JPH0518939B2 - - Google Patents

Info

Publication number
JPH0518939B2
JPH0518939B2 JP59152145A JP15214584A JPH0518939B2 JP H0518939 B2 JPH0518939 B2 JP H0518939B2 JP 59152145 A JP59152145 A JP 59152145A JP 15214584 A JP15214584 A JP 15214584A JP H0518939 B2 JPH0518939 B2 JP H0518939B2
Authority
JP
Japan
Prior art keywords
fiber
ground
fiber structure
fibers
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152145A
Other languages
Japanese (ja)
Other versions
JPS6131241A (en
Inventor
Tadao Shikanuma
Tomoaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15214584A priority Critical patent/JPS6131241A/en
Publication of JPS6131241A publication Critical patent/JPS6131241A/en
Publication of JPH0518939B2 publication Critical patent/JPH0518939B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は構造材料として適した立体構造を有す
る繊維構造体に関する。より詳しくは繊維構造体
の中に表裏いづれか一方又は両方に連通する複数
の空〓が設けられた繊維構造体及びその空〓に土
木工事用等の各種材料を保有することができる立
体構造を有する繊維構造体に関する。 〔従来の技術〕 建築工事を含む土木工事等においてアスフアル
ト、モルタル、砂、砂利、土あるいはこれらの混
合物から成る土木材料を補強するために繊維材料
を用いることが知られている。しかしこの分野に
用いられる繊維材料は主として布帛状物、すなわ
ち二次元構造を有する識編物あるいは不織布であ
つて、補強される土木材料等に対して布帛状物の
表面を貼り合せることによつて面で保持、あるい
は補強されるにすぎない。そのためにこれら布帛
状物によつて保持・補強される土木材料等の層は
相対的に薄く、したがつて厚みのある保持・補強
等を行うためには、複数枚の布帛状物を用いてこ
れらを積層せざるを得なかつた。 さらに、従来の様な二次元構造の織編物あるい
は不織布では、厚み方向を補強する繊維がないた
め、厚み方向に加わる力をクツシヨン性をもつて
支えることができず、従つてクツシヨン材として
好適な繊維構造体はなかつた。 このように、近年厚みをもつて各種材料を充
填・保持したり補強することのできる繊維構造体
に対する要求が強いが、現在それを充足する繊維
構造体は出現していない。 〔発明が解決しようとする課題〕 以上から明らかなよつり、従来公知の二次元構
造の布帛状物ではこれらを積層しなければ厚みの
ある保持、補強を行うことができず、又施工上の
効率も悪いという問題点を有する。本発明はこの
ような問題点を解決して、厚みのある保持補強層
を形成することのできる繊維構造体を提供するこ
とを目的とする。 〔課題を解決するための手段〕 本発明者等は、前記問題点を解決すべく鋭意研
究の結果、複数の空〓が設けられている繊維構造
体を作ること、さらに、その空〓によつて各種材
料を繊維構造体に保持させることによつて、前記
問題点を解決し得ることを見出し本発明に到達し
た。 すなわち本発明の目的は表裏2枚の地組織と、
その地組織を連結する連結部から成る立体構造を
有する繊維構造体であつて、前記地組織の少くと
も一方が繊維占有率が10〜80%であるように複数
の糸によつて形成され、それによつて前記繊維構
造体に表裏いづれか一方又は両方に連通する複数
の空〓が設けられていることを特徴とする立体構
造を有する繊維構造体によつて達成される。 本発明の繊維構造体は繊維占有率が10〜80%に
形成された地組織が他の地組織から連結部によつ
て立上つて配置されているので、この繊維構造体
には前記連結部を構成する複数の糸条から成る壁
状体が線状又は畝状あるいは格子状又は蜂巣状に
配置されることになり、したがつて隣接する壁状
体との間に多数の空〓が設けられることになる。
この空〓は繊維占有率が10〜80%に形成された地
組織が前記繊維構造体の片面のみに設けられた時
には孔状又は溝状となり、繊維占有率が10〜80%
に形成された地組織が前記繊維構造体の両面に設
けられたときには貫通孔となる。 本明細書で云う繊維占有率とは地組織を構成す
る繊維が占める面積比率を意味する。すなわち1
インチ四方(2.54cm×2.54cm=6.45cm2)の面積当
りの地組織を構成する繊維が占める面積比率とし
て示せば繊維占有率は下記の式によつて算出され
る。 N:1インチ四方内の構成する繊維種毎の糸本
数(本/inch2) d:構成する繊維種毎の糸の直径(cm) d′:地組織中の交叉点における他の糸の直径
(cm) L:1インチ四方内の構成する繊維種毎の1本
の糸の長さ(cm)…織物などの糸が直行し
ている場合は2.54、編物などの糸が湾曲し
ている場合は、1インチ間にある繊維長を
測定してその値をとる n:1インチ四方内の交叉点の数、 〓:織物の場合の経糸、緯糸等使用する糸の種
類毎に計算しそれの合計を出す 繊維占有率(%)=(ΣL×N×d)−n×d×d
′/6.45×100 前記繊維占有率は表裏2枚の地組織の少くとも
一方が10〜80%、より好ましくは20〜70%である
とよい。繊維占有率が80%を越えると前記空〓の
量も極度に小さくなり、繊維構造体としての充分
な保持・補強効果を発揮することができず、さら
に、充填される各種材料(以下充填材と称す)の
充填量が少くなり充分な保持・補強効果を発揮す
ることができない。一方繊維占有率が10%以下で
あると前記壁状体が薄くなつたり、壁状体の間隔
が広くなりすぎたりして繊維構造体としての厚み
のある保持・補強効果が得られない。さらに、空
〓内に充填材を確実に保持することができなくな
