JPH0518969A - Calibration curve setting method for immune analysis method - Google Patents

Calibration curve setting method for immune analysis method

Info

Publication number
JPH0518969A
JPH0518969A JP17514291A JP17514291A JPH0518969A JP H0518969 A JPH0518969 A JP H0518969A JP 17514291 A JP17514291 A JP 17514291A JP 17514291 A JP17514291 A JP 17514291A JP H0518969 A JPH0518969 A JP H0518969A
Authority
JP
Japan
Prior art keywords
calibration curve
concentration
specific substance
immune analysis
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17514291A
Other languages
Japanese (ja)
Other versions
JP2739615B2 (en
Inventor
Yoshihiko Makino
快彦 牧野
Takafumi Hora
尚文 洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3175142A priority Critical patent/JP2739615B2/en
Publication of JPH0518969A publication Critical patent/JPH0518969A/en
Application granted granted Critical
Publication of JP2739615B2 publication Critical patent/JP2739615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To obtain the calibration curve of a dry analytical element adopting a homogeneous-system enzyme immune analysis method as a simple regression formula with a less number of concentration levels of a calibrator liquid while the accuracy of measured results is maintained at a high level. CONSTITUTION:An immune analysis method measures the content of a specific substance content in the body fluid of an organism by obtaining a detectable signal by utilizing an immunoreaction. This calibration curve setting method sets one of the coordinate axes of the calibration curve as the reciprocal of detectable signal values and the other coordinate axis as the antilogarithm of the concentration value of the specific substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、免疫反応を利用して生
物体液中たとえば血液中とか尿中の特定物質の定量を行
う免疫分析方法における検量線の設定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for setting a calibration curve in an immunoassay method for quantifying a specific substance in a biological fluid such as blood or urine by utilizing an immune reaction.

【0002】[0002]

【従来の技術】生物体液たとえば血液や尿などに含まれ
る生体成分、薬物等の分析は、病態の診断や治療経過の
判定に非常に有用であり、臨床検査の分野で重要な役割
を果たしている。このような生物体液中の微量成分の分
析方法として、酵素免疫分析方法(EIA)がある。酵
素免疫分析方法には、B/F分離が必要な非均一系とB
/F分離が不必要な均一系がある。均一反応系は抗体と
抗原が結合すると、標識酵素の酵素活性が何らかの干渉
を受けることに基づくもので、一般には抗原と抗体の結
合による阻害作用を利用する。
2. Description of the Related Art Analysis of biological components, drugs, etc. contained in biological fluids such as blood and urine is very useful for diagnosing pathological conditions and determining the course of treatment, and plays an important role in the field of clinical examination. .. Enzyme-linked immunosorbent assay (EIA) is available as a method for analyzing trace components in biological fluids. Enzyme-linked immunosorbent assay requires B / F separation
Some homogeneous systems do not require / F separation. The homogeneous reaction system is based on the fact that when an antibody and an antigen bind to each other, the enzyme activity of the labeling enzyme undergoes some interference, and in general, the inhibitory action by the binding of the antigen and the antibody is utilized.

【0003】均一系酵素免疫分析方法の検量線は従来の
臨床化学検査のそれとは大きく異なり、一般に直線とな
らずほとんどの場合S字(シグモイダル)になる。この
ような検量線については、放射線免疫分析方法(RI
A)についてこれまで十分な検討がなされている。酵素
免疫分析方法の場合も本質的に放射線免疫分析方法の検
量線の設定方法を適用することができ、その回帰方法
は、logistic曲線、logit−log変換式などとして知られ
ており、石川榮治ほか編、「酵素免疫測定法」、第2版
(医学書院、1982年発行(153〜164頁))などに紹介され
ている。
The calibration curve of the homogeneous enzyme immunoassay method is significantly different from that of the conventional clinical chemistry test, and generally does not become a straight line but becomes an S-shape (sigmoidal) in most cases. Regarding such a calibration curve, a radioimmunoassay method (RI
Sufficient consideration has been made so far regarding A). In the case of the enzyme immunoassay method, the method of setting the calibration curve of the radioimmunoassay method can be applied essentially, and the regression method is known as a logistic curve, a logit-log conversion formula, etc., Eiji Ishikawa et al. Edited by "Enzyme Immunoassay", 2nd edition (Medical Shoin, published in 1982 (pages 153-164)).

