JPH0518919B2 - - Google Patents

Info

Publication number
JPH0518919B2
JPH0518919B2 JP4062883A JP4062883A JPH0518919B2 JP H0518919 B2 JPH0518919 B2 JP H0518919B2 JP 4062883 A JP4062883 A JP 4062883A JP 4062883 A JP4062883 A JP 4062883A JP H0518919 B2 JPH0518919 B2 JP H0518919B2
Authority
JP
Japan
Prior art keywords
bearing
bearing member
permeability
gas
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4062883A
Other languages
Japanese (ja)
Other versions
JPS59166699A (en
Inventor
Takehisa Omino
Nobuaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kosaka Laboratory Ltd
Original Assignee
Kosaka Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kosaka Laboratory Ltd filed Critical Kosaka Laboratory Ltd
Priority to JP4062883A priority Critical patent/JPS59166699A/en
Publication of JPS59166699A publication Critical patent/JPS59166699A/en
Publication of JPH0518919B2 publication Critical patent/JPH0518919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、介在する摩擦力を著しく小さくし
て精度をよく回転軸を支承することのできる静圧
気体軸受のうち、軸受用の気体を多孔質材製の軸
受部材を通して噴出させる多孔質静圧気体軸受の
製造方法に関する。
Detailed Description of the Invention (Technical Field) This invention relates to a hydrostatic gas bearing that can significantly reduce the frictional force involved and support a rotating shaft with high precision. The present invention relates to a method for manufacturing a porous hydrostatic gas bearing in which gas is ejected through a bearing member made of

(背景技術) 高速ターボ機械、原子炉或は宇宙機器、精密測
定機等の回転軸を、摩擦力を小さくして高い精度
で支承するのに、気体の圧力により回転軸を浮動
状態に支持する静圧気体軸受が広く知られいる。
このような静圧気体軸受の一つとして、軸受部分
に噴出する空気の流れを均一に分散させてより性
能の良い軸受を得るために、軸受部材を焼結金属
のような通気性のある多孔質材で形成した多孔質
静圧気体軸受がある。第1〜第2図はこの型の多
孔質静圧気体軸受を示すもので、第1図はラジア
ル軸受、第2図はスラスト軸受を示している。即
ち、ラジアル軸受に於いては、給気入口1を有す
る円筒状で両端を内方に折曲げた給気室2の内側
に円筒状で多孔質材製の軸受部材3を結合し、こ
の軸受部材3の内側に回転軸4を挿入したもの
で、軸受部材3の内周面と回転軸4の外周面との
間隙5に噴出する圧縮気体、例えば圧縮空気の静
圧により回転軸4が浮動状態で支持される。又、
第2図に示すスラスト軸受に於いては、軸4の端
部に固定した円板6に対向させて円板状の軸受部
材3aを設け、軸受部材3aの円板6と反対側を
給気室2aで覆い、給気入口1から給気するよう
にしたものであつて、軸受部材3aと円板6との
間隙5aに噴出する気体の静圧により回転軸4に
加わる推力を支承するものである。
(Background technology) To support the rotating shafts of high-speed turbo machines, nuclear reactors, space equipment, precision measuring instruments, etc. with high accuracy by reducing frictional force, the rotating shafts are supported in a floating state by gas pressure. Hydrostatic gas bearings are widely known.
As one of these hydrostatic gas bearings, the bearing member is made of porous material such as sintered metal to uniformly disperse the flow of air ejected into the bearing part and obtain a bearing with better performance. There are porous hydrostatic gas bearings made of solid materials. 1 and 2 show this type of porous hydrostatic gas bearing, with FIG. 1 showing a radial bearing and FIG. 2 showing a thrust bearing. That is, in a radial bearing, a cylindrical bearing member 3 made of a porous material is coupled to the inside of a cylindrical air supply chamber 2 having an air supply inlet 1 with both ends bent inward. A rotating shaft 4 is inserted inside a member 3, and the rotating shaft 4 is floated by the static pressure of compressed gas, such as compressed air, which is ejected into a gap 5 between the inner circumferential surface of the bearing member 3 and the outer circumferential surface of the rotating shaft 4. State supported. or,
In the thrust bearing shown in FIG. 2, a disc-shaped bearing member 3a is provided opposite to a disc 6 fixed to the end of the shaft 4, and the side of the bearing member 3a opposite to the disc 6 is supplied with air. It is covered with a chamber 2a and is supplied with air from the air supply inlet 1, and supports the thrust force applied to the rotating shaft 4 by the static pressure of the gas ejected into the gap 5a between the bearing member 3a and the disc 6. It is.

