発生する。図中に示した第1コイル〜第2コイル連結
リブ17には第1コイル側電位と第2コイル側電位の差
に応じて電流が流れるが、このリブを円弧状のコイルの
中点付近に位置させれば電位差が無くなるためリブ17
にはほとんど電流が流れなくなり、電気的にはリブ17
は省略して考えることができる。
Next, FIG. 9 shows a perspective view of still another embodiment of the present invention. In this embodiment, in order to improve the current carrying capacity of the embodiment shown in FIG. 7, the lower coil 1a is attached to the first coil 10a.
4a is provided, and the slits that divide the first coil and the second coil are arranged linearly in the radial direction, so that both slits can be milled at once from the radial direction. The coil has lower protrusions 14a, 14
Since it is connected to the base electrode 13 and the main electrode 11 by b and the upper protrusions 15a and 15b, it has an advantage of being excellent in mechanical strength. FIG. 10 is a schematic vertical sectional view for explaining a path of a current flowing through the coil of the embodiment shown in FIG.
The current flowing through the rod 7 flows from the base electrode 13 through the first coil lower protruding portion 14a through the first coil 10a and the current 9a flowing from the first coil upper protruding portion 15a into the main electrode 11.
And the second coil 10 through the second coil lower protruding portion 14b.
b from the second coil upper protrusion 15b to the main electrode 11
The current is diverted to the current 9b, and an axial magnetic field is generated by each coil. A current flows through the first coil to second coil connecting rib 17 shown in the figure in accordance with the difference between the first coil side potential and the second coil side potential. When positioned, the rib 17 eliminates the potential difference.
Almost no current flows in the
Can be omitted.

【0018】図11と図12は図9に示す実施例におい
て第2コイル10bを流れる電流9bを制御する一つの
実施例である。図11は、例えば、ステンレス等の高抵
抗材を使用した補強板を第2コイル10bと主電極11
の間に挿入し、この補強板19を介して電流を流して、
第2コイル10bに通ずる電流9bを制御するものであ
り、補強板19の厚さによって電流値を制御することが
できるという特長がある。図12は第2コイル下部突出
部14bとベース電極13の間にギャップを設けたもの
で、第2コイルを流れる電流9bはベース電極13から
スペーサ12を介して第2コイル10bに流れ込む。本
実施例ではベース電極13と第2コイル電極下部突出部
14bのギャップを変えることにより図11に示す実施
例と同様に第2コイルを流れる電流を制御することがで
きる。また、図5に示すようにスペーサ12にフランジ
部を設け、このフランジ部を介して電流を流すことによ
っても同様に第2コイル10bを流れる電流を制御し、
すなわち、第2コイル10bによって発生する軸方向磁
界を制御することができる。
11 and 12 show one embodiment for controlling the current 9b flowing through the second coil 10b in the embodiment shown in FIG. In FIG. 11, for example, a reinforcing plate made of a high resistance material such as stainless steel is used as the second coil 10b and the main electrode 11.
Inserted between them, and an electric current is passed through this reinforcing plate 19,
It controls the current 9b passing through the second coil 10b, and has a feature that the current value can be controlled by the thickness of the reinforcing plate 19. In FIG. 12, a gap is provided between the second coil lower protruding portion 14b and the base electrode 13, and the current 9b flowing through the second coil flows from the base electrode 13 into the second coil 10b through the spacer 12. In this embodiment, by changing the gap between the base electrode 13 and the second coil electrode lower protrusion 14b, the current flowing through the second coil can be controlled as in the embodiment shown in FIG. Also, as shown in FIG. 5, a spacer 12 is provided with a flange portion, and the current flowing through the second coil 10b is similarly controlled by causing a current to flow through the flange portion,
That is, the axial magnetic field generated by the second coil 10b can be controlled.