【0004】一方、多数の検体試料を取扱いルーティン
化している臨床検査では、簡便、迅速に分析できること
が望まれている。このような観点から、均一系酵素免疫
反応を適用した乾式分析要素が提案されている(特開平
1−321360)。これは、多層乾式分析要素(たとえば、
特開昭49−53888、同59−77356、同59−102388、米国特
許4,459,358)の同一層或いは別々の層に水不溶性の高分
子基質と、その基質に対する酵素と特定物質に対する抗
体との結合物を含有させたものである。
On the other hand, in a clinical test in which a large number of specimen samples are handled and routineized, it is desired that simple and quick analysis can be performed. From such a viewpoint, a dry analytical element to which a homogeneous enzyme immunoreaction is applied has been proposed (JP-A-1-321360). This is a multi-layer dry analytical element (eg,
JP-A-49-53888, 59-77356, 59-102388, and U.S. Pat. No. 4,459,358), in the same layer or in different layers, a water-insoluble polymer substrate, an enzyme for the substrate and an antibody for a specific substance Is included.

【0005】[0005]

【発明が解決しようとする課題】均一酵素免疫分析方法
を適応した乾式分析要素で得られる反射光学濃度と測定
物質濃度の関係をこれまで用いられているlogistic曲
線、logit−log変換式や直角双曲線法を用いて回帰する
ことは可能である。しかしながら、このような回帰式を
用いる場合は設定すべき回帰係数が多いために、設定に
必要なキャリブレータ液の濃度レベル数が多くなってし
まう。また、回帰が複雑なために計算に多くの時間を必
要としてしまう。このようなことは、乾式分析要素の簡
便性、迅速性といった特徴を半減させてしまう欠点とな
っている。
DISCLOSURE OF THE INVENTION The relationship between the reflection optical density and the concentration of a substance to be measured obtained by a dry analytical element to which a homogeneous enzyme immunoassay method is applied is a logistic curve, a logit-log conversion equation or a right-angled hyperbola which has been used so far. It is possible to regress using the method. However, when such a regression equation is used, the number of concentration levels of the calibrator liquid required for setting increases because there are many regression coefficients to be set. Moreover, since the regression is complicated, a lot of time is required for calculation. This is a drawback of halving the characteristics of the dry analytical element, such as simplicity and speed.

【0006】均一酵素免疫分析方法を適応した乾式分析
要素における検量線の設定では、必要なキャリブレータ
液の濃度レベル数はできるだけ少なく、そして検量線の
回帰式はできるだけ単純なものであるのがよい。それに
よって検量線を設定するための操作の簡便化と迅速化を
達成することができる。そのためには、検量線が直線で
あるのが理想的であるが、均一系酵素免疫分析方法の検
量線は一般に直線とならず、ほとんどの場合S字(シグ
モイダル)になってしまう。しかしながら、測定物質に
よっては、測定したい濃度範囲がS字(シグモイダル)
の全領域に渡らず、S字の一部分で納まってしまう場合
がある。また、検量線の形は座標軸の設定の仕方によっ
ても大きく変わり、意外にも座標軸の設定の仕方によっ
て測定濃度範囲の検量線を直線で表現できることがわか
った。測定濃度範囲で検量線を直線に表現できること
は、検量線を直線回帰するときはもとより、整次多項式
で回帰するときも、より正確に回帰できるというメリッ
トがある。また、これまで知られている各点間直線補間
法で回帰する場合も、この方法の欠点である各直線間の
不連続性を軽減できるというメリットもある。
[0006] In setting the calibration curve in the dry analytical element to which the homogeneous enzyme immunoassay method is applied, it is preferable that the number of concentration levels of the calibrator solution required is as small as possible, and the regression equation of the calibration curve is as simple as possible. This makes it possible to simplify and speed up the operation for setting the calibration curve. For that purpose, it is ideal that the calibration curve is a straight line, but the calibration curve of the homogeneous enzyme immunoassay method is generally not a straight line, and almost always becomes an S-shape (sigmoidal). However, depending on the substance to be measured, the concentration range you want to measure is S-shaped (sigmoidal).
There is a case where it does not cover the entire area of and fit in a part of S-shape. It was also found that the shape of the calibration curve greatly changes depending on how the coordinate axes are set, and surprisingly the calibration curve in the measurement concentration range can be represented by a straight line depending on how the coordinate axes are set. The fact that the calibration curve can be represented by a straight line in the measurement concentration range has an advantage that not only when the calibration curve is linearly regressed, but also when it is regressed by a polynomial polynomial, the regression can be performed more accurately. In addition, even when regression is performed by the conventionally known linear interpolation method for each point, there is an advantage that the discontinuity between the straight lines, which is a drawback of this method, can be reduced.