このような静圧気体軸受に於いては、所定の性
能を得るためには、各軸受に於ける軸受部材3,
3aと回転軸4又は円板6との間の間隙5,5a
の厚さを設計値通り正確に仕上げるとともに、軸
受部材3,3aが気体を通過させる程度を表わす
浸透率を設計値通りにしなければならない。とこ
ろが、軸受部材3,3aはこれを構成する焼結金
属材料の粒度のばらつき、加圧成型時の圧力の偏
りや材料充填時の偏り等により完全に均質の材料
を得ることは難しく、同一寸法に成型された軸受
部材でもその浸透率に差が生じることは避けられ
ない。
In such a static pressure gas bearing, in order to obtain a predetermined performance, the bearing member 3,
Gap 5, 5a between 3a and rotating shaft 4 or disk 6
The thickness of the bearing members 3, 3a must be accurately finished as designed, and the permeability, which indicates the degree to which gas can pass through the bearing members 3, 3a, must be made as designed. However, it is difficult to obtain a completely homogeneous material for the bearing members 3 and 3a due to variations in particle size of the sintered metal material that constitutes them, uneven pressure during pressure molding, unevenness during material filling, etc. It is inevitable that differences in permeability will occur even in bearing members that are molded.

そこで所定の浸透率を得るために「多孔質気体
軸受実用化の研究」(昭和44年10月精機学会秋季
大会学術講演前刷集第35頁)あるいは「多孔質静
圧気体軸受の研究」(昭和45年3月精機学会東北
支部講演会論文集第5頁)で実験解析し、報告さ
れた軸受のように、軸受部材3の軸受面に旋削や
研削等の機械加工を施すことにより、第3図に示
すように軸受面に開口する孔の縁を孔の内方に変
形させてばり7,7を生じさせ、孔に部分的な目
詰りを起させてこれによる絞り効果で浸透率の調
整を行なうことが考えられた。ところが、このよ
うな方法により浸透率の調整を行なう場合、1度
の旋削や研削で所望の浸透率を得ることは難し
く、所望の浸透率になるまで繰返し旋削等を行な
うため、所定の浸透率を持つ軸受部材3の寸法が
種々に変つてしまい、ラジアル軸受に於いては軸
受部材3の内側に一定太さの回転軸を挿入した場
合に、軸受部材と回転軸との間隙5が不同とな
り、スラスト軸受の場合は円板6と軸受部材3a
との間隙5aが不同となつて、何れも軸受として
の性能が保持できなくなる。軸受部材3の寸法の
違いに拘らず軸受の性能を保持するためには、ラ
ジアル軸受の場合回転軸4を軸受部材3の完成後
にこれに合せて加工するか、或は直径寸法の異な
る多数の回転軸を予め用意し、その中から適当な
ものを選択して使用しなければならず、試行錯誤
により軸受部材3,3aの浸透率を設計値に合せ
るのと合せて、気体軸受の製作を甚だ面倒にし
て、大量生産を行ない難いばかりでなく、少量生
産の場合に於いても完成時の加工寸法が予測でき
ないため、生産能率が悪いと言う欠点がある。こ
れを解決するため、浸透率の異なる2種の軸受材
を重ね合せて一定寸法で浸透率を設計値通りにす
る発明(特公昭56−19498号)もあるが、重ね合
せて一定寸法となりかつ浸透率が設計値通りとな
るような軸受材を探し出すこと自体困難であり、
回転軸を常に一定寸法にすることはできても全体
として生産能力を向上させることは難しい。
Therefore, in order to obtain a predetermined permeability, we conducted ``Research on the practical application of porous gas bearings'' (Page 35 of the preprint of the academic lectures at the Autumn Conference of the Japan Society of Precision Machinery, October 1962) or ``Research on porous hydrostatic gas bearings'' ( As with the bearing reported in the March 1971 Tohoku Branch Lecture Proceedings of the Japan Society of Precision Machinery Engineers, the bearing surface of the bearing member 3 is machined by turning, grinding, etc. As shown in Figure 3, the edge of the hole that opens on the bearing surface is deformed inward to create burrs 7, 7, which partially clog the hole, and the resulting throttling effect reduces the permeability. I was thinking of making some adjustments. However, when adjusting the penetration rate using such a method, it is difficult to obtain the desired penetration rate with one-time turning or grinding, and turning and other operations are repeated until the desired penetration rate is achieved. The dimensions of the bearing member 3 with the bearing member 3 change variously, and in the case of a radial bearing, when a rotating shaft of a certain thickness is inserted inside the bearing member 3, the gap 5 between the bearing member and the rotating shaft becomes different. , in the case of a thrust bearing, the disc 6 and the bearing member 3a
The gaps 5a between the bearings and the bearings become unequal, making it impossible for either bearing to maintain its performance as a bearing. In order to maintain the performance of the bearing regardless of the difference in the dimensions of the bearing member 3, in the case of a radial bearing, the rotating shaft 4 must be machined to match the bearing member 3 after completion, or a large number of shafts with different diameters must be machined. It is necessary to prepare a rotating shaft in advance and select an appropriate one from among them for use.In addition to adjusting the permeability of the bearing members 3 and 3a to the design value through trial and error, manufacturing of the gas bearing is done. Not only is this extremely troublesome and difficult to perform in mass production, but even in the case of small quantity production, the processing dimensions at the time of completion cannot be predicted, resulting in poor production efficiency. In order to solve this problem, there is an invention (Japanese Patent Publication No. 56-19498) in which two types of bearing materials with different permeability are overlapped to make the permeability the same as the designed value with a constant size. It is difficult in itself to find a bearing material whose permeability matches the design value.
Even if it is possible to always keep the rotating shaft to a constant size, it is difficult to improve overall production capacity.

このため、第4図に示すように、所定寸法に仕
上げられた多孔質材製の軸受部材の軸受面8に、
接着剤及び溶剤と混ぜ合せた固体粉末9を塗布し
て上記軸受面8に開口する小孔に部分的な目詰り
を生じさせて、気体の浸透率を所定値に調整した
ことを特徴とする多孔質静圧気体軸受に関する発
明(特願昭56−145501号)もあるが、この発明は
軸受部材の浸透率が大き過ぎる場合にこれを小さ
くすることはできても、逆の場合、即ち浸透率が
小さ過ぎる場合に軸受部材中の微細な空気通路を
広げ、浸透率を大きくすることはできない。とこ
ろが、第3図に示したように、焼結金属製の軸受
部材の表面を平になるように削ると、この軸受部
材を構成する金属粒子19,19にばり7,7が
発生し、このばり7,7が微細な空気通路の開口
を塞いで、軸受部材の浸透率を所望値よりも小さ
くすることが頻繁に生ずる。このように、ばり
7,7が発生し過ぎて浸透率が小さくなり過ぎた
軸受部材は、旋削、研削を繰り返しても仲々浸透
率が大きくならず、このような軸受部材は不良品
として廃棄処分しなければならないため、歩留り
が極めて悪くなつてしまう。
For this reason, as shown in FIG.
The solid powder 9 mixed with an adhesive and a solvent is applied to partially clog the small holes opening in the bearing surface 8, and the gas permeability is adjusted to a predetermined value. There is also an invention related to porous hydrostatic gas bearings (Japanese Patent Application No. 145501/1986), but this invention can reduce the permeability of the bearing member when it is too high, but in the opposite case, that is, the permeation rate can be reduced. If the ratio is too small, it is not possible to widen the fine air passages in the bearing member and increase the permeability. However, as shown in FIG. 3, when the surface of a sintered metal bearing member is ground flat, burrs 7, 7 are generated on the metal particles 19, 19 that make up this bearing member. It frequently occurs that the burrs 7, 7 block the openings of the fine air passages, reducing the permeability of the bearing member to a lower than desired value. In this way, bearing members with too many burrs 7, 7 and whose penetration rate is too low will not have a high penetration rate even after repeated turning and grinding, and such bearing members will be discarded as defective products. As a result, the yield becomes extremely poor.

(本発明の目的) 本発明は上述のような不都合を解消し、所望の
寸法と浸透率とを有する軸受部材を容易に造るこ
とができ、しかも不良品を出すことが極めて少な
いため安価で性能の安定した気体軸受を得ること
のできる多孔質静圧気体軸受の製造方法を提供す
ることを目的としている。
(Objective of the present invention) The present invention eliminates the above-mentioned disadvantages, makes it possible to easily manufacture a bearing member having desired dimensions and permeability, and also provides low cost and high performance because there are extremely few defective products. It is an object of the present invention to provide a method for manufacturing a porous hydrostatic gas bearing that can obtain a stable gas bearing.

(本発明の構成) 本発明の多孔質静圧気体軸受の製造方法は、ま
ず金属多孔質材製の軸受部材の軸受面を旋削、研
削或はラツピング等の削り加工により加工してこ
の軸受部材の寸法が所望の値となるように加工す
るとともに、微細な空気通路の上記軸受面側開口
部にばりを形成して軸受部材の浸透率を所望の浸
透率よりも小さくした後、この軸受部材を電極と
ともに電解液中に浸漬し、上記ばりの一部を溶出
させて軸受部材の浸透率を所望の値に合わせてい
る。
(Structure of the present invention) The method for manufacturing a porous hydrostatic gas bearing of the present invention includes first processing the bearing surface of a bearing member made of a porous metal material by machining such as turning, grinding, or wrapping. The dimensions of the bearing member are processed to the desired values, and burrs are formed at the openings on the bearing surface side of the fine air passages to make the permeability of the bearing member smaller than the desired permeability. The bearing member is immersed together with the electrode in an electrolytic solution, and a portion of the burr is eluted to adjust the permeability of the bearing member to a desired value.

(本発明の実施例) 次に、図示の実施例を説明しつつ本発明を更に
詳しく説明する。
(Embodiments of the present invention) Next, the present invention will be explained in more detail while explaining the illustrated embodiments.

第5図は本発明の方法によりラジアル軸受を造
る状態を示している。予め内径を所定寸法になる
ように旋削するとともに軸受面8に第3図に示す
ようなばり7,7を形成した金属多孔質材製の軸
受部材3は金属製で円筒状の給気室2の内周側に
固定し、電解槽10内の電解液11中に浸漬して
おく。軸受面8を旋削して内径を所定寸法に仕上
げる際には、使用する刃物の形状や鋭利程度を適
当に選択することによりばり7,7を発生し易く
し、軸受部材3の浸透率を所望の値よりも小さく
しておく。電解液11中の軸受部材3の中心には
丸棒状の電極棒12を挿入しておき、この電極棒
12は電流計13、可変抵抗14を介して直流電
源15のマイナス側に接続する。一方、金属製の
給気室2はこの直流電源15のプラス側に接続す
る。16は給気室2の内側に固定した軸受部材3
と電極棒12との間に加わる電圧を測定するため
の電圧計である。
FIG. 5 shows how a radial bearing is manufactured by the method of the invention. The bearing member 3 is made of a metal porous material and has an inner diameter turned to a predetermined size and burrs 7, 7 as shown in FIG. 3 are formed on the bearing surface 8. It is fixed to the inner peripheral side of the electrolytic cell 10 and immersed in the electrolytic solution 11 in the electrolytic cell 10. When turning the bearing surface 8 to finish the inner diameter to a predetermined size, the shape and sharpness of the blade used can be appropriately selected to make it easier to generate burrs 7, and to achieve the desired penetration rate of the bearing member 3. Keep it smaller than the value of . A round electrode rod 12 is inserted into the center of the bearing member 3 in the electrolytic solution 11, and the electrode rod 12 is connected to the negative side of a DC power source 15 via an ammeter 13 and a variable resistor 14. On the other hand, the metal air supply chamber 2 is connected to the positive side of this DC power supply 15. 16 is a bearing member 3 fixed inside the air supply chamber 2
This is a voltmeter for measuring the voltage applied between the electrode rod 12 and the electrode rod 12.

このように軸受部材3を電極棒12とともに電
解液中に浸漬し、軸受部材3から電極棒12に向
けて電流を流すと、軸受部材3の一部が電解液中
に溶出する。この際、軸受部材3の軸受面8側の
絞り開口17の縁に位置するばり7の端縁部に於
ける電流密度が最も高くなるため、この端縁部に
於ける溶出量が特に多くなり、上記絞り開口17
の面積が次第に大きくなる。また、ばり7が隣り
の金属粒子19と当接していてもこのばり7の端
縁と粒子10との間には微細な隙間が存在するた
め、ばり7は端縁から溶出し絞り開口が形成され
る。そこで、軸受部材3の浸透率が所望の値にな
つた所で通電を止めれば、所望寸法で所望の浸透
率を有する気体軸受が得られる。この際、ばり
7,7以外の部分での金属溶出量は無視できる程
僅かなものであるため、電解処理により軸受部材
3の内径が変化することはない。また、円筒状の
軸受部材3の軸受面8は全長に亘つて電極棒12
までの距離が等しいため、ばり7,7の溶出は軸
受面8全面に亘つて均等に進行し、この軸受部材
3の浸透率は巨視的に見れば全体で均一なものと
なる。
When the bearing member 3 is immersed together with the electrode rod 12 in the electrolytic solution in this manner and a current is passed from the bearing member 3 toward the electrode rod 12, a portion of the bearing member 3 is eluted into the electrolytic solution. At this time, the current density is highest at the edge of the burr 7 located at the edge of the aperture opening 17 on the bearing surface 8 side of the bearing member 3, so the amount of elution at this edge is particularly large. , the aperture aperture 17
The area of will gradually increase. Furthermore, even if the burr 7 is in contact with the adjacent metal particle 19, there is a minute gap between the edge of the burr 7 and the particle 10, so the burr 7 elutes from the edge and forms an aperture opening. be done. Therefore, if the current supply is stopped when the permeability of the bearing member 3 reaches a desired value, a gas bearing having desired dimensions and a desired permeability can be obtained. At this time, the amount of metal eluted from the portions other than the burrs 7, 7 is negligibly small, so the electrolytic treatment does not change the inner diameter of the bearing member 3. Further, the bearing surface 8 of the cylindrical bearing member 3 extends over the entire length of the electrode rod 12.
Since the distances to the burrs are equal, the elution of the burrs 7, 7 proceeds uniformly over the entire bearing surface 8, and the permeability of the bearing member 3 becomes uniform throughout the bearing member 3 when viewed macroscopically.

なお、浸透率が所望の値になるまでに要する通
電量は実験的に容易に求めることができるが、通
電をし過ぎて浸透率が大きくなり過ぎた場合は、
第4図に示した先発明の方法により浸透率を小さ
くすることもできる。
The amount of current required for the permeation rate to reach the desired value can be easily determined experimentally, but if the permeation rate becomes too large due to excessive current application,
The penetration rate can also be reduced by the method of the prior invention shown in FIG.

次に、第6図は本発明の方法によりスラスト軸
受を造る状態を示している。予め浸透率が所望の
値よりも小さくなるようにして所定寸法に研削し
た円筒状の軸受部材3aは金属製皿状の給気室2
aに固定し、円板状の電極板18とともに電解液
11中に浸漬している。軸受部材3aの軸受面8
と電極板18とは平行に保持し、軸受部材3aか
ら電極板18に向けて電流を均等に流す。その他
については、前述のラジアル軸受を造る場合と同
様であるため重複する説明を省略する。
Next, FIG. 6 shows the state in which a thrust bearing is manufactured by the method of the present invention. A cylindrical bearing member 3a, which has been ground to a predetermined size so that the permeability is smaller than a desired value, is connected to a metal dish-shaped air supply chamber 2.
a, and is immersed in the electrolytic solution 11 together with the disk-shaped electrode plate 18. Bearing surface 8 of bearing member 3a
and the electrode plate 18 are held parallel to each other, and a current is uniformly passed from the bearing member 3a to the electrode plate 18. The rest is the same as in the case of manufacturing the radial bearing described above, so a redundant explanation will be omitted.

なお、上述の実施例に於いては、軸受部材3,
3aの軸受面8を電解処理する前に各軸受部材
3,3aを金属製の給気室2,2aに固定し、こ
の給気室2,2aと直流電源15のプラス側を接
続したが、この直流電源は直接軸受部材3,3a
に接続し、電解処理後所望の浸透率を有する軸受
部材3,3aを給気室2,2aに固定するように
しても良い。
In addition, in the above-mentioned embodiment, the bearing member 3,
Before electrolytically treating the bearing surface 8 of 3a, each bearing member 3, 3a was fixed to a metal air supply chamber 2, 2a, and the positive side of the DC power supply 15 was connected to this air supply chamber 2, 2a. This DC power supply is directly connected to the bearing members 3, 3a.
The bearing members 3, 3a having a desired permeability after electrolytic treatment may be fixed to the air supply chambers 2, 2a.

(本発明の効果) 本発明の多孔質静圧気体軸受の製造方法は以上
に述べた通り構成され実施されるため、所定の浸
透率を有する軸受部材を所定寸法で得ることが容
易となり、性能の勝れた気体軸受を安価に得られ
る。
(Effects of the present invention) Since the method for manufacturing a porous hydrostatic gas bearing of the present invention is configured and carried out as described above, it is easy to obtain a bearing member having a predetermined permeability and a predetermined size, and the performance is A superior gas bearing can be obtained at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第2図は多孔質静圧気体軸受を示す縦断
面図で、第1図はラジアル軸受、第2図はスラス
ト軸受である。第3図は旋削或は研削後の軸受面
を拡大して示す断面図、第4図は軸受面に固定粉
末を付着させた状態を示す拡大断面図、第5図は
本発明の方法によりラジアル軸受を造る状態、第
6図は同じくスラスト軸受を造る状態を示すそれ
ぞれ縦断面図である。 1……給気入口、2,2a……給気室、3,3
a……軸受部材、4……回転軸、5,5a……間
隙、6……円板、7……ばり、8……軸受面、9
……固体粉末、10……電解槽、11……電解
液、12……電極棒、13……電流計、14……
可変抵抗、15……直流電源、16……電圧計、
17……絞り開口、18……電極板、19……金
属粒子。
1 and 2 are vertical cross-sectional views showing porous hydrostatic gas bearings, with FIG. 1 showing a radial bearing and FIG. 2 showing a thrust bearing. Fig. 3 is an enlarged sectional view of the bearing surface after turning or grinding, Fig. 4 is an enlarged sectional view of the bearing surface with fixed powder attached, and Fig. 5 is an enlarged sectional view of the bearing surface after turning or grinding. FIG. 6 is a vertical sectional view showing the state in which a bearing is manufactured, and FIG. 6 is a longitudinal sectional view showing a state in which a thrust bearing is manufactured. 1... Air supply inlet, 2, 2a... Air supply chamber, 3, 3
a... Bearing member, 4... Rotating shaft, 5, 5a... Gap, 6... Disc, 7... Burr, 8... Bearing surface, 9
... solid powder, 10 ... electrolytic cell, 11 ... electrolyte, 12 ... electrode rod, 13 ... ammeter, 14 ...
Variable resistance, 15...DC power supply, 16...Voltmeter,
17...Aperture aperture, 18...Electrode plate, 19...Metal particles.