【0019】[0019]

【発明の効果】本発明は、軸方向磁界を発生する第1の
コイルとその内側に設けた第1のコイルとは逆方向の軸
方向磁界を発生するコイルから構成される。そのため、
電流遮断時に電極を流れる電流は第1コイル電極とその
内側のコイル電極に分流し、第1コイル電極の内側のコ
イルによって発生した軸方向磁界が第1のコイル電極に
よって発生した軸方向磁界を中央部では弱め逆に周辺部
では強めることによって軸方向磁界分布を均一にするこ
とができる。
The present invention comprises a first coil for generating an axial magnetic field and a coil provided inside thereof for generating an axial magnetic field in the opposite direction. for that reason,
The current flowing through the electrode when the current is cut off is divided into the first coil electrode and the coil electrode inside the first coil electrode, and the axial magnetic field generated by the coil inside the first coil electrode is centered on the axial magnetic field generated by the first coil electrode. The magnetic field distribution in the axial direction can be made uniform by weakening the strength in the portion and strengthening it in the peripheral portion.

【0020】これより、アークを電極表面に均一に分散
させることができるため、電極直径を増大することなく
遮断性能を向上することができるという効果がある。
As a result, since the arc can be uniformly dispersed on the electrode surface, there is an effect that the breaking performance can be improved without increasing the electrode diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す電極の斜視図。FIG. 1 is a perspective view of an electrode showing an embodiment of the present invention.

【図2】図1の実施例のコイル電流を説明するための縦
断面図。
FIG. 2 is a vertical sectional view for explaining a coil current of the embodiment of FIG.

【図3】図1の実施例の軸方向磁界分布図。3 is an axial magnetic field distribution diagram of the embodiment of FIG.

【図4】図1の実施例の電流経路を説明するための縦断
面図。
FIG. 4 is a vertical sectional view for explaining a current path of the embodiment of FIG.

【図5】図1の実施例の第2コイル電極を流れる電流を
制御する方法の一例の縦断面図。
5 is a vertical cross-sectional view of an example of a method of controlling the current flowing through the second coil electrode of the embodiment of FIG.

【図6】図1の実施例の第2コイルを流れる電流を制御
する方法の他の一例の縦断面図。
6 is a vertical cross-sectional view of another example of the method for controlling the current flowing through the second coil of the embodiment of FIG.

【図7】本発明の他の実施例を示す電極の斜視図。FIG. 7 is a perspective view of an electrode showing another embodiment of the present invention.

【図8】図7に示す実施例の電流経路を説明するための
縦断面図。
8 is a vertical sectional view for explaining a current path of the embodiment shown in FIG.

【図9】本発明のさらに他の実施例を示す電極の斜視
図。
FIG. 9 is a perspective view of an electrode showing still another embodiment of the present invention.

【図10】図9に示す実施例の電流経路を説明するため
の縦断面図。
10 is a vertical cross-sectional view for explaining a current path of the embodiment shown in FIG.

【図11】図9の実施例の第2コイルを流れる電流を制
御する方法の一例の縦断面図。
11 is a vertical cross-sectional view of an example of a method of controlling the current flowing through the second coil of the embodiment of FIG.

【図12】図9の実施例の第2コイルを流れる電流を制
御する方法の他の一例の縦断面図。
12 is a vertical cross-sectional view of another example of the method for controlling the current flowing through the second coil of the embodiment of FIG.

【図13】従来のコイル電流を説明するための縦断面
図。
FIG. 13 is a vertical sectional view for explaining a conventional coil current.

【図14】従来の軸方向磁界分布図。FIG. 14 is a conventional axial magnetic field distribution diagram.

【図15】従来の電極の実施例の真空遮断器の縦断面
図。
FIG. 15 is a vertical cross-sectional view of a vacuum circuit breaker of a conventional electrode embodiment.

【図16】従来の電極の斜視図。FIG. 16 is a perspective view of a conventional electrode.

【符号の説明】[Explanation of symbols]

7…ロッド、10a…第1コイル、10b…第2コイ
ル、11…主電極、13…ベース電極。
7 ... Rod, 10a ... 1st coil, 10b ... 2nd coil, 11 ... Main electrode, 13 ... Base electrode.