【0007】本発明は、均一系酵素免疫反応を適用した
乾式分析要素を用いた免疫分析方法において、簡便でし
かも正確度の高い測定結果を与える検量線の設定方法
(新たに検量線を作成する方法)を提供することを目的
とする。
The present invention is a method for setting a calibration curve which provides a simple and highly accurate measurement result in an immunoassay method using a dry analytical element to which a homogeneous enzyme immunoreaction is applied (a new calibration curve is prepared). Method).

【0008】[0008]

【課題を解決するための手段】このような目的は、免疫
反応を利用して検知可能な信号を得て生物体液中の特定
物質の定量を行う免疫分析方法において、検量線の座標
軸の設定を一方を前記検知可能な信号値の逆数で、そし
てもう一方を特定物質の濃度値の真数で行うことを特徴
とする免疫分析方法における検量線の設定方法によって
達成することができた。
The object of this kind is to set the coordinate axes of a calibration curve in an immunoassay method in which a detectable signal is obtained by utilizing an immune reaction to quantify a specific substance in a biological fluid. This can be achieved by a method of setting a calibration curve in the immunoassay method, characterized in that one is performed by the reciprocal of the detectable signal value and the other is performed by the true number of the concentration value of the specific substance.

【0009】免疫分析方法は、抗原抗体反応を利用して
抗原または抗体を分析する方法であり、検出手段により
酵素免疫分析方法、ラジオイムノアッセイ、蛍光イムノ
アッセイ、レーザイムノアッセイ等がある。また、反応
形態により競合法と非競合法に分けられ、さらにB/F
分離が必要な非均一系とB/F分離が不要な均一系に分
けられる。本発明の方法は、免疫分析法の種類を問わず
適用できるが、酵素免疫分析方法に好ましく適用でき、
特に均一系酵素免疫分析方法を適用した乾式分析要素を
用いた分析法に有用である。
The immunoassay method is a method of analyzing an antigen or an antibody by utilizing an antigen-antibody reaction, and includes an enzyme immunoassay method, a radioimmunoassay, a fluorescent immunoassay, a laser immunoassay, etc., depending on the detection means. In addition, it is divided into a competitive method and a non-competitive method depending on the reaction mode.
It is divided into a non-homogeneous system that requires separation and a homogeneous system that does not require B / F separation. The method of the present invention can be applied regardless of the type of immunoassay, but can be preferably applied to enzyme immunoassay,
Particularly, it is useful for an analytical method using a dry analytical element to which a homogeneous enzyme immunoassay method is applied.

【0010】他の免疫分析方法においても一般にそうで
あるが、均一系酵素免疫分析方法を適用した乾式分析要
素を用いて生物体液たとえば血液中、尿中の特定物質の
定量をおこなうには、予め測定により得られる検知可能
な信号と測定物質の濃度との関係を検量線として得てお
く必要がある。この操作は、例えば以下のように行われ
る。いくつかの濃度レベルの測定物質の濃度既知溶液
(キャリブレータ液)をそれぞれ乾式分析要素上に一定
量点着する。点着された液は乾式分析要素中で免疫反
応、発色反応をし、液中の測定物質の濃度に応じた発色
濃度を与える。実際には、点着後乾式分析要素を一定時
間、一定温度に保って(インクベーション)発色反応を
進行させた後、照射光を乾式分析要素に照射し、特定波
長域で反射光量を測定してキャリブレータ液の測定物質
濃度に応じた反射光学濃度を求める。得られた反射光学
濃度と測定物質濃度の関係を回帰式として求め、測定物
質定量のための検量線とする。
As is generally the case with other immunoassay methods, in order to quantify a specific substance in a biological fluid such as blood or urine using a dry analytical element to which the homogeneous enzyme immunoassay method is applied, It is necessary to obtain the relationship between the detectable signal obtained by the measurement and the concentration of the substance to be measured as a calibration curve. This operation is performed as follows, for example. A fixed amount of a solution (calibrator solution) having a known concentration of the substance to be measured at several concentration levels is spotted on the dry analytical element. The spotted liquid undergoes an immunoreaction and a color reaction in the dry analysis element to give a coloring concentration according to the concentration of the substance to be measured in the liquid. In practice, after the spotting, the dry analytical element is kept at a constant temperature for a certain period of time (incubation) to allow the color development reaction to proceed, and then the dry analytical element is irradiated with irradiation light to measure the amount of reflected light in a specific wavelength range. Then, the reflection optical density corresponding to the concentration of the substance to be measured in the calibrator liquid is obtained. The relationship between the obtained reflection optical density and the concentration of the substance to be measured is obtained as a regression equation and used as a calibration curve for quantifying the substance to be measured.

