JPH05189546A - Device for discriminating authenticity of fingerprint featured point - Google Patents

Device for discriminating authenticity of fingerprint featured point

Info

Publication number
JPH05189546A
JPH05189546A JP4002587A JP258792A JPH05189546A JP H05189546 A JPH05189546 A JP H05189546A JP 4002587 A JP4002587 A JP 4002587A JP 258792 A JP258792 A JP 258792A JP H05189546 A JPH05189546 A JP H05189546A
Authority
JP
Japan
Prior art keywords
ridge
adjacent
feature point
ridges
fingerprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4002587A
Other languages
Japanese (ja)
Other versions
JP2833313B2 (en
Inventor
Ken Yokoyama
乾 横山
Taku Niizaki
卓 新崎
Seigo Igaki
誠吾 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4002587A priority Critical patent/JP2833313B2/en
Publication of JPH05189546A publication Critical patent/JPH05189546A/en
Application granted granted Critical
Publication of JP2833313B2 publication Critical patent/JP2833313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Collating Specific Patterns (AREA)

Abstract

PURPOSE:To accurately discriminate the authenticity of the feature points of fingerprints. CONSTITUTION:This authenticity discriminating device discriminates the authenticity of the featured points of rising lines of the fingerprint extracted out of a fingerprint image. The device is provided with an adjacent rising line detecting part 7 to detect the rising lines adjacent to the featured points, a rising line number detecting part 8 which scans a specific area including a featured point and its adjacent rising line and detects the number of rising lines with each scanning, and a discriminating part 9 which discriminates the authenticity of the featured points based on the change of the number of rising lines detected by the part 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、指紋登録時における指
紋特徴点の真偽判定装置に関する。個人識別の方法とし
て指紋が広く使用されている。指紋を形成する隆線に
は、途中で途切れる部分(端点)と、2本に別れる部分
(分岐点)があり、これらは特徴点と呼ばれる。そし
て、この特徴点の位置や種類を個人の情報として登録し
ておき、これと照合することにより個人を識別してい
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an authenticity determination device for fingerprint feature points during fingerprint registration. Fingerprints are widely used as a method of personal identification. The ridge line forming the fingerprint has a part (end point) that is interrupted in the middle and a part (branch point) that is divided into two parts, which are called feature points. Then, the position and type of this characteristic point are registered as personal information, and the individual is identified by collating with this.

【0002】この特徴点を登録する際、指紋画像から特
徴抽出マスクなどを用いて特徴点を抽出するが、抽出さ
れた特徴点には、指に生じた汗等により隆線が短絡して
発生する偽の分岐点とか、乾いた指等により隆線に亀裂
を生じる偽の端点など、本来の指紋の特徴ではない、偽
の特徴点が発生しやすい。このため、抽出した特徴点の
真偽を正確に判定することが求められている。
When registering the feature points, the feature points are extracted from the fingerprint image using a feature extraction mask or the like. The extracted feature points are short-circuited with a ridge due to sweat or the like on the finger. False feature points that are not the original features of the fingerprint, such as false branch points and false endpoints that cause cracks in the ridge due to a dry finger are likely to occur. Therefore, it is required to accurately determine the authenticity of the extracted feature points.

【0003】[0003]

【従来の技術】図15は従来例の端点真偽判定方法説明
図、図16は従来例の分岐点真偽判定方法説明図である。
なお、指紋特徴点の登録、照合方法については、例えば
「ホログラフィック指紋センサを用いた個人照合装置」
電子情報通信学会資料PRU−88−38に記載されて
いる。
2. Description of the Related Art FIG. 15 is an explanatory diagram of a conventional end point authenticity determination method, and FIG. 16 is an explanatory diagram of a conventional branch point authenticity determination method.
For information on registration and verification of fingerprint feature points, refer to "Personal verification device using holographic fingerprint sensor", for example.
It is described in PRU-88-38 of the Institute of Electronics, Information and Communication Engineers.

【0004】図15は指紋画像の隆線の一部を示したもの
で、抽出された端点Aの真偽を判定する場合、端点Aと
端点Aの近傍に存在する他の端点Bとで構成される方形
領域中に他の隆線が存在するか否かを検証し、15図(b)
に示すように、存在しなければ端点Aを偽の端点と判定
し、15図(a) のように、存在すれば、近傍の他の端点に
対して同様の検証を行い、検証したすべての端点に対し
てそれぞれ隆線が存在すれば、端点Aを真の端点と判定
する。
FIG. 15 shows a part of a ridge of a fingerprint image, which is composed of the end point A and another end point B existing in the vicinity of the end point A when the authenticity of the extracted end point A is judged. It is verified whether there are other ridges in the rectangular area shown in Fig. 15 (b).
If it does not exist, the end point A is judged as a false end point, and if it exists, the other end points in the vicinity are subjected to the same verification as shown in Fig. 15 (a). If a ridge exists for each end point, the end point A is determined to be a true end point.

【0005】図16は、分岐点の真偽を判定する1例を示
したもので、判定対象の分岐点Cとその近傍にある分岐
点Dとの中点Pを求め、その近傍領域内に隆線が存在す
れば分岐点Cを偽の分岐点と判定し、隆線が存在しなけ
れば、このような判定を近傍のすべての分岐点に対して
行い、それぞれ隆線が存在しなければ、分岐点Cを真の
分岐点と判定する。
FIG. 16 shows an example of judging the truth of a branch point. A midpoint P between a branch point C to be judged and a branch point D in the vicinity of the branch point C is obtained, and the midpoint P is set in the vicinity area. If there is a ridge, the branch point C is determined to be a false branch point, and if there is no ridge, such a determination is made for all nearby branch points, and if no ridge exists. , The branch point C is determined to be a true branch point.

【0006】[0006]

【発明が解決しようとする課題】特徴点の真偽判定方法
は、近くに存在する他の特徴点との関係によって判定し
ているが、上記説明した従来の判定方法では、着目する
特徴点の近傍にあるすべての特徴点との関係をそれぞれ
調べなければならず、特徴点の周囲が複雑な形状をして
いる場合、真の特徴点、特に分岐点の場合、真の特徴点
を偽の特徴点と判定する可能性があるといった課題があ
る。
The authenticity determination method for a feature point is based on the relationship with other nearby feature points, but in the conventional determination method described above, the feature point of interest It is necessary to investigate the relations with all the feature points in the vicinity, and if the feature points have a complicated shape, the true feature points, especially in the case of branch points, the true feature points are There is a problem that it may be determined as a feature point.

【0007】本発明は、上記課題に鑑み、正確に特徴点
の真偽を判定する指紋特徴点の真偽判定装置を提供する
ことを目的とする。
In view of the above problems, it is an object of the present invention to provide a fingerprint feature point authenticity determination device for accurately determining the authenticity of a feature point.

【0008】[0008]

【課題を解決するための手段】図1の一実施例の構成図
より、対応する機能部分を抽出して説明する。7は隣接
隆線検出部であって、指紋画像上、特徴点に隣接する隣
接隆線を検出する。8は隆線本数検出部であって、特徴
点と隣接隆線とを含む所定の領域内を走査して走査ごと
の隆線本数を検出する。9は判定部で、検出された該隆
線本数の変化により特徴点の真偽を判定する。
A corresponding functional portion will be extracted from the configuration diagram of one embodiment shown in FIG. An adjacent ridge detecting unit 7 detects an adjacent ridge adjacent to the feature point on the fingerprint image. A ridge line number detection unit 8 scans a predetermined area including the feature points and the adjacent ridge lines to detect the number of ridge lines for each scan. A determination unit 9 determines the authenticity of the feature point based on the detected change in the number of ridges.

【0009】[0009]

【作用】隣接隆線検出部7は、判定対象の特徴点に隣接
する隣接隆線を検出する。これは、例えば、指紋隆線上
の特徴点における隆線方向を求め、この隆線方向に直交
する方向を探索し、所定の距離内で最初に検出した指紋
隆線を隣接隆線とする等の方法による。次に隆線本数検
出部8は、特徴点と検出された隣接隆線とを含む所定領
域内を、例えば隆線方向に対して直交する方向に走査
し、走査ごとの隆線本数を検出する。そして、判定部9
は、検出された隆線本数の変化により特徴点の真偽を判
定する。
The adjacent ridge detector 7 detects an adjacent ridge adjacent to the feature point to be determined. For example, the ridge direction at a feature point on the fingerprint ridge is obtained, a direction orthogonal to this ridge direction is searched, and the fingerprint ridge detected first within a predetermined distance is set as an adjacent ridge. It depends on the method. Next, the ridge line number detection unit 8 scans a predetermined region including the feature points and the detected adjacent ridge lines, for example, in a direction orthogonal to the ridge direction, and detects the number of ridge lines for each scan. . Then, the determination unit 9
Determines the authenticity of the feature point based on the change in the number of detected ridges.

【0010】図2は端点の真偽を判定する場合を示した
もので、図2(a) では、検出された隆線本数が3本から
2本に変化しており、これは所定範囲内で隆線方向に対
となる端点が存在しないことを表しているから真の端点
と判定する。一方、図2(b)では、隆線本数が3本→2
本→3本と変化しており、これは所定領域内に対となる
端点が存在する(指が乾燥するなどして端点が途切れて
いる)ことを表しているから、偽の端点と判別する。
FIG. 2 shows the case of determining the authenticity of an end point. In FIG. 2 (a), the number of detected ridges changes from 3 to 2, which is within a predetermined range. Indicates that there is no pair of end points in the ridge direction, so it is determined to be a true end point. On the other hand, in Fig. 2 (b), the number of ridges is 3 → 2
The number is changed from book to three, which means that there is a pair of end points in the predetermined area (the end points are interrupted due to the finger being dried, etc.), and thus it is determined as a false end point. ..

【0011】以上のごとく、特徴点と隣接隆線とを含む
所定領域内を走査し、隆線本数の変化を判別することに
より、正確に特徴点の真偽を判別することができる。
As described above, the authenticity of the feature points can be accurately determined by scanning the predetermined area including the feature points and the adjacent ridges and determining the change in the number of ridges.

【0012】[0012]

【実施例】図1は一実施例の構成図、図3は特徴点の真
偽判定動作フローチャート図、図4は隣接隆線検出動作
フローチャート図、図5は隣接隆線を1本用いた場合の
端点の真偽判定例を表す図、図6は隣接隆線を1本用い
た場合の分岐点の真偽判定例を表す図、図7は隣接隆線
を2本用いた場合の端点の真偽判定例を表す図、図8は
隣接隆線を2本用いた場合の分岐点の真偽判定例を表す
図、図9は隣接隆線を1本用いた場合の端点を基準とし
た真偽判定例を表す図、図10は隣接隆線を2本用いた
場合の端点を基準とした真偽判定例を表す図、図11は
隣接隆線検出の原理図、図12は隆線本数検出方法例を
表す図、図13は端点に出会った場合の追跡例を表す
図、図14は分岐点に出会った場合の追跡例を表す図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an embodiment, FIG. 3 is a flow chart of authenticity determination operation of a feature point, FIG. 4 is a flow chart of adjacent ridge detection operation, and FIG. 5 is a case where one adjacent ridge is used. FIG. 6 is a diagram showing an example of true / false determination of end points of FIG. 6, FIG. 6 is a diagram showing an example of true / false determination of branch points when one adjacent ridge is used, and FIG. FIG. 8 is a diagram showing an authenticity determination example, FIG. 8 is a diagram showing an authenticity determination example of a branch point when two adjacent ridges are used, and FIG. 9 is based on an end point when one adjacent ridge is used. FIG. 10 is a diagram showing an example of authenticity determination, FIG. 10 is a diagram showing an example of authenticity determination based on an end point when two adjacent ridges are used, FIG. 11 is a principle diagram of adjacent ridge detection, and FIG. 12 is a ridge. FIG. 13 is a diagram showing an example of the number detection method, FIG. 13 is a diagram showing a tracking example when an end point is encountered, and FIG. 14 is a diagram showing a tracking example when a branch point is encountered.

【0013】図1は、指紋登録装置の主要部を示したも
のである。図中、1は指紋入力装置で、光学的に指から
指紋画像を検出する。2はA/D変換器で、指紋入力装
置1から出力される指紋画像のイメージデータをディジ
タル変換する。3は2値化回路で、A/D変換された指
紋画像を2値化する。4は画像メモリで、2値化された
登録用指紋画像が格納される。5は特徴点検出部で、登
録用指紋画像よりマスク等を用いて特徴点を抽出し、且
つ端点か分岐点かを判別する。6は真偽判定装置で、抽
出された特徴点の隣接隆線を検出する隣接隆線検出部
7、所定領域を走査し、走査ごとの隆線本数を検出する
隆線本数検出部8、真偽を判定する判定部9より構成さ
れる。10は登録部で、抽出された真の特徴点を中心とし
て窓状に指紋画像を切出し、辞書データとして登録す
る。
FIG. 1 shows a main part of a fingerprint registration device. In the figure, reference numeral 1 is a fingerprint input device, which optically detects a fingerprint image from a finger. An A / D converter 2 digitally converts the image data of the fingerprint image output from the fingerprint input device 1. A binarization circuit 3 binarizes the A / D-converted fingerprint image. An image memory 4 stores a binarized registration fingerprint image. A feature point detection unit 5 extracts feature points from the registration fingerprint image using a mask or the like, and determines whether they are end points or bifurcation points. An authenticity determination device 6 includes an adjacent ridge detection unit 7 that detects the adjacent ridge lines of the extracted feature points, a ridge line number detection unit 8 that scans a predetermined area, and detects the number of ridge lines for each scan. It is composed of a determination unit 9 for determining false. A registration unit 10 cuts out a fingerprint image in a window shape around the extracted true feature point and registers it as dictionary data.

【0014】以上の構成において、図3に示すように、
指紋画像を2値化した後、特徴点を抽出し、その各特徴
点について、隣接隆線を検出し、所定領域内を走査して
各々隆線本数を検出し、その変化に基づいて真偽を判定
する。
In the above structure, as shown in FIG.
After binarizing the fingerprint image, feature points are extracted, adjacent ridges are detected for each of the feature points, the number of ridges is detected by scanning within a predetermined area, and true / false based on the change. To judge.

【0015】図4、図11は、隣接隆線を求める方法の
1例を示したものである。先ず、特徴点における隆線方
向を求め、続いてその隆線方向と直交する方向を求め
る。この直交方向に対して、所定距離内で最初に発見し
た隆線を隣接隆線とする。
FIG. 4 and FIG. 11 show an example of a method for finding adjacent ridges. First, the ridge direction at the feature point is obtained, and then the direction orthogonal to the ridge direction is obtained. The ridge first discovered within a predetermined distance with respect to this orthogonal direction is defined as an adjacent ridge.

【0016】図12は隆線本数を検出するための走査方
法の1例を示したもので、図12(a) は、1 本の隣接隆
線を用いる場合に隆線方向に直交する方向(直交方向)
に対して平行に走査する場合を、図12(b) は、2本の
隣接隆線を用いる場合に、それぞれの隣接隆線を所定間
隔で追跡し、その追跡点を結ぶ方向に走査する点を示し
たものである。いずれにしても、走査方向は特に限定さ
れるものではなく、指紋画像上、走査して、その走査線
上の隆線本数をそれぞれ検出する。
FIG. 12 shows an example of a scanning method for detecting the number of ridges, and FIG. 12 (a) shows a direction orthogonal to the ridge direction when one adjacent ridge is used ( (Orthogonal direction)
FIG. 12 (b) shows the case of scanning in parallel with respect to each other, when two adjacent ridges are used, each adjacent ridge is traced at a predetermined interval, and scanning is performed in the direction connecting the trace points. Is shown. In any case, the scanning direction is not particularly limited, and the fingerprint image is scanned to detect the number of ridges on the scanning line.

【0017】図13は、隣接隆線追跡中に端点Eに出会
った場合を示したもので、その端点Eにおける隆線方向
で、且つ所定範囲内に端点F(対となる端点)があれ
ば、この端点Fより追跡を再開する。つまり、隣接隆線
に偽の端点E,Fがある場合、これを判別して走査す
る。
FIG. 13 shows a case where an end point E is encountered during tracking of adjacent ridges, and if there is an end point F (a pair of end points) in the ridge direction at the end point E and within a predetermined range. , The tracking is restarted from this end point F. That is, if there are false end points E and F on the adjacent ridge, they are discriminated and scanned.

【0018】図14は、隣接隆線追跡中に分岐点Gに出
会った場合を示したもので、以後、特徴点側の隆線Hを
追跡する。以下、図5〜図10を用いて、追跡走査する
範囲例を説明する。
FIG. 14 shows a case where a branch point G is encountered during the tracking of adjacent ridges, and thereafter, the ridge line H on the feature point side is tracked. Hereinafter, an example of a range for tracking and scanning will be described with reference to FIGS.

【0019】図5は、判定対象の端点Kの両側の隣接隆
線I,Jのうちのいずれか一方の隣接隆線(I)から端
点K側に対して、少なくとも端点Kを含む所定の距離a
までの範囲で、且つ隆線方向に対して、端点Kの両側の
所定範囲2m(mの値は、乾いた指から通常発生する偽
の端点間隔の最大値等、実用範囲で定める)の領域を、
隣接隆線I上を追跡しつつ走査する場合を示したもの
で、端点Kが真の場合(図5(b))は、隆線本数の変化
は2mの範囲で2本→1本と変化し、端点Kが偽の場合
(図5(b))は、隆線本数は2本→1本→2本と変化す
る。そしてこの変化により、判定部9は端点Kの真偽を
判定する。
FIG. 5 shows a predetermined distance including at least the end point K from the adjacent end ridge (I) on either side of the adjacent ridges I and J on both sides of the end point K to be judged. a
Within a range of up to 2 m on both sides of the end point K with respect to the ridge direction (the value of m is determined by the practical range such as the maximum value of the false end point interval that normally occurs from a dry finger) To
The figure shows the case of scanning while tracking on the adjacent ridge I. When the end point K is true (FIG. 5 (b)), the number of ridges changes from 2 to 1 within a range of 2 m. However, when the end point K is false (FIG. 5B), the number of ridges changes from 2 to 1 to 2. Then, based on this change, the determination unit 9 determines the authenticity of the end point K.

【0020】図6は、判定対象の分岐点Lに対して、図
5と同じように、a×2mを走査して、各走査ごとの隆
線本数を検出する場合を示したものである。この場合、
分岐点Lが真の場合(図5(a))は隆線本数は2本のまま
で変化せず、分岐点Lが偽の場合(図5(b) )は隆線本
数が2本→3本→2本と変化するので、この変化を検出
して真偽を判定する。
FIG. 6 shows a case in which the branch point L to be judged is scanned a × 2 m in the same manner as in FIG. 5, and the number of ridges for each scan is detected. in this case,
When the branch point L is true (Fig. 5 (a)), the number of ridges remains unchanged, and when the branch point L is false (Fig. 5 (b)), the number of ridges is 2 → Since it changes from 3 to 2, the change is detected and the authenticity is determined.

【0021】図7は、両側の隣接隆線(I,J)間を走
査して端点Kの真偽を判定する場合を示したもので、隆
線方向に対しては、図5と同様に、端点Kを中心として
2mの範囲を走査する。この場合、7図(a) のように、
真の端点の場合は、隆線本数は3本→2本と変化し、偽
の端点の場合は、7図(b) のごとく、隆線本数は、3本
→2本→3本に変化する。
FIG. 7 shows a case in which the ridges (I, J) on both sides are scanned to determine the authenticity of the end point K. Similar to FIG. 5, the ridge direction is the same as in FIG. , A range of 2 m is scanned centering on the end point K. In this case, as shown in Fig. 7 (a),
In the case of a true end point, the number of ridges changes from 3 to 2, and in the case of a false end point, the number of ridges changes from 3 to 2 → 3 as shown in Fig. 7 (b). To do.

【0022】図8は、図7の場合と同じ範囲を走査して
分岐点Lの真偽を判定する場合を示したもので、分岐点
Lが真の場合は、8図(a) のごとく、隆線本数は3本→
4本に変化するが、偽の場合は、図8(b) に示すよう
に、隆線本数は3本→4本→3本と変化する。
FIG. 8 shows a case where the same range as in FIG. 7 is scanned to determine the truth of the branch point L. When the branch point L is true, as shown in FIG. 8 (a). , 3 ridges →
The number of ridges changes to four, but in the case of false, the number of ridges changes as 3 → 4 → 3 as shown in FIG. 8B.

【0023】図9は、隆線方向の走査範囲を、判定対象
の端点Kを基準として、mまでとした方法(特徴点を抽
出するマスクにより、その方向を決定する)を示すもの
で、隆線本数の検出動作が図5の場合に比較して半分で
済む効果がある。なお、隆線本数の変化は図5の場合と
同じである。
FIG. 9 shows a method in which the scanning range in the ridge direction is set up to m with reference to the end point K to be determined (the direction is determined by a mask for extracting characteristic points). The number of lines can be detected in half as compared with the case of FIG. The change in the number of ridges is the same as in the case of FIG.

【0024】図10は、2本の隣接隆線間を走査する場
合、隆線方向を判定対象の端点Kを基準として一方にm
まで走査する場合を示したもので、図6に示した場合と
比較して、半分の走査時間で済む効果がある。なお、こ
の場合も隆線本数の変化は、図6の場合と同じである。
In FIG. 10, when scanning is performed between two adjacent ridges, the ridge direction is set to one side with reference to the end point K to be determined.
This shows the case where the scanning is performed up to, and there is an effect that the scanning time is half that of the case shown in FIG. In this case as well, the change in the number of ridges is the same as in the case of FIG.

【0025】なお、すでに説明したように、走査方向は
隆線方向に対して略直角であればよく、また、端点,分
岐点に出会った場合は、図13,図14のごとく判定し
て追跡を続行すればよい。
As already described, the scanning direction may be substantially perpendicular to the ridge direction, and when an end point or a branch point is encountered, it is determined and traced as shown in FIGS. 13 and 14. You can continue.

【0026】以上のごとく、近傍の特徴点との関係をそ
れぞれ検索して真偽を判定する方法と比較して、1回の
走査で判定でき、且つ指紋隆線が複雑な場合でも正確に
判定できるから、指紋登録が正確に行なえる効果があ
る。
As described above, in comparison with the method of searching the relations with the neighboring feature points to judge the authenticity, the judgment can be made by one scanning and the judgment can be made accurately even if the fingerprint ridges are complicated. As a result, fingerprint registration can be performed accurately.

【0027】[0027]

【発明の効果】以上説明したように、本発明の指紋特徴
点の真偽判定装置は、特徴点の隣接隆線に沿う所定領域
の隆線本数を検出し、その本数変化に基づいて真偽を判
定するものであるから、正確に真偽が判定でき、従って
偽の特徴点が登録されることが防止できるから指紋照合
における効果は多大である。
As described above, the fingerprint feature point authenticity determination device of the present invention detects the number of ridges in a predetermined area along the adjacent ridges of the feature point, and the authenticity is determined based on the change in the number. Is true, it is possible to accurately determine the authenticity, and it is possible to prevent registration of false feature points, which is very effective in fingerprint collation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施例の構成図FIG. 1 is a configuration diagram of an embodiment.

【図2】 本発明の説明図FIG. 2 is an explanatory diagram of the present invention.

【図3】 特徴点の真偽判定動作フローチャート図FIG. 3 is a flowchart of an authenticity determination operation of a feature point.

【図4】 隣接隆線検出動作フローチャート図FIG. 4 is a flowchart of an adjacent ridge detection operation.

【図5】 隣接隆線を1本用いた場合の端点の真偽判定
例を表す図
FIG. 5 is a diagram illustrating an example of authenticity determination of an end point when one adjacent ridge is used.

【図6】 隣接隆線を1本用いた場合の分岐点の真偽判
定例を表す図
FIG. 6 is a diagram illustrating an example of true / false determination of a branch point when one adjacent ridge is used.

【図7】 隣接隆線を2本用いた場合の端点の真偽判定
例を表す図
FIG. 7 is a diagram illustrating an example of authenticity determination of an end point when two adjacent ridges are used.

【図8】 隣接隆線を2本用いた場合の分岐点の真偽判
定例を表す図
FIG. 8 is a diagram illustrating an example of true / false determination of a branch point when two adjacent ridges are used.

【図9】 隣接隆線を1本用いた場合の端点を基準とし
た真偽判定例を表す図
FIG. 9 is a diagram showing an example of authenticity determination based on an end point when one adjacent ridge is used.

【図10】 隣接隆線を2本用いた場合の端点を基準と
した真偽判定例を表す図
FIG. 10 is a diagram illustrating an example of authenticity determination based on an end point when two adjacent ridges are used.

【図11】 隣接隆線検出の原理図FIG. 11: Principle diagram of adjacent ridge detection

【図12】 隆線本数検出方法例を表す図FIG. 12 is a diagram showing an example of a method for detecting the number of ridges.

【図13】 端点にであった場合の追跡例を表す図FIG. 13 is a diagram illustrating a tracking example when the end point is

【図14】 分岐点に出会った場合の追跡例を表す図FIG. 14 is a diagram showing an example of tracking when a branch point is encountered.

【図15】 従来例の端点真偽判定方法説明図FIG. 15 is an explanatory diagram of a method for determining an end point authenticity of a conventional example.

【図16】 従来例の分岐点真偽判定方法説明図FIG. 16 is an explanatory diagram of a branch point authenticity determination method of a conventional example.

【符号の説明】[Explanation of symbols]

1 指紋入力装置 2 A/D変換器 3 2値化回路 4 画像メモリ 5 特徴点検出部 6 特徴点判定装置 7 隣接隆線検出部 8 隆線本数検出部 9 判定部 10 登録部 1 Fingerprint Input Device 2 A / D Converter 3 Binarization Circuit 4 Image Memory 5 Feature Point Detection Unit 6 Feature Point Judgment Device 7 Adjacent Ridge Detection Unit 8 Ridge Line Number Detection Unit 9 Judgment Unit 10 Registration Unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 指紋画像から抽出した指紋隆線の特徴点
の真偽を判定する指紋特徴点の真偽判定装置であって、 前記特徴点に隣接する隣接隆線を検出する隣接隆線検出
部(7) と、 該特徴点と前記隣接隆線とを含む所定の領域を走査し、
各走査ごとの隆線本数を検出する隆線本数検出部(8)
と、 検出された該隆線本数の変化に基づき該特徴点の真偽を
判定する判定部(9) とを設けたことを特徴とする指紋特
徴点の真偽判定装置。
1. A fingerprint feature point authenticity determination device for determining the authenticity of a feature point of a fingerprint ridge extracted from a fingerprint image, the adjacent ridge detection detecting an adjacent ridge line adjacent to the feature point. A part (7), scanning a predetermined area including the feature point and the adjacent ridge,
Ridge line number detection unit to detect the number of ridge lines for each scan (8)
And a determination unit (9) for determining whether the feature point is true or false based on the detected change in the number of ridges.
【請求項2】 特徴点の両側の隣接隆線のうちのいずれ
か一方の隣接隆線から特徴点側の方向に少なくとも該特
徴点を含む所定の距離までの範囲で、且つ隆線方向に対
して、該特徴点の両側の所定の範囲の領域の隆線本数
を、該隣接隆線を追跡しつつ該特徴点側に走査して検出
する隆線本数検出部であることを特徴とする請求項1記
載の指紋特徴点の真偽判定装置。
2. A range from at least one adjacent ridge line on both sides of the feature point in the direction of the feature point to at least a predetermined distance including the feature point and with respect to the ridge direction. And a ridge line number detection unit that detects the number of ridges in a predetermined range on both sides of the feature point by scanning toward the feature point while tracking the adjacent ridges. Item 1. A fingerprint feature point authenticity determination device according to Item 1.
【請求項3】 特徴点の両側の隣接隆線のうちのいずれ
か一方の隣接隆線から特徴点側の方向に少なくとも該特
徴点を含む所定の距離までの範囲で、且つ隆線方向に対
しては、該特徴点を基準として該特徴点の特徴を表す領
域側の所定範囲の隆線本数を、該隣接隆線を追跡しつつ
該特徴点側に走査して検出する隆線本数検出部であるこ
とを特徴とする請求項2記載の指紋特徴点の真偽判定装
置。
3. A range from at least one adjacent ridge line on both sides of the feature point in the direction toward the feature point to at least a predetermined distance including the feature point, and with respect to the ridge direction. Is a ridge line number detection unit that detects the number of ridges in a predetermined range on the side of the region representing the feature of the feature point by scanning to the feature point side while tracking the adjacent ridges. The authenticity determination device for fingerprint feature points according to claim 2, wherein
【請求項4】 該特徴点の両側に隣接する隣接隆線間
で、且つ隆線方向に対しては、該特徴点の両側の所定の
範囲の領域の隆線本数を該隣接隆線を追跡しつつ該隣接
隆線間を走査して検出する隆線本数検出部であることを
特徴とする請求項1記載の指紋特徴点の真偽判定装置。
4. The number of ridges between adjacent ridges adjacent to both sides of the feature point and in the ridge direction on both sides of the feature point is tracked as the number of ridges in the region. The authenticity determination device for fingerprint feature points according to claim 1, wherein the authenticity determination device is a ridge line number detection unit that detects by scanning between the adjacent ridge lines.
【請求項5】 該特徴点の両側に隣接する隣接隆線間
で、且つ隆線方向に対しては、該特徴点を基準として該
特徴点の特徴を表す領域側の所定範囲の隆線本数を、該
隣接隆線を追跡しつつ該隣接隆線間を走査して検出する
隆線本数検出部であることを特徴とする請求項4記載の
指紋特徴点の真偽判定装置。
5. The number of ridges between adjacent ridges adjacent to both sides of the feature point and in the ridge direction in a predetermined range on the side of the region representing the feature of the feature point with the feature point as a reference. 5. The authenticity determination device for fingerprint feature points according to claim 4, wherein is a ridge line number detecting unit that detects by scanning between the adjacent ridges while tracking the adjacent ridges.
【請求項6】 指紋隆線上の特徴点における隆線方向に
対して直交する方向に所定の距離内で最初に検出される
指紋隆線を隣接隆線とする隣接隆線検出部であることを
特徴とする請求項1記載の指紋特徴点の真偽判定装置。
6. An adjacent ridge detection unit in which a fingerprint ridge first detected within a predetermined distance in a direction orthogonal to a ridge direction at a feature point on the fingerprint ridge is an adjacent ridge. The authenticity determination device for fingerprint feature points according to claim 1.
【請求項7】 隆線方向に直交する方向に平行して走査
し隆線本数を検出する隆線本数検出部であることを特徴
点とする請求項1記載の指紋特徴点の真偽判定装置。
7. The authenticity determination device for fingerprint feature points according to claim 1, wherein the authenticity determination device for fingerprint feature points is a ridge line number detection unit that detects the number of ridge lines by scanning in a direction orthogonal to the ridge line direction. ..
【請求項8】 両側の隣接隆線を所定単位に追跡し、そ
の追跡点をそれぞれ結ぶことにより走査して隆線本数を
検出する隆線本数検出部であることを特徴とする請求項
4および請求項5記載の指紋特徴点の真偽判定装置。
8. A ridge line number detection unit for detecting the number of ridge lines by scanning adjacent ridge lines on both sides in a predetermined unit and connecting the trace points to scan the ridge lines. The authenticity determination device for fingerprint feature points according to claim 5.
【請求項9】 隣接隆線を追跡中に特徴点の一つである
分岐点と出会った場合、分岐した2本の隆線のうち、該
特徴点側に隣接する隆線を所定領域の境界として追跡し
走査する隆線本数検出部であることを特徴とする請求項
2および請求項3および請求項4および請求項5記載の
指紋特徴点の真偽判定装置。
9. When a ridge, which is one of the feature points, is encountered while tracking the adjacent ridge, the ridge adjacent to the feature point of the two ridges that have branched is a boundary of a predetermined area. The authenticity determination device for fingerprint feature points according to claim 2, claim 3, claim 4, and claim 5, wherein the ridge line number detector tracks and scans as.
【請求項10】 隣接隆線を追跡中に特徴点の一つであ
る端点に出会った場合、該端点における隆線方向を探索
して対となる端点が検出されたとき、この端点から追跡
を再開する隆線本数検出部であることを特徴とする請求
項2および請求項3および請求項4記載の指紋特徴点の
真偽判定装置。
10. When an end point, which is one of the feature points, is encountered while tracking an adjacent ridge, and when a pair of end points is detected by searching the ridge direction at the end point, tracking is started from this end point. The authenticity determination device for fingerprint feature points according to claim 2, claim 3 or claim 4, which is a ridge line number detector that restarts.
JP4002587A 1992-01-10 1992-01-10 Authenticator for fingerprint feature points Expired - Lifetime JP2833313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002587A JP2833313B2 (en) 1992-01-10 1992-01-10 Authenticator for fingerprint feature points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002587A JP2833313B2 (en) 1992-01-10 1992-01-10 Authenticator for fingerprint feature points