るので好ましくない。 前記繊維占有率を10〜80%に変更する手段とし
ては、(イ)地組織を構成する糸条の本数を増減す
る、(ロ)地組織の構成密度を増減する、(ハ)用いる糸
条の太さを変える、等の手段を単独又は2つ以上
併用して行えばよい。 本発明の繊維構造体の表裏2枚の地組織は確実
に連結部によつて結合されている必要がある。併
しその結合密度は地組織の組織に応じて選定すれ
ばよく、すなわち繊維構造体で充填材を保持、補
強する際に一方の地組織が他の地組織から分離さ
れる事がない程度で選定すればよい。 本発明の繊維構造体の連結部は表裏2枚の地組
織の間を実質的に垂直に連結して前記空〓を繊維
構造体の表面に対して実質的に垂直に配置するよ
うに構成されていることがより好ましい。 前記連結部から成る壁状体から成る空〓の深さ
は少くとも1cm以上10cm程度あることが好ましく
通常は3〜5cmに形成される。しかし空〓の深さ
は、繊維構造体が用いられる用途に応じて任意に
設定して用いればよい。 なお本発明の繊維構造体の表裏2枚の地組織の
少くとも一方の地組織は繊維占有率が10〜80%に
形成される必要がある。しかしながら一方の地組
織だけが10〜80%の繊維占有率のある地組織であ
る場合の他の地組織については任意の構成、すな
わちどのような繊維占有率を有するものであつて
も連結部と結合し得る布帛状物であればよい。し
たがつてその布帛状物は織物、編物さらに不織シ
ート等を貼合せたものも含むものとする。 本発明の繊維構造体は二層構造を有する布帛状
物を製造することのできる製造装置を用いること
によつて製造することができる。例えば二重織織
機、二重の針床を有する経編機等を用いればよ
い。 本発明の繊維構造体を構成する素材は本発明の
繊維構造体の用途に応じて選定すればよい。例え
ば強度の補強効果が長期間保持される用途には高
価であつても強度が強く且つ耐久力のある素材を
用いればよく、それ程高い性能よりも安価・大量
供給が望まれる場合には繊維構造体として安価に
提供できる素材を用いればよい。したがつて素材
としては例えば、ポリエチレンテレフタレート、
ポリブチレンテレフタレートなどのポリエステル
系繊維;ナイロン6、66、46などのポリアミド
系;アラミド系繊維;ポリアクリロニトリル系繊
維;ポリエチレン、ポリプロピレンなどのポリオ
レフイン系繊維;ビスコース、アセテート、キユ
プラなどのレーヨン系繊維;綿、羊毛、麻などの
天然繊維;炭素繊維;ガラス、金属などの無機系
繊維;及び/又はこれらの混合繊維、など、又は
必要ならば針金を用いてもよい。前記繊維構造体
はこれら素材を用いた短繊維紡績糸、扁平糸を含
む長繊維、あるいはこれらの複合糸を用いて前述
のように編織加工等によつて製造される。必要あ
れば片方の地組織を前述の素材を用いて不織布で
作り、これをベースとして繊維構造体を製造して
もよい。 又本発明の繊維構造体の連結部は、繊維構造体
に剛性と厚みを与えるために剛性の高い素材を用
いるのが好ましい。したがつて前述の素材の中か
ら自由に選定することができるが、より好ましく
は例えばポリエステル、ポリアミド、ポリオレフ
インなどの有機モノフイラメント糸、無機繊維、
さらに必要あれば針金などを用いると更に良い。 なお本発明の繊維構造体は前述のようにその素
材として必要あれば針金等の金属素材を用いるこ
とも含むものとする。したがつて明細書中の用語
「繊維構造体」は金属素材を含めた広義のものを
意味するものとする。 前述のように、本発明の繊維構造体はその使用
用途から見て剛性、さらに反撥性を有することが
より好ましい。反撥性を持たせるには、モノフイ
ラメント等の剛性の高い素材を使用した前記繊維
体を樹脂加工することなく使用すれば良いし、剛
性を持たせるには前記繊維構造体を必要に応じて
任意の樹脂材料(熱硬化性樹脂、熱可塑性樹脂
等)を用いて樹脂加工すると好ましい。樹脂加工
によつて繊維構造体を構成する複数の糸又は繊維
の少くとも一部分が補強されることになり、繊維
構造体の剛性と反撥性が増加する。その結果繊維
構造体の複数の空〓への充填材料の充填を充分に
行うことができ保持・補強効果を高めることがで
きる。又剛性のある繊維構造体であれば例えば土
木、建築作業等の現場施工時での取扱いが一段と
容易になり、作業性が向上するという利点も併せ
有する。 前記樹脂材料としては各種のものを用いること
ができる。例えば、熱硬化性樹脂としては、尿
素/ホルマリン系;多価フエノール/ホルマリン
系;メチロールメラミンなどのメラミン系;メタ
クリル酸メチルなどのアクリル酸エステル系;グ
リセリンのグリシジルエーテルなどのエポキシ
系;ポリウレタン系;エチレン/酢酸ビニル共重
合体系;あるいはこれらの変性物、混合物などを
用いることができる。 又、熱加塑性樹脂としては、ナイロン6/66、
6/610、6/66/610などの低融点ポリアミド;
メトキシメチル化ナイロン6などのアルコール可
溶性ポリアミド;脂肪族又は芳香族ポリエステ
ル;ポリエチレン、ポリプロピレンなどのポリオ
レフイン;ポリビニルブチアール、酢酸ビニル、
ポリビニルアルコールなどのビニル系;塩化ビニ
ル、塩化ビニリデンなどの含ハロゲン等;などを
用いることができる。 樹脂液は通常使われている、有機アミン系、金
属塩系などの反応触媒;シリコーン、ワツクス、
フツ素などの撥水剤;燐系、窒素系などの難燃
剤;その他の仕上加工剤や、天然ゴム、スチレ
ン/ブタジエン、スチレン/ブタジエン/ビニル
ピリジン三元共重合体、ニトリル/ブタジエン、
クロロプレン、クロルヒドリン、フツ素系などの
ゴムラテツクス;などを併用しても良く、本発明
はこれらの物質を特定するものではない。 樹脂液の付与方法は、デイツピング法、コーテ
イング法、スプレー法などから選択すれば良く、
熱処理も、乾燥に引続き、例えば、150〜230℃×
2〜5分間で行なえば良い。該工程は、一回又は
二回以上の繰り返しを行なつても良い。 樹脂液は、溶剤系でも、水系でもよいが作業
性、作業環境などの点で水系が好ましい。 又、該樹脂液の付着量は、用途、目的に応じて
選定すれば良いが通常5〜30重量%(固型分換
算)が好ましい。 前記繊維構造体はそれ自体としてあるいは前述
の如く樹脂加工して剛性および反撥性を付与した
上で例えば土木工事等の作業現場において充填材
と共に用いることができる。しかしながら繊維構
造体の空〓の中に予め適切な充填材を充填し一体
の複合繊維構造体として作業現場に提供してもよ
い。充填材の種類は繊維構造体の用いられる用途
に応じて任意に選定すればよく、例えばアスフア