【0011】従来、この検量線の座標軸に検知された信
号値の真数とアナライトの濃度値の対数が用いられてい
たが、本発明の方法においては検知された信号値の逆数
と定量しようとする特定物質の濃度値の真数を座標軸と
して用いるところに特徴がある。検知される信号値は各
分析系と測定機器の種類等に応じて定まるものであり、
例えば、酵素免疫分析方法で発色系を利用した場合には
光学濃度、反射光学濃度等(一般にはバックグラウンド
の影響を排除するため濃度差)である。ラジオイムノア
ッセイでは放射線強度、蛍光イムノアッセイでは蛍光強
度等がそれに該当する。
Conventionally, the logarithm of the detected signal value and the concentration value of the analyte was used on the coordinate axis of the calibration curve, but in the method of the present invention, let's quantify it as the reciprocal of the detected signal value. The feature is that the true number of the concentration value of the specific substance is used as the coordinate axis. The detected signal value is determined according to each analysis system and the type of measuring equipment,
For example, when a color-developing system is used in the enzyme immunoassay method, it is an optical density, a reflection optical density, etc. (generally, a difference in density for eliminating the influence of background). The radioimmunoassay corresponds to radiation intensity, and the fluorescence immunoassay corresponds to fluorescence intensity.

【0012】本発明の検量線の設定方法をモデル図(図
1)にもとづいて説明する。縦軸に特定物質(分析対象
物質、すなわちアナライト(analyte))濃度値の対数、
横軸に検知される信号値(又は信号値からバックグラウ
ンド値を差引いた値)の真数をとったとき免疫分析法、
ことにEIAでは一般に図1のモデル図、図1B又は図
1Cの実線のように検量線はシグモイダル曲線で表され
る。
The method of setting the calibration curve of the present invention will be described with reference to the model diagram (FIG. 1). The vertical axis is the logarithm of the concentration value of the specific substance (analyte, ie, analyte),
When the true value of the signal value (or the value obtained by subtracting the background value from the signal value) detected on the horizontal axis is taken as the immunoassay method,
In particular, in EIA, the calibration curve is generally represented by a sigmoidal curve like the model diagram of FIG. 1 and the solid line of FIG. 1B or 1C.

【0013】シグモイダル検量線の場合には、次のよう
になる。例えば図1の縦軸のアナライトの定量範囲のほ
ぼ上限値(H)と下限値(I)に対応する2点を検量線
の上にとり(○印の2点)、この2点を通る直線(図1
B、図1Cの2点鎖線)を引く。アナライトの定量範囲
内では、この直線はシグモイド検量線と2点又は3点で
一致するだけであって、大部分の定量範囲ではこの直線
はシグモイド検量線から大きくはなれている。従って、
この直線を検量線として用いることができないことは明
らかである。
In the case of the sigmoidal calibration curve, it is as follows. For example, two points corresponding to the upper limit value (H) and the lower limit value (I) of the quantitative range of the analyte on the vertical axis of FIG. 1 are set on the calibration curve (two points marked with a circle), and a straight line passing through these two points. (Fig. 1
B, the two-dot chain line in FIG. 1C). Within the analyte quantitation range, this line only coincides with the sigmoid calibration curve at two or three points, and in most quantification ranges this line deviates significantly from the sigmoidal calibration curve. Therefore,
Obviously, this straight line cannot be used as a calibration curve.

【0014】本発明の検量線の設定方法においては、例
えば縦軸にアナライト濃度の対数、横軸に検知される信
号値の逆数をとる。このように2軸をとると図1Aのよ
うに、検量線は直線に近い、ゆるい曲率の曲線状検量線
(実線)になる。アナライトの定量範囲のほぼ上限値
(H)と下限値(I)に対応する2点を検量線の上にと
り(○印の2点)、この2点を通る直線(図1Aの2点
鎖線)を引く。アナライトの定量範囲内で、この直線は
ゆるい曲率の曲線状検量線の近傍に位置する。従って、
この直線を検量線として用いた場合に、得られるアナラ
イトの濃度値は真の値と推定される値からの誤差は小さ
いことは明らかである。
In the calibration curve setting method of the present invention, for example, the vertical axis represents the logarithm of the analyte concentration and the horizontal axis represents the reciprocal of the detected signal value. When the two axes are taken in this way, the calibration curve becomes a curved calibration curve (solid line) with a gentle curvature close to a straight line, as shown in FIG. 1A. Two points corresponding to the upper limit value (H) and the lower limit value (I) of the analyte quantification range are set on the calibration curve (two points marked with a circle), and a straight line passing through these two points (two-dot chain line in FIG. 1A). )pull. Within the quantitation range of the analyte, this straight line lies near the curvilinear calibration curve of gentle curvature. Therefore,
When this straight line is used as a calibration curve, it is clear that the obtained concentration value of the analyte has a small error from the value estimated to be the true value.