Claims (1)

【特許請求の範囲】[Claims] 1 金属多孔質材製の軸受部材の軸受面を削り加
工してこの軸受部材の寸法を所望寸法にするとと
もに軸受部材中の微細な空気通路の上記軸受面側
開口部にばりを形成し、このばりによつて上記空
気通路を絞り、軸受部材の浸透率を所望の値以下
とし、その後この軸受部材を直流電源のプラス側
に接続してこの直流電源のマイナス側に接続した
電極とともに電解液中に浸漬し、上記ばりの一部
を溶出させて空気通路の開口面積を増大させるこ
とにより、軸受部材の浸透率を所望の値にする多
孔質静圧気体軸受の製造方法。
1. Cutting the bearing surface of a bearing member made of porous metal material to obtain the desired dimensions, and forming a burr at the opening on the bearing surface side of the minute air passage in the bearing member. The air passage is constricted by the burr to reduce the permeability of the bearing member to a desired value or less, and then the bearing member is connected to the positive side of a DC power source and placed in an electrolyte together with the electrode connected to the negative side of the DC power source. A method for manufacturing a porous hydrostatic gas bearing, in which the permeability of the bearing member is made to a desired value by immersing the bearing member in water to elute some of the burrs and increase the opening area of the air passage.
JP4062883A 1983-03-14 1983-03-14 Manufacture of porous hydrostatic gas bearing Granted JPS59166699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062883A JPS59166699A (en) 1983-03-14 1983-03-14 Manufacture of porous hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062883A JPS59166699A (en) 1983-03-14 1983-03-14 Manufacture of porous hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPS59166699A JPS59166699A (en) 1984-09-20
JPH0518919B2 true JPH0518919B2 (en) 1993-03-15

Family

ID=12585802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062883A Granted JPS59166699A (en) 1983-03-14 1983-03-14 Manufacture of porous hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JPS59166699A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417015B2 (en) 1993-11-26 2003-06-16 東陶機器株式会社 Porous member and method for manufacturing the same

Also Published As

Publication number Publication date
JPS59166699A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US5120091A (en) Oil impregnated sintered bearing
JP3860253B2 (en) Static pressure gas bearing
JPS62220716A (en) Gas bearing and manufacture thereof
JPS6154534B2 (en)
JPH0518919B2 (en)
US6342270B1 (en) Process for manufacturing a hydrostatic bearing of porous material
US2721488A (en) Manufacture of diamond cutting wheels or saws
CN110102792A (en) Suitable inner wall has rise core fixture and its application method of gully workpiece
JPS5850314A (en) Porous static pressure gas bearing
JPS6133821A (en) Electrochemical machining method
JPH1162966A (en) Hydrostatic bearing and manufacture thereof
RU2286535C1 (en) Method for making a rotor of spherical gyroscope
JP2000317736A (en) Electrochemical machining method and device for groove
JPS62152676A (en) Manufacture of diamond grindstone
JPH0592365A (en) Method of correcting ultra abrasive grain grinding wheel
JPH04262116A (en) Hybrid bearing
US6675464B2 (en) Method of manufacturing a magnetic head
JP2000027865A (en) Static pressure porous bearing
YAMADA et al. 3310 Permeability of Sintered Porous Metal in Finishing Process with Grinding and Electrical Discharge Surface Modification
CN107234475B (en) It is machined accurate hard turning bearing outer ring special fixture
JP2004150577A (en) Thrust bearing and its manufacturing method
JP3053944B2 (en) EDM electrode for forming annular groove
JPH0386452A (en) Grinding device for nozzle tip edge
JPH06179123A (en) Machining method for control valve body and electrode for electric discharge machining
Bar-Yam et al. A cylindrical drift chamber of novel design