Publications (2)

Publication Number Publication Date
JPH05189546A true JPH05189546A (en) 1993-07-30
JP2833313B2 JP2833313B2 (en) 1998-12-09

Family

ID=11533512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002587A Expired - Lifetime JP2833313B2 (en) 1992-01-10 1992-01-10 Authenticator for fingerprint feature points

Country Status (1)

Country Link
JP (1) JP2833313B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929180B2 (en) 2001-08-10 2005-08-16 S-Staff Corporation Personal identification method and personal identification device
JP2010086546A (en) * 2000-03-31 2010-04-15 Fujitsu Ltd Fingerprint data synthesis apparatus
US7853047B2 (en) 2005-08-09 2010-12-14 Nec Corporation System for recognizing fingerprint image, method and program for the same
JP2011209836A (en) * 2010-03-29 2011-10-20 Nec Soft Ltd Device, method and program for determining fingerprint feature point classification
JP2018524663A (en) * 2015-09-08 2018-08-30 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 Fingerprint ridge point recognition method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102668332B1 (en) 2017-02-24 2024-05-23 삼성디스플레이 주식회사 Method and apparatus for recognizing finger print

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086546A (en) * 2000-03-31 2010-04-15 Fujitsu Ltd Fingerprint data synthesis apparatus
US6929180B2 (en) 2001-08-10 2005-08-16 S-Staff Corporation Personal identification method and personal identification device
US7853047B2 (en) 2005-08-09 2010-12-14 Nec Corporation System for recognizing fingerprint image, method and program for the same
US8019132B2 (en) 2005-08-09 2011-09-13 Nec Corporation System for recognizing fingerprint image, method and program for the same
JP2011209836A (en) * 2010-03-29 2011-10-20 Nec Soft Ltd Device, method and program for determining fingerprint feature point classification
JP2018524663A (en) * 2015-09-08 2018-08-30 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 Fingerprint ridge point recognition method and apparatus

Also Published As

Publication number Publication date
JP2833313B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
EP1093079B1 (en) Apparatus and method for matching fingerprint
US20030063782A1 (en) Method and apparatus to reduce false minutiae in a binary fingerprint image
JPH05189546A (en) Device for discriminating authenticity of fingerprint featured point
JP4776385B2 (en) Fingerprint image generator
US6845914B2 (en) Method and system for verifying transitions between contrasting elements
JP3287166B2 (en) Distance measuring device
JP2734245B2 (en) Image feature extraction method and apparatus
JP3466899B2 (en) Character recognition device and method, and program storage medium
JP2864685B2 (en) Fingerprint data registration device
JP2630261B2 (en) Character recognition device
JP2600680B2 (en) Personal verification device
JP2871161B2 (en) Pseudo feature point identification method
JPH09147113A (en) Fingerprint collating method and device therefor
JPH09330408A (en) Fingerprint collating device
JP3067822B2 (en) Pattern identification method
JP2943814B2 (en) Fingerprint image registration method
JP3033595B2 (en) Fingerprint image registration method
JP3628949B2 (en) Fingerprint verification device
JP2828820B2 (en) Fingerprint collation device
JPH0235577A (en) Individual certifying device
JP3009542B2 (en) Fingerprint collation processor
JPH01314384A (en) Fingerprint image bridge eliminating device
JP2001331837A (en) Method and device for discriminating coin
Ponnarasi et al. Estimating the Impact of Minutia Extraction Algorithms in Fingerprint Recognition
JPS59212701A (en) Position recognizing method using pattern matching

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901