【0015】このように、アナライトの測定濃度範囲で
検量線を直線で表現できることにより、検量線を直線回
帰する場合にも整次多項式で回帰する場合にも、より正
確に回帰できるメリットがある。また、これまで知られ
ている各点間直線補間法で回帰する場合も、この方法の
欠点である各直線間の不連続性を軽減又は排除できるメ
リットもある。さらに、免疫分析試薬のロットのちがい
による差違又は乾式分析要素のロットのちがいによる差
違(ロット間差又はバッチ間差)を補正するための検量
線の補正作業が、より少ないキャリブレータ液濃度レベ
ル数で実施できる(濃度レベル数が1、2で実施でき
る)というメリットがある。さらに、またロット間差を
補正するための検量線の補正そのものをきわめて簡単な
数式処理又は数値処理で実施できるというメリットもあ
る。
As described above, since the calibration curve can be represented by a straight line in the measured concentration range of the analyte, there is a merit that the calibration curve can be more accurately regressed both when the calibration curve is linearly regressed and when it is regressed by a polynomial of order. .. Further, even when the regression is performed by the conventionally known linear interpolation method between the respective points, there is an advantage that the discontinuity between the respective straight lines, which is a drawback of this method, can be reduced or eliminated. In addition, calibration curve correction work to correct differences due to different lots of immunoassay reagents or due to different lots of dry analysis elements (difference between lots or batches) can be performed with a smaller number of calibrator solution concentrations. There is an advantage that it can be carried out (it can be carried out with the number of concentration levels being 1 or 2). Furthermore, there is also an advantage that the calibration curve itself for correcting the difference between lots can be implemented by extremely simple mathematical or numerical processing.

【0016】この検量線を用いて各試料について得られ
た信号値から特定物質の濃度を算出する方法は従来と同
様でよい。
The method of calculating the concentration of the specific substance from the signal value obtained for each sample using this calibration curve may be the same as the conventional method.

【0017】本発明の好ましい態様は、次の態様を含
む。免疫分析方法が酵素免疫分析方法である請求項1の
検量線の設定方法。免疫分析方法が乾式分析要素を用い
た免疫分析方法である請求項1の検量線の設定方法。酵
素免疫分析方法が均一系酵素免疫分析方法である請求項
1の検量線の設定方法。
The preferred embodiment of the present invention includes the following embodiments. The method for setting a calibration curve according to claim 1, wherein the immunoassay method is an enzyme immunoassay method. The method for setting a calibration curve according to claim 1, wherein the immunoassay method is an immunoassay method using a dry analysis element. The method for setting a calibration curve according to claim 1, wherein the enzyme immunoassay method is a homogeneous enzyme immunoassay method.

【0018】[0018]

【実施例】CRP分析用多層乾式スライドの作製 ゼラチン下塗層が設けられている厚さ180μmの無色透
明ポリエチレンテレフタレート(PET)シート(支持
体)上に、下記の被覆量になるように架橋剤含有試薬溶
液を塗布し、乾燥して試薬層を設けた。 アルカリ処理ゼラチン 14.5g/m2 ノニルフェノキシポリエトキシエタノール 0.2g/m2 (オキシエチレン単位平均9〜10含有) グルコースオキシダーゼ 5000u/m2 ペルオキシダーゼ 15000u/m2 グルコアミラーザ 5000u/m2 2-(4-ヒドロキシ-3,5-ジメトキシフェニル)-4-〔-4-(ジメチルアミノ)フェ ニル〕-5-フェネチルイミダゾール(ロイコ色素)酢酸塩 0.38g/m2 ビス〔(ビニルスルホニルメチルカルボニル)アミノ〕メタン 0.1g/m2
Example Preparation of multi-layer dry slide for CRP analysis A colorless transparent polyethylene terephthalate (PET) sheet (support) having a thickness of 180 μm and provided with a gelatin subbing layer, and a cross-linking agent with the following coating amount. The containing reagent solution was applied and dried to form a reagent layer. Alkali-treated gelatin 14.5g / m 2 Nonylphenoxypolyethoxyethanol 0.2g / m 2 (oxyethylene unit average 9 to 10) Glucose oxidase 5000u / m 2 Peroxidase 15000u / m 2 Glucoa Mirrorza 5000u / m 2 2- (4 -Hydroxy-3,5-dimethoxyphenyl) -4-[-4- (dimethylamino) phenyl] -5-phenethylimidazole (leuco dye) acetate 0.38 g / m 2 Bis [(vinylsulfonylmethylcarbonyl) amino] Methane 0.1g / m 2