ルト、モルタル、砂、砂利、土あるいはこれらの
混合物等が用いられ、又充填材の物性改良のため
に、水ガラス、瀝青質などの土質改良剤を添加し
たり、ゴム及び/又は各種樹脂、有機及び/又は
無機の短繊維類、各種フイラ、骨材などを含めて
用いてもよい。 充填材の充填度は特に限定するものではなく、
用途に応じて任意に選定して行えばよいが、例え
ば土木工事等に用いる場合には複合体としての特
性を活かすために、一般に繊維構造体の有する空
〓の50%以上が充填されることが好ましい。 このような複合繊維構造体は繊維構造体自体に
単に土木工事等の作業現場において充填材を適宜
充填する場合に比し、適切な充填材を予め選定し
て充填することができるので土木工事等の現場で
の有効な補強効果を達成することが可能となる。 また繊維構造体自身の持つ厚みを生かして、そ
のままで緩衝材、例えばクツシヨン材等の用途に
用いることもできる。 以下、本発明の繊維構造体の一実施例を示す添
付図面を参照して繊維構造体の構造を説明する。 第1図および第2図は本発明の繊維構造体の非
限定の実施例をモデル的に示したものであり、第
1図は片方の地組織が線状又は縞状に構成されて
いる場合、第2図は格子状に構成されている場合
を示す。 すなわち第1図においては繊維構造体1は表裏
2枚の地組織2,3とその地組織を連結する連結
部4から成る。表側の地組織2は縞状に形成さ
れ、その縞状の地組織2と布帛状の他の地組織3
との間は繊維構造体1の表面に実質的に垂直に延
びる帯状体として形成された連結部3によつて連
結されているので、第1図に示した繊維構造体1
では縞状に配置した溝状の空〓5が設けられてい
る。 一方第2図に示した繊維構造体11も同様に地
組織12,13と連結部14とを含んで構成され
るが表側の地組織12が格子状に形成されている
という特徴を有する。その結果格子状の地組織1
2と布帛状の他の地組織13との間は連結部3に
よつて格子状に仕切られた多数の空〓15が設け
られることになる。 〔実施例〕 以下本発明を実施例をあげて具体的に説明す
る。 実施例 1 24ゲージ1インチのダブルラツシエル機を用い
て、前針床F用筬L1,L2にそれぞれポリエステ
ル繊維150デニールを全糸通し、連結部用筬L3
ナイロン6モノフイラメント150デニール、後針
床B用筬L4,L5にポリエステル繊維150デニール
をそれぞれ3本毎に1本糸入れ(1本糸入れ、2
本糸抜き)して編成した。第3図に編成の組織図
を示す。この様にして得られた編地は、厚さ約3
cmの縞状立柱を有する立体構造体であつた。 次いで、下記組成から成る水溶液に浸漬し、
120℃×5分間乾燥後、180℃×3分間熱処理し
た。 ボンコートR−3370 (大日本インキ化学社製 アクリル酸エステル樹脂) 80重量部 トリメチロールメラミン 3 水 17 100 更に、構造体に、予め準備していたモルタル
(混合比セメント:砂:水=4:8:1)を充填
した。 第1表に、該構造体の性状と特性を示す。 得られた構造体は、モルタルの充填も良く、モ
ルタル硬化後の一体性も良好であつた。 実施例 2 二段織機により、上下いずれの地組織とも、経
糸は、ポリエステル紡績糸20/2S、2本(第4
図21a,21b)を用いて5本/吋の絡み織り
とし、緯糸はビニロン紡績糸5/2S(第4図22
a,22b)を用いて5本/吋に打込んだ。両地
組織を、地組織の経糸とは別のビームにより供給
した、ポリエステルモノフイラメント750デニー
ルを連結部の結合糸(第4図23a,23b)と
して、経糸と緯糸の全ての交叉点で、ほぼ垂直に
結合した。第4図に得られた織物の構成図を略示
する。この様にして得られた織物は、厚さ約5cm
の立体的な粗いメツシユ構造体であつた。 次いで、下記組成から成る水溶液に浸漬し、
130℃×5分間乾燥後、200℃×3分間熱処理し
た。 レゾルシン 11.0重量部 ホルマリン(37%水溶液) 16.2 苛性ソーダ 0.3 スチレン/ブタジエン ゴムラテツクス (固形分 41%) 244.0 水 238.4 509.9 実施例1に準じて、モルタルを充填した。第1
表に該構造体の性状と特性を示す。 得られた構造体は、モルタルの充填性、すなわ
ちモルタルの入りやすさは極めて効率良く、モル
タル硬化後の一体性、すなわちモルタルと繊維構
造体との密着の程度も良好であつた。 比較例 1 実施例1において、結合糸用筬並びに後針床用
筬にそれぞれ全糸通した以外は、実施例1に準じ
て複合体を作成した。 得られた構造体の性状と特性を第1表に示す。
モルタルの充填は不良で、一体性も良くない。 比較例 2及び3 実施例1において、後針床用筬の糸入れ条件を
変え、地組織の繊維占有率が82%及び9%となる
様にした。実施例1に準じて複合体を作成した。 得られた構造体の性状と特性を第1表に示す。
一方の地組織の繊維占有率が80%より大きい場合
には、モルタルの充填性が不良であり、10%より
小さい場合は、複合体としての補強効果が少な
く、モルタルとの一体性が良くない。
[Industrial Application Field] The present invention relates to a fibrous structure having a three-dimensional structure suitable as a structural material. More specifically, it has a fiber structure in which a plurality of cavities are provided that communicate with one or both of the front and back surfaces, and the voids have a three-dimensional structure that can hold various materials for civil engineering work, etc. It relates to a fiber structure. [Prior Art] It is known that fiber materials are used to reinforce civil engineering materials made of asphalt, mortar, sand, gravel, soil, or a mixture thereof in civil engineering work including construction work. However, the fiber materials used in this field are mainly fabric-like materials, that is, knitted fabrics or non-woven fabrics with a two-dimensional structure. It is merely held or reinforced. Therefore, the layers of civil engineering materials that are held and reinforced by these fabrics are relatively thin, so in order to hold and reinforce them thickly, it is necessary to use multiple fabrics. I had no choice but to stack these. Furthermore, conventional woven, knitted or non-woven fabrics with a two-dimensional structure do not have fibers to reinforce the thickness, so they cannot support forces applied in the thickness direction with cushioning properties, and are therefore not suitable as cushioning materials. There was no fibrous structure. As described above, in recent years there has been a strong demand for fibrous structures that are thick and capable of filling, holding, and reinforcing various materials, but no fibrous structure that satisfies this requirement has yet appeared. [Problems to be Solved by the Invention] From the above, it is clear that conventionally known fabrics with a two-dimensional structure cannot be thickly held or reinforced unless they are laminated, and there are also problems in construction. It also has the problem of poor efficiency. An object of the present invention is to solve these problems and provide a fiber structure that can form a thick retention reinforcing layer. [Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive research to create a fiber structure in which a plurality of holes are provided, and furthermore, to solve the problems described above. The inventors have discovered that the above-mentioned problems can be solved by holding various materials in a fibrous structure, and have arrived at the present invention. In other words, the purpose of the present invention is to provide two ground textures on the front and back sides,
A fibrous structure having a three-dimensional structure consisting of connecting parts connecting the ground structures, at least one of the ground structures being formed of a plurality of yarns such that the fiber occupation rate is 10 to 80%, This is achieved by a fibrous structure having a three-dimensional structure characterized in that the fibrous structure is provided with a plurality of cavities that communicate with one or both of the front and back sides. In the fibrous structure of the present invention, the ground structure having a fiber occupation rate of 10 to 80% is arranged to stand up from other ground structures by the connecting portions. The wall-like bodies made of a plurality of threads constituting the wall are arranged in a linear, ridged, lattice-like, or honeycomb-like manner, so that a large number of voids are created between adjacent wall-like bodies. It will be done.
When a ground structure with a fiber occupancy of 10 to 80% is provided on only one side of the fiber structure, this void becomes hole-like or groove-shaped, and the fiber occupancy is 10 to 80%.
When the ground texture formed on both sides of the fiber structure is provided, it becomes a through hole. The fiber occupancy ratio as used herein means the area ratio occupied by fibers constituting the ground structure. i.e. 1
When expressed as the area ratio occupied by fibers constituting the ground texture per inch square (2.54 cm x 2.54 cm = 6.45 cm 2 ), the fiber occupancy rate is calculated by the following formula. N: Number of threads of each constituent fiber type within 1 inch square (strands/inch 2 ) d: Diameter of each constituent fiber type (cm) d': Diameter of other threads at the intersection point in the ground texture (cm) L: Length of one thread of each constituent fiber type within 1 inch square (cm)...2.54 if the threads of woven fabrics are straight, or 2.54 if the threads of knitted fabrics are curved. is the value obtained by measuring the fiber length between 1 inch. n: Number of crossing points within 1 inch square; Calculate the total Fiber occupancy (%) = (ΣL x N x d) - n x d x d
'/6.45×100 The fiber occupation rate is preferably 10 to 80%, more preferably 20 to 70% in at least one of the two textures. When the fiber occupancy exceeds 80%, the amount of voids becomes extremely small, making it impossible to exhibit sufficient retention and reinforcing effects as a fiber structure. (referred to as ) is reduced, making it impossible to exhibit sufficient holding and reinforcing effects. On the other hand, if the fiber occupancy is less than 10%, the wall-like bodies become thin or the intervals between the wall-like bodies become too wide, making it impossible to obtain the thick holding and reinforcing effect of the fiber structure. Furthermore, it is not preferable because it becomes impossible to reliably hold the filler in the cavity. Means for changing the fiber occupancy rate from 10 to 80% include (a) increasing or decreasing the number of yarns constituting the ground weave, (b) increasing or decreasing the density of the base weave, and (c) changing the yarn used. It is sufficient to use means such as changing the thickness of the image alone or in combination of two or more. The two ground structures on the front and back sides of the fiber structure of the present invention must be reliably connected by the connecting portion. However, the bonding density should be selected according to the structure of the ground structure, that is, the bonding density should be selected to the extent that one ground structure is not separated from the other ground structure when the filler is held and reinforced with the fibrous structure. Just choose. The connecting portion of the fiber structure of the present invention is configured to connect the two ground textures of the front and back sheets substantially perpendicularly, and arrange the void substantially perpendicularly to the surface of the fiber structure. It is more preferable that The depth of the cavity formed by the wall-like body comprising the connecting portion is preferably at least 1 cm or more and about 10 cm, and usually 3 to 5 cm. However, the depth of the void may be set arbitrarily depending on the purpose for which the fiber structure is used. Incidentally, at least one of the two ground textures on the front and back sides of the fiber structure of the present invention needs to be formed to have a fiber occupation rate of 10 to 80%. However, if only one of the ground textures has a fiber occupancy of 10 to 80%, the other ground texture may have any configuration, that is, it may have any fiber occupancy. Any fabric material that can be bonded may be used. Therefore, the fabric-like material includes woven fabrics, knitted fabrics, and those laminated with non-woven sheets and the like. The fibrous structure of the present invention can be manufactured using a manufacturing apparatus capable of manufacturing a fabric having a two-layer structure. For example, a double loom, a warp knitting machine having a double needle bed, etc. may be used. The material constituting the fibrous structure of the present invention may be selected depending on the use of the fibrous structure of the present invention. For example, for applications where the strength reinforcing effect is maintained for a long period of time, it is sufficient to use materials that are strong and durable even if they are expensive, and when low cost and mass supply are desired rather than such high performance, fiber structures are used. Any material that can be provided at low cost may be used for the body. Therefore, materials such as polyethylene terephthalate,
Polyester fibers such as polybutylene terephthalate; polyamide fibers such as nylon 6, 66, and 46; aramid fibers; polyacrylonitrile fibers; polyolefin fibers such as polyethylene and polypropylene; rayon fibers such as viscose, acetate, and kyupra; Natural fibers such as cotton, wool, and hemp; carbon fibers; inorganic fibers such as glass and metal; and/or mixed fibers thereof; or wires may be used if necessary. The fiber structure is manufactured by knitting or weaving as described above using short fiber spun yarns, long fibers containing flat yarns, or composite yarns thereof using these materials. If necessary, one of the ground textures may be made of a nonwoven fabric using the above-mentioned material, and the fiber structure may be manufactured using this as a base. Further, it is preferable to use a highly rigid material for the connecting portion of the fiber structure of the present invention in order to provide rigidity and thickness to the fiber structure. Therefore, materials can be freely selected from among the above-mentioned materials, but more preferably, for example, organic monofilament yarns such as polyester, polyamide, polyolefin, inorganic fibers,
It is even better to use wire or the like if necessary. As mentioned above, the fiber structure of the present invention may be made of a metal material such as wire if necessary. Therefore, the term "fibrous structure" in the specification has a broad meaning including metal materials. As mentioned above, it is more preferable that the fiber structure of the present invention has rigidity and repellency in view of its intended use. To provide repulsion, the fiber structure made of a highly rigid material such as monofilament may be used without resin processing, and to provide rigidity, the fiber structure may be modified as needed. It is preferable to perform resin processing using a resin material (thermosetting resin, thermoplastic resin, etc.). By resin processing, at least a portion of the plurality of threads or fibers constituting the fiber structure is reinforced, and the rigidity and repulsion of the fiber structure are increased. As a result, the plurality of cavities in the fibrous structure can be sufficiently filled with the filler material, and the holding and reinforcing effects can be enhanced. In addition, a rigid fiber structure also has the advantage of being easier to handle during on-site construction, such as civil engineering and construction work, and improving workability. Various types of resin materials can be used as the resin material. For example, thermosetting resins include urea/formalin type; polyhydric phenol/formalin type; melamine type such as methylolmelamine; acrylic ester type such as methyl methacrylate; epoxy type such as glycidyl ether of glycerin; polyurethane type; An ethylene/vinyl acetate copolymer system; or modified products or mixtures thereof can be used. In addition, thermoplastic resins include nylon 6/66,
Low melting point polyamides such as 6/610, 6/66/610;
Alcohol-soluble polyamides such as methoxymethylated nylon 6; aliphatic or aromatic polyesters; polyolefins such as polyethylene and polypropylene; polyvinyl butyral, vinyl acetate,
Vinyl-based materials such as polyvinyl alcohol; halogen-containing materials such as vinyl chloride and vinylidene chloride; etc. can be used. The resin liquid contains commonly used reaction catalysts such as organic amines and metal salts; silicone, wax,
Water repellents such as fluorine; flame retardants such as phosphorus and nitrogen; other finishing agents, natural rubber, styrene/butadiene, styrene/butadiene/vinylpyridine terpolymer, nitrile/butadiene,
Rubber latexes such as chloroprene, chlorohydrin, and fluorine-based rubber latexes may be used in combination, and the present invention does not specify these substances. The method of applying the resin liquid can be selected from the dipping method, coating method, spraying method, etc.
Heat treatment is also carried out following drying, for example, at 150 to 230℃
It should be done for 2 to 5 minutes. This step may be repeated once or twice or more. The resin liquid may be solvent-based or water-based, but water-based is preferable in terms of workability, work environment, etc. Further, the amount of the resin liquid deposited may be selected depending on the use and purpose, but it is usually preferably 5 to 30% by weight (in terms of solid content). The fibrous structure can be used as such or after being treated with a resin to impart rigidity and repulsion as described above, together with a filler at a work site such as civil engineering work. However, the pores of the fiber structure may be filled with a suitable filler in advance and provided to the work site as an integrated composite fiber structure. The type of filler may be arbitrarily selected depending on the purpose for which the fiber structure is used; for example, asphalt, mortar, sand, gravel, soil, or a mixture thereof may be used. , water glass, bituminous, and other soil improvers may be added, and rubber and/or various resins, organic and/or inorganic short fibers, various fillers, aggregates, etc. may also be used. The degree of filling of the filler is not particularly limited;
It can be selected arbitrarily depending on the purpose, but when used for civil engineering work, etc., generally 50% or more of the voids in the fiber structure should be filled in order to take advantage of the properties of the composite. is preferred. Compared to the case where the fiber structure itself is simply filled with an appropriate filler at a work site such as civil engineering work, such a composite fiber structure can be filled with an appropriate filler by selecting it in advance, so it is suitable for civil engineering work, etc. It becomes possible to achieve an effective reinforcement effect on-site. Further, by taking advantage of the thickness of the fiber structure itself, it can be used as is as a cushioning material, for example, a cushion material. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the structure of a fibrous structure will be described with reference to the accompanying drawings showing one embodiment of the fibrous structure of the present invention. FIGS. 1 and 2 are model illustrations of non-limiting examples of the fiber structure of the present invention. FIG. , FIG. 2 shows a case where the structure is arranged in a grid pattern. That is, in FIG. 1, the fiber structure 1 consists of two ground textures 2 and 3, front and back, and a connecting portion 4 that connects the ground textures. The ground texture 2 on the front side is formed in a striped form, and the striped ground texture 2 and another fabric-like ground texture 3
The fiber structure 1 shown in FIG.
In this case, groove-shaped cavities 5 arranged in a striped pattern are provided. On the other hand, the fiber structure 11 shown in FIG. 2 is similarly constructed to include ground textures 12 and 13 and a connecting portion 14, but has a feature in that the ground texture 12 on the front side is formed in a lattice shape. As a result, a grid-like ground structure 1
A large number of spaces 15 partitioned into a grid pattern by connecting portions 3 are provided between 2 and another fabric-like ground structure 13. [Example] The present invention will be specifically described below with reference to Examples. Example 1 Using a 24-gauge 1-inch double lattice machine, 150 denier polyester fiber was threaded through each of the reeds L 1 and L 2 for the front needle bed F, and nylon 6 monofilament 150 was threaded into the reed L 3 for the connecting part. Insert one thread of 150 denier polyester fiber into reeds L 4 and L 5 for rear needle bed B for every 3 strands (1 thread inserted, 2
The main thread was removed) and knitted. Figure 3 shows the organization chart. The knitted fabric thus obtained has a thickness of approximately 3
It was a three-dimensional structure with striped upright columns measuring cm. Next, it is immersed in an aqueous solution having the following composition,
After drying at 120°C for 5 minutes, it was heat-treated at 180°C for 3 minutes. Boncoat R-3370 (Acrylic acid ester resin manufactured by Dainippon Ink Chemical Co., Ltd.) 80 parts by weight Trimethylolmelamine 3 Water 17 100 Furthermore, mortar prepared in advance (mixture ratio cement: sand: water = 4:8) was added to the structure. :1) was filled. Table 1 shows the properties and characteristics of the structure. The resulting structure had good mortar filling and good integrity after the mortar hardened. Example 2 A two-stage loom was used for both the upper and lower ground weave, and the warp was made of polyester spun yarn 20/2S, two (fourth
Figures 21a and 21b) are used to create a 5/inch twine weave, and the weft is vinylon spun yarn 5/2S (Figure 4).
a, 22b) at a rate of 5/inch. Both sides of the ground weave were supplied by a beam separate from the warp of the ground weave, and polyester monofilament 750 denier was used as the binding thread at the joint (Fig. 4, 23a, 23b). Connected vertically. FIG. 4 schematically shows a structural diagram of the obtained fabric. The fabric thus obtained has a thickness of approximately 5 cm.
It was a three-dimensional coarse mesh structure. Next, it is immersed in an aqueous solution having the following composition,
After drying at 130°C for 5 minutes, it was heat-treated at 200°C for 3 minutes. Resorcinol 11.0 parts by weight Formalin (37% aqueous solution) 16.2 Caustic soda 0.3 Styrene/butadiene Rubber latex (solid content 41%) 244.0 Water 238.4 509.9 According to Example 1, mortar was filled. 1st
The table shows the properties and characteristics of the structure. The resulting structure had extremely efficient mortar filling properties, that is, the ease with which mortar could enter the structure, and the integrity of the mortar after hardening, that is, the degree of adhesion between the mortar and the fiber structure, was also good. Comparative Example 1 A composite was produced in accordance with Example 1, except that all threads were threaded through the binding yarn reed and the rear needle bed reed. Table 1 shows the properties and characteristics of the obtained structure.
The mortar filling is poor and the integrity is poor. Comparative Examples 2 and 3 In Example 1, the thread insertion conditions of the rear needle bed reed were changed so that the fiber occupancy of the ground weave was 82% and 9%. A composite was prepared according to Example 1. Table 1 shows the properties and characteristics of the obtained structure.
If the fiber occupancy of one of the ground structures is greater than 80%, the filling properties of the mortar are poor, and if it is less than 10%, the reinforcing effect as a composite is small and the integrity with the mortar is poor. .

〔発明の効果〕〔Effect of the invention〕

本発明の繊維構造体は前述のように構成されて
いるので各種材料を保有することができる空〓を
多数有する立体構造の繊維構造物である。したが
つて本発明の繊維構造物を用いることにより、厚
みのある保持・補強層を形成して優れた補強効果
を与えることができる。又繊維構造物に適切な充
填材が充填された複合繊維構造物を用いれば、土
木工事等の現場においてさらに一段と有効な補強
効果を達成することが可能である。
Since the fiber structure of the present invention is constructed as described above, it is a three-dimensional fiber structure having a large number of voids capable of holding various materials. Therefore, by using the fiber structure of the present invention, a thick retention/reinforcing layer can be formed and an excellent reinforcing effect can be provided. Furthermore, by using a composite fiber structure in which the fiber structure is filled with an appropriate filler, it is possible to achieve even more effective reinforcing effects at sites such as civil engineering work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の繊維構造体の一
実施例の構造をモデル的に示す斜視図であり、第
1図は溝状の空〓が設けられた場合、第2図は格
子状に仕切られた多数の空〓が設けられた場合を
示す。第3図は実施例1の編成組織図であり、第
4図は実施例2の製織組織図である。第5図は本
発明の繊維構造体と、比較例である発泡ウレタン
の圧縮特性を示すグラフである。 1,11…繊維構造体、2,12…繊維占有率
が10〜80である地組織、3,13…他の地組織、
4,14…連結部、5,15…空〓。
1 and 2 are perspective views schematically showing the structure of an embodiment of the fiber structure of the present invention. This shows a case where a large number of spaces partitioned into shapes are provided. FIG. 3 is a knitting organization chart of Example 1, and FIG. 4 is a weaving organization chart of Example 2. FIG. 5 is a graph showing the compression characteristics of the fiber structure of the present invention and urethane foam as a comparative example. 1, 11... Fiber structure, 2, 12... Ground texture having a fiber occupancy rate of 10 to 80, 3, 13... Other ground texture,
4, 14...Connection part, 5, 15...Empty.

Claims (1)

【特許請求の範囲】 1 表裏2枚の地組織と、該地組織を連結する連
結部から成る立体構造を有する繊維構造体であつ
て、前記地組織の少くとも一方が繊維占有率が10
〜80%であるように複数の糸によつて形成され、
それによつて前記繊維構造体に表裏いづれか一方
又は両方に連通する複数の空〓が設けられている
ことを特徴とする立体構造を有する繊維構造体。 2 表裏2枚の地組織と、該地組織を連結する連
結部から成る立体構造を有する繊維構造体の少く
とも一方の地組織を繊維占有率が10〜80%である
ように複数の糸によつて形成し、それによつて前
記繊維構造体に表裏いづれか又は両方に連通する
複数の空〓を設け、該複数の空〓の少くとも一部
に充填材が充填されていることを特徴とする繊維
構造体。
[Scope of Claims] 1. A fiber structure having a three-dimensional structure consisting of two ground textures on the front and back sides and a connecting part that connects the ground textures, wherein at least one of the ground textures has a fiber occupation rate of 10.
~80% formed by multiple threads,
A fibrous structure having a three-dimensional structure, characterized in that the fibrous structure is provided with a plurality of cavities that communicate with one or both of the front and back sides. 2. A fiber structure having a three-dimensional structure consisting of two ground textures on the front and back sides and a connection part that connects the ground textures, at least one of the ground textures is made into multiple yarns so that the fiber occupation rate is 10 to 80%. The fibrous structure is formed by a plurality of voids that communicate with either or both of the front and back sides of the fiber structure, and at least a portion of the plurality of voids are filled with a filler. fiber structure.
JP15214584A 1984-07-24 1984-07-24 Fiber structure having stereostructure Granted JPS6131241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15214584A JPS6131241A (en) 1984-07-24 1984-07-24 Fiber structure having stereostructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15214584A JPS6131241A (en) 1984-07-24 1984-07-24 Fiber structure having stereostructure

Publications (2)

Publication Number Publication Date
JPS6131241A JPS6131241A (en) 1986-02-13
JPH0518939B2 true JPH0518939B2 (en) 1993-03-15

Family

ID=15534017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15214584A Granted JPS6131241A (en) 1984-07-24 1984-07-24 Fiber structure having stereostructure

Country Status (1)

Country Link
JP (1) JPS6131241A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517240Y2 (en) * 1987-08-13 1996-11-20 ユニチカ株式会社 Three-dimensional mesh knit fabric
JPH01136190U (en) * 1988-03-08 1989-09-18
JPH01149488U (en) * 1988-04-04 1989-10-17
JPH01149487U (en) * 1988-04-04 1989-10-17
JPH0542819Y2 (en) * 1990-03-16 1993-10-28
JP2547693B2 (en) * 1991-07-17 1996-10-23 旭土建株式会社 Three-dimensional structure net
JPH0675633B2 (en) * 1992-04-16 1994-09-28 トーテックス株式会社 Laundry net
WO1996035021A1 (en) * 1995-05-01 1996-11-07 Asahi Doken Kabushiki Kaisha Net of three-dimensional construction and vegetation method for surface of slope
JP2936314B2 (en) * 1995-12-06 1999-08-23 旭土建株式会社 Water retention net
WO2006011453A1 (en) * 2004-07-27 2006-02-02 Asahi Kasei Fibers Corporation Three-dimensional knit fabric, interlining material and complex fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090406A (en) * 1961-02-23 1963-05-21 Raymond Dev Ind Inc Woven panel and method of making same
JPS4833166A (en) * 1971-08-30 1973-05-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090406A (en) * 1961-02-23 1963-05-21 Raymond Dev Ind Inc Woven panel and method of making same
JPS4833166A (en) * 1971-08-30 1973-05-08

Also Published As

Publication number Publication date
JPS6131241A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
US4181450A (en) Erosion control matting
AU602573B2 (en) Assembly of several layers comprising one or more reinforcing layers and fiber reinforced plastic article produced therefrom
RU2147051C1 (en) Cemented composite lattice building textile materials
EP0637658B1 (en) Open grid fabric for reinforcing wall systems, wall segment product and methods for making same
US4680213A (en) Textile reinforcement used for making laminated complexes, and novel type of laminate comprising such a reinforcement
JP3452939B2 (en) Fiber net to reinforce multiple layers joined by bitumen
RU2303664C2 (en) Netting and method for manufacturing of netting
MXPA06006970A (en) An exterior finishing system and building wall containing a corrosion-resistant enhanced thickness fabric and method of constructing same.
JPH0518939B2 (en)
US20110225782A1 (en) Carpet having a raschel fabric on the back face
JPH043766B2 (en)
KR19990044690A (en) Fibrous sheets for reinforcing structures and reinforced structures thereof
JPH1037051A (en) Reinforcing fiber sheet
PT98548A (en) DEEP TRACTIONAL TEXTILE MATERIAL AND MOLDED ITEMS MADE WITH IT
JP2000080541A (en) Raschel knitted fabric having loop pile
KR950004160B1 (en) Non-woven mat consisting of acrylic continuous filaments showing high modulus impregnated with inograntic matrix
JPS61229543A (en) Fiber reinforced thick elastic sheet
JPH10102364A (en) Reinforcement of structure
JP4057131B2 (en) Civil engineering reinforcement sheet
JPH10102363A (en) Void-including material
JP4169805B2 (en) Surface material for molding fiber reinforced plastic, and fiber reinforced plastic molding using the same
JP2639502B2 (en) Matrix reinforcement structure consisting of reticulated tubular body
JPH0211455Y2 (en)
JPH05331748A (en) Three dimensional structure cloth
CN220482780U (en) Cement blanket containing waterproof coating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term