フロントページの続き (72)発明者 遠藤 俊吉 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 黒沢 幸夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Front Page Continuation (72) Inventor Shunkichi Endo 4026 Kuji-machi, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Inc. (72) Inventor Yukio Kurosawa 4026 Kuji-cho, Hitachi City, Ibaraki Institute Hitachi Research Laboratory, Hitachi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空容器内に配置された接離自在な少なく
とも一対の主電極と、前記主電極の裏面より前記真空容
器外に伸びるロッドと、少なくとも一方の前記主電極の
裏面と前記ロッドとの間に複数の円弧状電気通路に分割
された円筒状コイル電極を備え、前記円弧状電気通路の
一方端は前記主電極に他方は前記ロッドに電気的に接続
され、前記円弧状電気通路を流れる電流により軸方向磁
界を発生する電極において、前記円筒状コイル電極の内
側に少なくとも一つのコイル電極を備えることを特徴と
する真空遮断器用電極。
1. At least a pair of main electrodes that are arranged in a vacuum container and are freely contactable and separable, a rod extending from the back surface of the main electrode to the outside of the vacuum container, a back surface of at least one of the main electrodes, and the rod. A cylindrical coil electrode divided into a plurality of arc-shaped electric passages between, one end of the arc-shaped electric passage is electrically connected to the main electrode and the other is electrically connected to the rod, the arc-shaped electric passage An electrode for generating a magnetic field in an axial direction by a flowing current, wherein at least one coil electrode is provided inside the cylindrical coil electrode.
【請求項2】請求項1において、前記円筒状コイル電極
と円筒状コイルの内側に設けられたコイル電極がリブに
よって連結されている真空遮断器用電極。
2. The vacuum circuit breaker electrode according to claim 1, wherein the cylindrical coil electrode and the coil electrode provided inside the cylindrical coil are connected by a rib.
【請求項3】請求項1において、高抵抗材を介してコイ
ル電極に電流を通じることにより、前記コイル電極が発
生する軸方向磁界を制御するコイル電極の電流制御方
法。
3. The current control method for a coil electrode according to claim 1, wherein an axial magnetic field generated by the coil electrode is controlled by passing a current through the coil electrode through a high resistance material.
JP545792A 1992-01-16 1992-01-16 Electrode for vacuum circuit-breaker Pending JPH05190062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP545792A JPH05190062A (en) 1992-01-16 1992-01-16 Electrode for vacuum circuit-breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP545792A JPH05190062A (en) 1992-01-16 1992-01-16 Electrode for vacuum circuit-breaker

Publications (1)

Publication Number Publication Date
JPH05190062A true JPH05190062A (en) 1993-07-30

Family

ID=11611756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP545792A Pending JPH05190062A (en) 1992-01-16 1992-01-16 Electrode for vacuum circuit-breaker

Country Status (1)

Country Link
JP (1) JPH05190062A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597434A2 (en) * 1992-11-10 1994-05-18 Mitsubishi Denki Kabushiki Kaisha Vacuum interrupter
WO2001041173A1 (en) * 1999-11-27 2001-06-07 Moeller Gmbh Contact arrangement for a vacuum interrupter chamber
KR100490908B1 (en) * 2002-05-15 2005-05-24 한국전기연구원 Vacuum Diffusion Arc Gap Switch
KR100685507B1 (en) * 2004-12-10 2007-02-27 미쓰비시덴키 가부시키가이샤 Vacuum valve
JP2010212229A (en) * 2009-03-11 2010-09-24 Ls Industrial Systems Co Ltd Electrode of vacuum circuit breaker
WO2011052109A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Vacuum valve
JP2013008672A (en) * 2011-06-23 2013-01-10 Ls Industrial Systems Co Ltd Electrode assembly for vacuum interrupter
EP2551878A1 (en) * 2011-07-23 2013-01-30 ABB Technology AG Contact assembly for a vacuum circuit breaker
JP2013037907A (en) * 2011-08-08 2013-02-21 Sumitomo Heavy Ind Ltd Microwave ion source and method for generating ion
KR101480845B1 (en) * 2013-09-12 2015-01-09 엘에스산전 주식회사 Vacuum interrupter
CN109308976A (en) * 2018-11-07 2019-02-05 平高集团有限公司 Coil type longitudinal field contact component and vacuum interrupter
CN110310860A (en) * 2012-05-24 2019-10-08 施耐德电器工业公司 Electric arc for vacuum bulb controls equipment
EP4160642A4 (en) * 2020-05-28 2023-07-05 Mitsubishi Electric Corporation Vacuum valve

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597434A2 (en) * 1992-11-10 1994-05-18 Mitsubishi Denki Kabushiki Kaisha Vacuum interrupter
EP0597434A3 (en) * 1992-11-10 1995-02-08 Mitsubishi Electric Corp Vacuum interrupter.
WO2001041173A1 (en) * 1999-11-27 2001-06-07 Moeller Gmbh Contact arrangement for a vacuum interrupter chamber
DE19957228B4 (en) * 1999-11-27 2009-04-23 Moeller Gmbh Contact arrangement for a vacuum interrupter chamber
KR100490908B1 (en) * 2002-05-15 2005-05-24 한국전기연구원 Vacuum Diffusion Arc Gap Switch
KR100685507B1 (en) * 2004-12-10 2007-02-27 미쓰비시덴키 가부시키가이샤 Vacuum valve
JP2010212229A (en) * 2009-03-11 2010-09-24 Ls Industrial Systems Co Ltd Electrode of vacuum circuit breaker
US8263894B2 (en) 2009-03-11 2012-09-11 Ls Industrial Systems Co., Ltd. Electrode for vacuum interrupter
WO2011052109A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Vacuum valve
US9040862B2 (en) 2011-06-23 2015-05-26 Lsis Co., Ltd. Electrode assembly for vacuum interrupter
JP2013008672A (en) * 2011-06-23 2013-01-10 Ls Industrial Systems Co Ltd Electrode assembly for vacuum interrupter
EP2551878A1 (en) * 2011-07-23 2013-01-30 ABB Technology AG Contact assembly for a vacuum circuit breaker
WO2013013794A1 (en) * 2011-07-23 2013-01-31 Abb Technology Ag Contact assembly for a vacuum circuit breaker
CN103828010A (en) * 2011-07-23 2014-05-28 Abb技术股份公司 Contact assembly for a vacuum circuit breaker
US9330868B2 (en) 2011-07-23 2016-05-03 Abb Technology Ag Contact assembly for a vacuum circuit breaker
JP2013037907A (en) * 2011-08-08 2013-02-21 Sumitomo Heavy Ind Ltd Microwave ion source and method for generating ion
CN110310860A (en) * 2012-05-24 2019-10-08 施耐德电器工业公司 Electric arc for vacuum bulb controls equipment
CN110310860B (en) * 2012-05-24 2022-01-21 施耐德电器工业公司 Contact device for vacuum bulb
KR101480845B1 (en) * 2013-09-12 2015-01-09 엘에스산전 주식회사 Vacuum interrupter
US9496106B2 (en) 2013-09-12 2016-11-15 Lsis Co., Ltd. Electrode assembly and vacuum interrupter including the same
CN109308976A (en) * 2018-11-07 2019-02-05 平高集团有限公司 Coil type longitudinal field contact component and vacuum interrupter
EP4160642A4 (en) * 2020-05-28 2023-07-05 Mitsubishi Electric Corporation Vacuum valve

Similar Documents

Publication Publication Date Title
JPH05190062A (en) Electrode for vacuum circuit-breaker
US3946179A (en) Vacuum interrupter
US4704506A (en) Vacuum interrupter
US3280286A (en) Vacuum-type circuit interrupter
EP0329410B1 (en) Vacuum interrupter
JPH0230132B2 (en)
GB2038557A (en) Vacuum interrupter
JPH02227923A (en) Switching contact of vacuum switch
KR100496772B1 (en) Contact for vacuum interrupter, and vacuum interrupter using same
US6639169B2 (en) Contact for vacuum interrupter and vacuum interrupter using the contact
EP0790629B1 (en) Vacuum valve
JPS6171520A (en) Contactor unit of vacuum switching implement
EP0052371A2 (en) Vacuum interrupter
US4855547A (en) Vacuum interrupter
US4063126A (en) Vacuum arc discharge device with tapered rod electrodes
JPH11162302A (en) Vacuum bulb
JPH0696680A (en) Metal ion source
JP2003092050A (en) Contactor for vacuum interrupter and vacuum interrupter
JP2000223053A (en) Electrostatic lens
US4760222A (en) Vacuum circuit interrupter
JPH02201833A (en) Magnetic driving type electrode for vacuum interrupter
JPH0112355Y2 (en)
JPH0210617A (en) Vacuum breaker
JPH0765764A (en) Sheet ion beam device
JPH02201829A (en) Magnetic driving type electrode for vacuum interrupter