【0019】この試薬層の上に、下記の被覆量になるよ
うに接着層を塗布し、乾燥して設けた。 アルカリ処理ゼラチン 14.5g/m2 ビス〔(ビニルスルホニルメチルカルボニル)アミノ〕メタン 0.1g/m2
An adhesive layer was applied on the reagent layer so as to have the following coating amount, and dried to provide. Alkali-treated gelatin 14.5g / m 2 Bis [(vinylsulfonylmethylcarbonyl) amino] methane 0.1g / m 2

【0020】ついで接着層の表面に下記の被覆量になる
ように下記試薬含有水溶液を塗布し、ゼラチン層を膨潤
させ、その上に50デニール相当のPET紡績糸36ゲージ
編みした厚さ約250μmのトリコット編物布地をほぼ一
様に軽く圧力をかけてラミネートして多孔性展開層を設
けた。 ノニルフェノキシポリエトキシエタノール 0.15g/m2 (オキシエチレン単位平均9〜10含有) ビス〔(ビニルスルホニルメチルカルボニル)アミノ〕メタン 0.4g/m2
Then, the following reagent-containing aqueous solution was applied to the surface of the adhesive layer so that the coating amount was as follows, the gelatin layer was swollen, and a PET spun yarn equivalent to 50 denier was woven with 36 gauge of about 250 μm. The tricot knitted fabric was laminated by applying pressure uniformly and lightly to provide a porous spreading layer. Nonylphenoxypolyethoxyethanol 0.15 g / m 2 (oxyethylene unit average 9 to 10) Bis [(vinylsulfonylmethylcarbonyl) amino] methane 0.4 g / m 2

【0021】次に、下記の被覆量になるように基質を塗
布、乾燥して基質層を設けた。 カルボキシメチル化澱粉 4g/m2 ノニルフェノキシポリエトキシエタノール 0.2g/m2 (オキシエチレン単位平均9〜10含有)
Next, a substrate was applied so as to have the following coating amount and dried to form a substrate layer. Carboxymethylated starch 4g / m 2 Nonylphenoxypolyethoxyethanol 0.2g / m 2 (Oxyethylene unit average 9-10 included)

【0022】さらに、基質層兼展開層であるトリコット
編物布地層にアミラーゼ−抗CRP・IgG結合物を3mg/
m2の被覆量となるようにしてエタノール溶液を塗布し、
含浸させ乾燥させてCRP分析用多層乾式分析要素を得
た。
Furthermore, 3 mg / amylase-anti-CRP / IgG binding product was added to the tricot knitted fabric layer, which is also a substrate layer and a spreading layer.
ethanol solution was applied as a coating amount of m 2,
After impregnation and drying, a multilayer dry analytical element for CRP analysis was obtained.

【0023】得られた分析要素を15mm四方のチップに裁
断し、特開昭57−63452に記載のスライドの枠に収め
て、CRP分析用多層乾式分析スライドとした。
The obtained analytical element was cut into 15 mm square chips and placed in a slide frame described in JP-A-57-63452 to obtain a multilayer dry analytical slide for CRP analysis.

【0024】検量線の作製 CRP濃度が既知の2種のCRP標準血清のそれぞれ10
μlを緩衝液(0.2MMESバッファー、pH6.0) 200μl
で希釈したCRP緩衝溶液を上記分析スライドのトリコ
ット編物布地層上にそれぞれ10μl点着し、各分析スラ
イドを密閉容器中で37℃に保って、中心波長650nmの可
視光でPET支持体側から反射光学濃度を測定した。点
着から4分後および6分後の反射光学濃度の差(ΔOD
r6-4)をCRP標準血清の既知濃度とともに表1に示
す。
Preparation of calibration curve 10 kinds of CRP standard sera each of which has a known CRP concentration
200 μl of buffer solution (0.2MMES buffer, pH 6.0)
10 μl each of the CRP buffer solution diluted with the above was spotted on the tricot knitted fabric layer of the above analysis slide, each analysis slide was kept at 37 ° C. in a closed container, and reflected from the PET support side with visible light having a central wavelength of 650 nm. The concentration was measured. Difference in reflection optical density 4 minutes and 6 minutes after spotting (ΔOD
r 6-4 ) is shown in Table 1 together with known concentrations of CRP standard serum.

【0025】[0025]

【表1】 [Table 1]

【0026】表1のCRP濃度(C)とΔODr6-4につ
いて、表2に示す設定の座標軸でそれぞれをプロット
し、2つのプロットを通る直線をもとめることで検量線
を得た。
The CRP concentrations (C) and ΔODr 6-4 in Table 1 were plotted on the coordinate axes set in Table 2 respectively, and a straight line passing through the two plots was obtained to obtain a calibration curve.

【0027】[0027]

【表2】 [Table 2]

【0028】常用法と相関 CRP測定の常用法である免疫比濁法によりCRP濃度
が測定されている50の検体(CRP濃度は、0〜10.2mg
/dL)のそれぞれ10μlを緩衝液(0.2M MESバッファ
ー、pH6.0) 200μlで希釈した溶液を上記分析スライド
のトリコット編物布地層上にそれぞれ10μl点着し、各
分析スライドを密閉容器中で37℃に保って、中心波長65
0nmの可視光でPET支持体側から反射光学濃度を測定
し、点着から4分後および6分後の反射光学濃度の差
(ΔODr6-4)を求めた。
Correlation with conventional method 50 samples whose CRP concentration is measured by the immunoturbidimetric method which is a conventional method for CRP measurement (CRP concentration is 0 to 10.2 mg).
10 μl each of 10 μl / dL) was diluted with 200 μl of buffer (0.2 M MES buffer, pH 6.0), and 10 μl of each solution was spotted on the tricot knitted fabric layer of the above analysis slide, and each analysis slide was placed in a closed container. Keep at ℃, center wavelength 65
The reflective optical density was measured from the PET support side with 0 nm visible light, and the difference (ΔODr 6-4 ) in the reflective optical density 4 minutes after the spotting and 6 minutes after the spotting was determined.

【0029】それぞれの検体について得られたΔODr
6-4を、上記の本発明の検量線と比較例1、2の検量線
を用いてCRP濃度に換算した。
ΔODr obtained for each sample
6-4 was converted into a CRP concentration using the calibration curve of the present invention and the calibration curves of Comparative Examples 1 and 2.

【0030】常用法の免疫比濁法で測定されたCRP濃
度と表2のそれぞれの検量線を用いて得られたCRP濃
度の相関を求めた。相関係数(r)と傾き(a)を表3に示
す。
The correlation between the CRP concentration measured by the conventional immunoturbidimetric method and the CRP concentration obtained using each calibration curve in Table 2 was determined. Table 3 shows the correlation coefficient (r) and the slope (a).

【0031】本発明の検量線で得られた相関図と比較例
1の検量線で得られた相関図をそれぞれ図2、図3に示
す。
2 and 3 show the correlation chart obtained by the calibration curve of the present invention and the correlation chart obtained by the calibration curve of Comparative Example 1, respectively.

【0032】[0032]

【表3】 [Table 3]

【0033】表3、図2に示されているように、本発明
の座標軸にすることで、単純な直線の検量線でも正確な
CRP測定が可能であることは明らかである。
As shown in Table 3 and FIG. 2, by using the coordinate axes of the present invention, it is clear that accurate CRP measurement can be performed even with a simple linear calibration curve.

【0034】[0034]

【発明の効果】本発明の検量線の座標軸の設定によっ
て、均一系酵素免疫分析方法を適応した乾式分析要素の
検量線を、測定結果の正確度を十分保ちながら、少ない
キャリブレータ液の濃度レベル数で簡単な回帰式として
得ることができる。
EFFECTS OF THE INVENTION By setting the coordinate axes of the calibration curve of the present invention, the calibration curve of the dry analytical element adapted to the homogeneous enzyme immunoassay method can be used to obtain a small number of concentration levels of the calibrator solution while sufficiently maintaining the accuracy of the measurement result. Can be obtained as a simple regression equation.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1Aは、本発明の検量線の設定方法を説明す
るためのモデル図である。 図1B、図1Cは免疫分析方法における従来の検量線を
説明するためのモデル図である。 実 線:系の持つ検量線 2点鎖線:2つの濃度既知のアナライト溶液(アナライ
ト濃度L及びH)で設定した直線の検量線
FIG. 1A is a model diagram for explaining a method for setting a calibration curve of the present invention. 1B and 1C are model diagrams for explaining a conventional calibration curve in the immunoassay method. Solid line: calibration curve of the system Two-dot chain line: linear calibration curve set with two analyte solutions of known concentrations (analyte concentrations L and H)

【図2】本発明の座標軸の検量線を用いた場合の免疫比
濁法との相関を示すグラフである。
FIG. 2 is a graph showing the correlation with the immunoturbidimetric method when using the calibration curve of the coordinate axes of the present invention.

【図3】比較例1の座標軸の検量線を用いた場合の免疫
比濁法との相関を示すグラフである。
FIG. 3 is a graph showing the correlation with the immunoturbidimetric method when the calibration curve of the coordinate axes of Comparative Example 1 is used.

Claims (1)

【特許請求の範囲】 【請求項1】 免疫反応を利用して検知可能な信号を得
て生物体液中の特定物質の定量を行う免疫分析方法にお
いて、検量線の座標軸の設定を一方を前記検知可能な信
号値の逆数で、そしてもう一方を特定物質の濃度値の真
数で行うことを特徴とする免疫分析方法における検量線
の設定方法
Claim: What is claimed is: 1. An immunoassay method for quantifying a specific substance in a biological fluid by obtaining a detectable signal by utilizing an immune reaction. A method for setting a calibration curve in an immunoassay method characterized by performing the reciprocal of the possible signal value and the other with the true value of the concentration value of the specific substance.
JP3175142A 1991-07-16 1991-07-16 Setting method of calibration curve in quantification method using dry immunoassay element Expired - Fee Related JP2739615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175142A JP2739615B2 (en) 1991-07-16 1991-07-16 Setting method of calibration curve in quantification method using dry immunoassay element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175142A JP2739615B2 (en) 1991-07-16 1991-07-16 Setting method of calibration curve in quantification method using dry immunoassay element

Publications (2)

Publication Number Publication Date
JPH0518969A true JPH0518969A (en) 1993-01-26
JP2739615B2 JP2739615B2 (en) 1998-04-15

Family

ID=15991024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175142A Expired - Fee Related JP2739615B2 (en) 1991-07-16 1991-07-16 Setting method of calibration curve in quantification method using dry immunoassay element

Country Status (1)

Country Link
JP (1) JP2739615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002398A (en) * 2008-06-23 2010-01-07 Horiba Ltd Analyzing device
JP2013096726A (en) * 2011-10-28 2013-05-20 Kddi Corp Apparatus, method, and program for measuring color density

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379025A (en) * 1976-10-01 1978-07-13 Bonnierfoeretagen Ab Quantitatively measuring of antigen
JPS60172596A (en) * 1984-02-17 1985-09-06 呉羽化学工業株式会社 Sheet for analyzing data
JPH0283448A (en) * 1988-09-20 1990-03-23 Fuji Photo Film Co Ltd Immunoassay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379025A (en) * 1976-10-01 1978-07-13 Bonnierfoeretagen Ab Quantitatively measuring of antigen
JPS60172596A (en) * 1984-02-17 1985-09-06 呉羽化学工業株式会社 Sheet for analyzing data
JPH0283448A (en) * 1988-09-20 1990-03-23 Fuji Photo Film Co Ltd Immunoassay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002398A (en) * 2008-06-23 2010-01-07 Horiba Ltd Analyzing device
JP2013096726A (en) * 2011-10-28 2013-05-20 Kddi Corp Apparatus, method, and program for measuring color density

Also Published As

Publication number Publication date
JP2739615B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
JP3645023B2 (en) Sample analysis method, calibration curve creation method, and analyzer using the same
JP4383860B2 (en) Biosensor and measurement method
JP4183308B2 (en) Apparatus and method for obtaining clinically important analyte ratios
US5569608A (en) Quantitative detection of analytes on immunochromatographic strips
JP5012507B2 (en) Analysis apparatus and analysis method
JPH0278934A (en) Test carrier for analyzing and measuring component of liquid sample
CN105510577A (en) Method for rapidly and quantitatively detecting multiple analytes in blood by adopting multi-point calibration
US4884213A (en) Method for quantitative analysis of analyte in liquid sample using analytical element
KR100461889B1 (en) Method of measurement in chromatography
US5166079A (en) Analytical assay method
JPWO2002052265A1 (en) Specific binding analysis method and specific binding analyzer used for the same
JPH076917B2 (en) Calibration method correction method in dry analysis method
JPH0526865A (en) Measuring method using dry process analysis element and dry process analysis element
JP5073507B2 (en) Multiple immunochemical assays on elements
EP0603958A1 (en) Improvement of the dynamic range in specific binding assays
JP2739615B2 (en) Setting method of calibration curve in quantification method using dry immunoassay element
JP2000258418A (en) Measuring method by using immuno-chromatography and test body analytical tool used therein
JP3481894B2 (en) Measurement method using immunological chromatographic method
JP3779048B2 (en) Dry analytical element for the determination of cholinesterase
JP2521074B2 (en) How to regulate the immune response
Elmlinger Laboratory techniques, quality management and clinical validation of hormone measurement in endocrinology
JP2009294116A (en) Biosensor
JPH0283448A (en) Immunoassay
JPH01107137A (en) Liquid analysis
JPH01107136A (en) Liquid analysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees