JPH0518900B2 - - Google Patents

Info

Publication number
JPH0518900B2
JPH0518900B2 JP61261715A JP26171586A JPH0518900B2 JP H0518900 B2 JPH0518900 B2 JP H0518900B2 JP 61261715 A JP61261715 A JP 61261715A JP 26171586 A JP26171586 A JP 26171586A JP H0518900 B2 JPH0518900 B2 JP H0518900B2
Authority
JP
Japan
Prior art keywords
steel
thickness
layer
shell
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61261715A
Other languages
Japanese (ja)
Other versions
JPS63114940A (en
Inventor
Akihiko Nishimoto
Yoshihiro Hosoya
Toshiaki Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP26171586A priority Critical patent/JPS63114940A/en
Publication of JPS63114940A publication Critical patent/JPS63114940A/en
Publication of JPH0518900B2 publication Critical patent/JPH0518900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は表面特性の優れた珪素鋼板及びその製
造方法に関する。 [従来の技術およびその問題点] 今日、広く一般的に使用されている電磁鋼板
は、無方向性電磁鋼板と称され、主としてモータ
類のロータあるいはステータの鉄芯、汎用の小型
変圧器の鉄芯、証明器具の安定器等に使用される
結晶配向性の低い材料と、方向性電磁鋼板と称さ
れ、主として大型変圧器、高周波変圧器のような
優れた軟磁気特性が要求されるものに使用される
結晶配向性の高い材料とに大別される。 こうした材料における磁気特性の良否は、大旨
鋼板中のSi含有量によつて決まる。つまり、高グ
レードの電磁鋼板程Si含有量が多い。こうした、
Si含有による磁気特性向上の機構に関しては、既
に多くの研究がなされており、これをまとめると
次のような内容となる。 (1) Siはフエライト安定化元素であると同時に、
鋼の電気抵抗を増大させる効果がある。Si添加
によつて拡張したフエライト単相領域にて焼鈍
することにより、フエライトの粒成長を図るこ
とができ、高透磁率、低保磁力化が可能にな
る。これはヒステリシス損の低下に有効であ
る。しかし、フエライト粒径が大きくなること
は、交番磁化過程における磁壁移動距離が大き
くなり、渦流損の増大を来たす。そこで、Siは
電気抵抗の増大を通して、この渦流損の低下に
寄与する。従つて、Siは優れた軟磁性特性と低
鉄損化を可能にする。 (2) またSiは、その添加量が3%を超える領域に
て結晶磁気異方性および磁歪の低下が顕著に現
れるようになり、高周波磁化特性が改善され
る。 このような効果に対し、Si添加は鋼の密度及び
磁束密度低下を招き、エネルギ変換効率の低下を
もたらす。しかし、Si添加はこうしたマイナス効
果を考慮しても余りある磁気特性改善効果を発揮
する。 さて、鋼にSiを添加した場合、素材自体の磁気
特性が改善されることは上記したとおりである
が、プロセス上は、Si添加に伴つて多くの制約が
課せられる。 プロセス上の重要な点を以下に列記する。 Si添加量の増加に伴い、熱間圧延時のスラブ
加熱段階において低融点のフアヤライト層
(Fe2SiO4)形成が促進され、スケールの溶融
が起こる。こうした低融点スケール層の形成
は、熱間圧延段階におけるスケール性表面欠陥
の原因となる。特に、方向性珪素鋼板では、最
終焼鈍時にインヒビターとして重要な役割を果
たすMnS,AlN等の完全溶解が熱延時に必須
とされるため、スケール層の溶融が不可避であ
るような1300℃以上での高温加熱が行われ、上
記のようなスケール層の形成は、表面欠陥のみ
ならず歩留り低下の点でも好ましくない。 また、こうしたスケール層の形成は、脱炭焼
鈍時においても起こる。一般にサブスケール層
と称される。脱炭焼鈍雰囲気中の水蒸気との反
応によつて生ずる表面酸化層は、磁化過程での
磁壁移動の妨げとなるため磁気特性を劣化させ
る。こうしたサブスケール層の存在は、最終的
に高温水素雰囲気中にて純化処理を行う方向性
珪素鋼板の場合特に大きな問題とはならない
が、脱炭処理後、製品となるケースが多いセミ
プロセス無方向性電磁鋼板においては大きな問
題である。 Si添加量の増加は、一方で溶接性の劣化をも
たらす。特に熱延板の酸洗溶接、連続焼鈍での
溶接における溶接不良はライン内破断の直接的
な原因となる。こうした溶接不良は、溶接部に
おける酸化物の形成と、熱影響部でのフエライ
ト粒の粗大化に起因している。 Si添加量の増加は、鋼の延性を劣化させる。
特に、結晶粒の粗大化による靱性の劣化は、ス
ラブ割れ、圧延時のエツジ割れの発生を促進さ
せる。また、Si添加量が4wt%を超えるような
鋼では、DO3タイプのFe3Si金属間化合物が形
成されるようになり、一般には、圧延加工など
が不可能になると考えられている。 電磁鋼板は、最終的には無機あるいは有機系
の絶縁被膜を施した後、積層して使用される。
その場合、Si添加量の増加によつて鋼表面が不
活性と成り、絶縁被膜と鋼板表面のぬれ性が低
下する。これによつて、被膜焼き付け時に被膜
のはじきによる斑点状の被膜不良部が発生す
る。このため、絶縁被膜塗布前に鋼板表面を予
めブラツシングすることにより被膜の密着性を
向上させることなどがSi量の多い場合には必要
となる。 以上のような個々の問題に対しては、各プロセ
ス上の対応がなされなくてはならないが、これら
を抜本的に解消する技術は未だ開示されていな
い。特に、上記したサブスケール層の形成を抑え
る目的から、脱炭焼鈍前に鉄メツキを施す技術
(特公昭59−10412号)等は注目すべきものと考え
られるが、この技術も前工程での他の問題を解決
することはできない。 また、方向性電磁鋼板における磁気特性の改善
を目的として、表層部に比べ内層部のSi濃度を高
めることを内容とした特開昭54−127829号、特公
昭58−37367号が提案されている。これらのうち、
前者の鋼板は表層部のSi量が3.0wt%以上で且つ
中心部Si濃化率が低く、また後者の鋼板は表層部
のSi量が1.8〜3.5wt%であること等から、上記し
た問題を総て解決するものとは言い難い。特に上
記した鉄メツキ技術に匹敵するようなサブスケー
ル抑制効果は期待できない。 本発明は、以上のような問題に鑑み、スケール
層の形成、溶接性、ストリツプエツジ割れ、絶縁
被膜との親和力等の諸問題を改善でき、従来困難
とされていた圧延による製造が実質に可能な高珪
素鋼板及びその製造に好適な方法を提供せんとす
るものである。 [問題を解決するための手段] このため本発明は、その厚さが規定された鋼板
表層に、内層部に比べ合金濃度の希薄なシエル層
を有する多層構造珪素含有鋼板としたものであ
り、内層部が有する優れた磁気特性を維持しなが
ら、表面改質、エツジ割れ低減、溶接性向上及び
絶縁被膜の密着性向上等を図るようにしたもので
ある。 即ち、本発明の珪素鋼板は、厚さが鋼板の全厚
さに対して鋼板両面の合計で20%以下、片面にて
3μm以上である限定された表層部における合金組
成が、C≦0.010wt%、0.05wt%≦Mn≦0.5wt%、
Si<1.0wt%、P≦0.1wt%、S≦0.05wt%、N≦
0.005wt%、0.005wt%≦Sol.Al≦0.1wt%、残部
Feおよび不可避的不純物で構成され、板厚方向
残部の内層部における合金組成が、C≦0.010wt
%、0.05wt%≦Mn≦0.5wt%、1.0wt%≦Si≦
7.0wt%、P≦0.1wt%、S≦0.05wt%、N≦
0.005wt%、0.005wt%≦Sol.Al≦0.1wt%、残部
Feおよび不可避的不純物で構成される多層構造
としたことをその基本的特徴とする。 また、本発明はこのような珪素鋼板を好適に製
造するため、鋼塊の全厚さに対して鋼塊両面の合
計で20%以下の厚さで、且つ肉厚2.5mm以上のシ
エルを鋳造する工程、および鋼塊内部を鋳造する
工程により、シエル層の合金組成がC≦0.060wt
%、0.05wt%≦Mn≦0.5wt%、Si<1.0wt%、P
≦0.1wt%、S≦0.05wt%、N≦0.005wt%、
0.005wt%≦Sol.Al≦0.1wt%、残部Feおよび不可
避的不純物で構成され、鋼塊内層の合金組成が、
C≦0.060wt%、0.05wt%≦Mn≦0.5wt%、1.0wt
%≦Si≦7.0wt%、P≦0.1wt%、S≦0.05wt%、
N≦0.005wt%、0.005wt%≦Sol.Al≦0.1wt%、
残部Feおよび不可避的不純物で構成された鋼塊
を造塊し、該鋼塊を直接または加熱均熱後、熱間
圧延し、次いでスケール除去処理後、1回以上冷
間圧延および焼鈍を各行うことを他の基本的特徴
とする。 以下、本発明の詳細を説明する。 本発明は、基本的には含珪素鋼板の極く限られ
た表層部の合金組成を内層部に比べて希薄な状態
とすることにより、スケール生成抑制、展延性向
上、溶接性向上、絶縁被膜の密着性向上等を同時
に実現しようとするものである。 特に、本発明の製造法では、造塊工程におい
て、鋼塊表層部と内層部の合金組成を制御するこ
とにより、それ以降の工程で生ずるSi含有に伴う
種々の問題を解決するものである。 本発明の珪素鋼板は、限定された表層部のSi含
有量を1.0wt%未満、内層部におけるSi含有量を
1.0〜7.0wt%とし、且つ、表層部の厚さを鋼板の
全厚さに対して鋼板両面の合計で20%以下、片面
にて3μm以上とする。 本発明鋼板は、Si含有量の高い内層をSi含有量
の低いシエル層により覆つた構造の鋼塊を圧延す
ることにより得られ、上記シエル層が鋼板の表層
部を構成する。シエルによる被覆によつて熱間加
工時の耐ワレ性を軽減するためには、シエル層の
延性を内層に比べ高める必要がある。その為に
は、シエル層のSi層を規制する必要がある。第3
図は、第1表中鋼−1の組成をベースにしてSi量
を増加させた組成のシエルに、第2表中鋼−6の
組成の内層部を鋳込んだスラブについて、1150℃
で2時間加熱後、直ちに2mm厚まで熱間圧延を行
い、その時の熱延板のエツジ割れに対するシエル
層中のSi量の影響を示したものである。同図から
明らかなように、シエル層中のSi量が1.0wt%以
上となるエツジ割れ軽減効果が低下する。従つ
て、本発明はシエル層すなわち表層部におけるSi
量を1.0wt%未満とする。また、Si量を1.0wt%未
満とすることにより、高Si系電磁鋼板において不
可避的に生じるリジング欠陥の発生をも適切に回
避することができる。 内層部の合金組成に関しては、本来の磁気特性
を配慮して決定される。Si添加による本質的な磁
気特性改善効果から考えると、Si:6.5wt%程度
までは磁歪低減、透磁率向上、鉄損低下などの効
果が期待できる。一方、Si添加量が7.0wt%を超
えると、逆に透磁率の低下等が顕著となり、合金
設計上の利点は低下する。このため、本発明では
内層部のSi量に関しては7.0wt%を上限とする。
また、下限に関しては、内層部の磁気特性によつ
て素材全体の磁気特性を維持しなくてはならない
点と、シエル層と同程度の組成であれば、多層構
造とするメリツトが無くなる点を考慮して1.0wt
%をSi量の下限とする。 表層部の厚さは、まず、最終的な磁気特性を維
持向上させるという観点から規制される。第4図
は、シエル組成が第1表中の鋼−1、内層部組成
が第2表中の鋼−7および鋼−8で且つシエル厚
を種々変化させた熱延板を、0.5mm厚まで冷間圧
延した後、800℃×5分間の脱炭焼鈍+900℃×30
秒の仕上げ焼鈍を行い、得られた素材の全厚さに
対するシエル層の比率(=鋼板における表層部の
比率)と、50Hzでの磁束密度1.5Tにおける鉄損
との関係を示したものである。 同図によれば、いずれの素材においても、シエ
ル比率が10%程度まではほとんど鉄損の増加が認
められない。これは、低Si組成のシエル層の存在
により表層部の比抵抗が低下し、渦電流損は増大
する傾向にあるが、一方において、シエル層は脱
炭焼鈍時のサブスケール層の形成を抑制し、サブ
スケール層による素材の表層付近での磁壁の非可
逆的動きに起因した鉄損を効果的に軽減するた
め、両者のプラス、マイナスの効果が相殺して鉄
損の変化がほとんど無いものと考えられる。そこ
で、本発明においては実用的観点から、磁気特性
の著しい劣化が現れない領域として表層部の比率
の上限を20%、好ましくは10%以下とする。 次に、表層部の厚さはサブスケール層形成抑制
という観点から規制される。第5図は、シエル層
組成が第1表中の鋼−1、内層部が第2表中の鋼
−8で且つシエル比率3%(片面当り1.5%)の
熱延板について、1.0mm厚から0.1mm厚まで圧延し
て表層部(シエル)厚を変化させた素材と、鋼−
8のシエルなし材を800℃×5分の脱炭焼鈍した
素材を用い、表層直下におけるサブスケール層の
厚さと表層部厚さとの関係を調べたものである。
同図から、表層部厚さが3μm以上であればサブス
ケール層の形成がかなり抑制され、5μm以上であ
れば、短時間の脱炭処理ではサブスケール層はほ
とんど形成されないことがわかる。従つて、本発
明においては、表層部の厚さは片面で3μm以上、
好ましくは5μm以上とする。 次に本発明におけるの他の組成成分の限定理由
について説明する。 Cは、磁気特性に対しては、Fe3Cとして析出
した場合は磁壁移動の障壁として、固溶C状態で
は磁気時効の直接原因として作用するため、最終
焼鈍後は少ない方が好ましい。従つて、本発明に
おいては、表層部、内層部ともに0.010wt%以下
とする。 Mnは、鋼の比抵抗を増加させることによつて
鉄損の低下に寄与するが、その効果はSiに較べて
小さく、1.0wt%以上のSiを含む鋼ではその効果
は余り期待できない。また、多量に含有させた場
合、透磁率等の磁気特性の劣化をもたらすためそ
の上限を0.5wt%とする。下限については、磁気
特性に悪影響を及ぼすSを固定する目的から
0.05wt%とする。 Pは、Siと同様フエライト安定化元素であると
同時に比抵抗を増大させるため、交流磁気特性の
改善には有効な元素である。しかし、一方でフエ
ライト粒界に偏析して鋼を脆化させる元素でもあ
る。特に、Siが1.0wt%を超える鋼においては、
Pの脆化作用が問題となる。従つて、本発明で
は、Pは0.1wt%以下に規制する。 Sは、磁気特性に対しては有害な元素であるた
めできる限り少ないのが好ましい。このため本発
明では、Mnによる固定を配慮してその上限を
0.05wt%とする。 Nは、Cと同様に磁気時効に関与する元素であ
るため、できる限り少ない方が好ましい。しか
し、Al等によつて固定することも可能であり、
本発明では、実用的観点からその上限を0.005wt
%とする。Alは、Siと同様の効果によつて交流
磁気特性の改善に寄与するが、Siに比べ、多量に
添加した場合、製鋼段階でアルミナ介在物の生成
が著しくなり、逆に素材の清浄度を低下させる。
従つて、内層部でのAlは、最大でもその添加量
を1.0wt%とする。 表層部(シエル層)においては、高Al化はフ
エライト粒径を増大させ、さらには脱炭焼鈍過程
でのサブスケール層の形成を促進するため、Al
の上限は0.1wt%に規制する。 また、Alの下限については、表層部、内層部
ともに鋼中のNを固定する目的から0.005%以上
とする。 次に本発明の製造方法について説明する。 本発明法は、Si含有量の高い内層とSi含有量の
低いシエル層とから鋼塊を製造し、これを所定の
条件で圧延することにより上述したような鋼板を
得る。 鋼塊は、まずシエルを鋳造し、これに鋼塊内層
部となる鋼を鋳込む方法、または鋼塊内層部とな
る鋼を鋳造した後、シエルを鋳ぐるむ方法により
製造される。 第1図は、このようにして製造された鋼塊(シ
エル層:第1表中鋼−1、内層:第2表中鋼−
5)の断面マクロ組織を示すもの(第2図中A方
向からの写真)であり、シエル層はそのSi含有量
を規制することにより、内層に較べフエライト組
織が微細になつていることが判る。これは、前述
したように、素材のエツジ割れ防止に重要な役割
を果たす。 このような鋼塊において、シエルは上述したよ
うな理由により鋼塊の全厚さに対して鋼塊両面の
合計で20%以下の厚さとされる。 さらに、シエル層はその厚み(片面の厚み)を
2.5mm以上とする。第1表中の鋼−1の組成を有
する厚さ2mmから15mmの凝固シエル中に、第2表
中の鋼−5及び鋼−6の組成の鋼を鋳造して鋳込
み、クラツドスラブを作成した。また、比較とし
て鋼−5、鋼−6のシエル無しスラブも鋳造し
た。 このようなスラブを各4個づつ、1150℃で2時
間加熱した後、直ちに熱間圧延を行つて2mm厚と
し、巻き取つた。そして、このようにして得られ
た鋼帯について、鋼帯の両エツジに発生したエツ
ジ割れの程度を、通常の低炭素熱延鋼帯(SPHC
クラス)におけるエツジの状態を5として5段階
評価した。 その結果を第6図に示す。これによれば内部組
成が鋼−5,6のいずれの場合も、シエル層が2
mmから3mmに増加する領域においてエツジ割れ軽
減効果が顕著であることが判る。これは、スラブ
加熱段階でのスケールオフおよび熱間圧延時のシ
エル層の割れによる内層部の露出防止に対して、
最低限のシエル層が確保されなければならないこ
とを示すもので、本発明においては、これらの結
果からそのシエル厚の下限を2.5mmに規定するこ
とにした。 鋼塊の成分組成は、基本的には鋼板について述
べたとおりであるが、Cについては、製造の後工
程で脱炭焼鈍を行う場合には、短時間の脱炭焼鈍
で0.010wt%以下までC量を低減できる限界とし
てその上限を0.060wt%とする。 本発明では、このような鋼塊を直接、または
1000〜1350℃の温度に加熱均熱後、熱間圧延す
る。この熱延板はスケール除去処理後、1回以上
冷間圧延及び焼鈍が各施され、表層部(シエル
層)の厚さが3μm以上で、通常1.0mm以下の板厚
の最終製品とされる。 なお、本発明では2回以上焼鈍のうちの少なく
とも1回を、鋼中Cを0.010wt%以下とする脱炭
焼鈍とすることができる。
[Industrial Application Field] The present invention relates to a silicon steel plate with excellent surface properties and a method for manufacturing the same. [Prior art and its problems] The electrical steel sheets that are widely used today are called non-oriented electrical steel sheets, and are mainly used for the iron cores of rotors or stators of motors, and the iron cores of general-purpose small transformers. Materials with low crystal orientation used for cores, ballasts of certification equipment, etc., and grain-oriented electrical steel sheets, which are mainly used in large transformers and high-frequency transformers that require excellent soft magnetic properties. It is broadly classified into materials with high crystal orientation. The quality of the magnetic properties of these materials is largely determined by the Si content in the steel sheet. In other words, the higher the grade of electrical steel sheet, the higher the Si content. These,
Many studies have already been conducted on the mechanism of magnetic property improvement due to Si inclusion, and the results can be summarized as follows. (1) Si is a ferrite stabilizing element and at the same time
It has the effect of increasing the electrical resistance of steel. By annealing in the ferrite single-phase region expanded by the addition of Si, ferrite grain growth can be achieved, making it possible to achieve high magnetic permeability and low coercive force. This is effective in reducing hysteresis loss. However, as the ferrite grain size increases, the domain wall movement distance during the alternating magnetization process increases, resulting in an increase in eddy current loss. Therefore, Si contributes to reducing this eddy current loss through increasing electrical resistance. Therefore, Si enables excellent soft magnetic properties and low iron loss. (2) Furthermore, in a region where the amount of Si added exceeds 3%, the magnetocrystalline anisotropy and magnetostriction decrease significantly, and the high frequency magnetization characteristics are improved. In contrast to these effects, the addition of Si causes a decrease in the density and magnetic flux density of steel, resulting in a decrease in energy conversion efficiency. However, even if such negative effects are taken into consideration, Si addition exhibits a significant effect of improving magnetic properties. As mentioned above, when Si is added to steel, the magnetic properties of the material itself are improved, but many restrictions are imposed on the process due to the addition of Si. Important points in the process are listed below. As the amount of Si added increases, the formation of a low melting point fayalite layer (Fe 2 SiO 4 ) is promoted during the slab heating stage during hot rolling, causing scale melting. The formation of such a low melting point scale layer causes scale surface defects during the hot rolling stage. In particular, for grain-oriented silicon steel sheets, complete melting of MnS, AlN, etc., which play important roles as inhibitors, during final annealing is essential during hot rolling. High-temperature heating is performed, and the formation of a scale layer as described above is undesirable not only in terms of surface defects but also in terms of yield reduction. Further, the formation of such a scale layer also occurs during decarburization annealing. Generally called the subscale layer. The surface oxidation layer produced by the reaction with water vapor in the decarburization annealing atmosphere impedes domain wall movement during the magnetization process, thereby deteriorating the magnetic properties. The presence of such subscale layers is not a major problem in the case of grain-oriented silicon steel sheets that are ultimately purified in a high-temperature hydrogen atmosphere, but semi-processed non-grained silicon steel sheets are often made into products after decarburization. This is a big problem for magnetic steel sheets. On the other hand, an increase in the amount of Si added causes deterioration of weldability. In particular, welding defects during pickling welding and continuous annealing of hot rolled sheets are a direct cause of in-line fractures. These welding defects are caused by the formation of oxides in the weld zone and the coarsening of ferrite grains in the heat affected zone. An increase in the amount of Si added deteriorates the ductility of steel.
In particular, deterioration in toughness due to coarsening of crystal grains promotes slab cracking and edge cracking during rolling. Furthermore, in steels with Si additions exceeding 4 wt%, DO 3 type Fe 3 Si intermetallic compounds are formed, and it is generally believed that rolling becomes impossible. The electrical steel sheets are finally used by being laminated after being coated with an inorganic or organic insulating coating.
In that case, the steel surface becomes inert due to the increase in the amount of Si added, and the wettability between the insulating film and the steel plate surface decreases. As a result, spot-like coating defects occur due to the coating being repelled when the coating is baked. For this reason, when the amount of Si is large, it is necessary to improve the adhesion of the coating by brushing the surface of the steel sheet in advance before applying the insulation coating. Although the above-mentioned individual problems must be dealt with in each process, no technology has yet been disclosed to completely eliminate these problems. In particular, for the purpose of suppressing the formation of the above-mentioned subscale layer, the technology of applying iron plating before decarburization annealing (Japanese Patent Publication No. 59-10412) is considered to be noteworthy, but this technology is also used in the previous process. cannot solve the problem. In addition, with the aim of improving the magnetic properties of grain-oriented electrical steel sheets, Japanese Patent Application Laid-Open No. 127829/1982 and Japanese Patent Publication No. 37367/1983 have proposed increasing the Si concentration in the inner layer compared to the surface layer. . Of these,
The former steel plate has a Si content of 3.0wt% or more in the surface layer and a low Si concentration in the center, and the latter steel plate has a Si content of 1.8 to 3.5wt% in the surface layer, so it does not have the above problems. It is difficult to say that it will solve all the problems. In particular, it cannot be expected to have a subscale suppression effect comparable to that of the above-mentioned iron plating technology. In view of the above-mentioned problems, the present invention can improve various problems such as scale layer formation, weldability, strip edge cracking, and affinity with insulating coatings, and makes manufacturing by rolling, which was conventionally considered difficult, practically possible. The present invention aims to provide a high-silicon steel plate and a method suitable for manufacturing the same. [Means for solving the problem] Therefore, the present invention provides a multilayer silicon-containing steel plate having a shell layer with a thinner alloy concentration than the inner layer on the surface layer of the steel plate with a specified thickness, This is intended to improve the surface, reduce edge cracking, improve weldability, and improve the adhesion of the insulating coating while maintaining the excellent magnetic properties of the inner layer. That is, the silicon steel plate of the present invention has a thickness of 20% or less of the total thickness of the steel plate on both sides, and a thickness of 20% or less on one side of the total thickness of the steel plate.
The alloy composition in a limited surface layer portion of 3 μm or more is C≦0.010wt%, 0.05wt%≦Mn≦0.5wt%,
Si<1.0wt%, P≦0.1wt%, S≦0.05wt%, N≦
0.005wt%, 0.005wt%≦Sol.Al≦0.1wt%, remainder
Composed of Fe and unavoidable impurities, the alloy composition in the remaining inner layer in the thickness direction is C≦0.010wt
%, 0.05wt%≦Mn≦0.5wt%, 1.0wt%≦Si≦
7.0wt%, P≦0.1wt%, S≦0.05wt%, N≦
0.005wt%, 0.005wt%≦Sol.Al≦0.1wt%, balance
Its basic feature is that it has a multilayer structure composed of Fe and unavoidable impurities. In addition, in order to suitably manufacture such a silicon steel plate, the present invention casts a shell with a total thickness of 20% or less of both sides of the steel ingot and a wall thickness of 2.5 mm or more. The alloy composition of the shell layer is C≦0.060wt by the step of casting and the step of casting the inside of the steel ingot.
%, 0.05wt%≦Mn≦0.5wt%, Si<1.0wt%, P
≦0.1wt%, S≦0.05wt%, N≦0.005wt%,
0.005wt%≦Sol.Al≦0.1wt%, the balance consists of Fe and unavoidable impurities, and the alloy composition of the inner layer of the steel ingot is
C≦0.060wt%, 0.05wt%≦Mn≦0.5wt%, 1.0wt
%≦Si≦7.0wt%, P≦0.1wt%, S≦0.05wt%,
N≦0.005wt%, 0.005wt%≦Sol.Al≦0.1wt%,
A steel ingot composed of the remainder Fe and unavoidable impurities is formed into an ingot, and the steel ingot is hot rolled directly or after heating and soaking, and then subjected to cold rolling and annealing one or more times after descaling treatment. This is another basic characteristic. The details of the present invention will be explained below. Basically, the present invention suppresses scale formation, improves malleability, improves weldability, and improves insulation coating by making the alloy composition of the extremely limited surface layer of a silicon-containing steel sheet thinner than that of the inner layer. The aim is to simultaneously improve the adhesion of the adhesive. In particular, the manufacturing method of the present invention solves various problems associated with Si content that occur in subsequent steps by controlling the alloy composition of the surface layer and inner layer of the steel ingot during the ingot making process. The silicon steel sheet of the present invention has a limited Si content of less than 1.0wt% in the surface layer, and a Si content of less than 1.0wt% in the inner layer.
1.0 to 7.0wt%, and the thickness of the surface layer is 20% or less of the total thickness of the steel plate on both sides, and 3 μm or more on one side. The steel plate of the present invention is obtained by rolling a steel ingot having a structure in which an inner layer with a high Si content is covered with a shell layer with a low Si content, and the shell layer constitutes the surface layer of the steel plate. In order to reduce cracking resistance during hot working by covering with a shell, it is necessary to increase the ductility of the shell layer compared to the inner layer. For this purpose, it is necessary to control the Si layer of the shell layer. Third
The figure shows a slab in which the inner layer having the composition of Steel-6 in Table 2 is cast into a shell with an increased amount of Si based on the composition of Steel-1 in Table 1 at 1150℃.
After heating for 2 hours, hot rolling was immediately performed to a thickness of 2 mm, and the effect of the amount of Si in the shell layer on edge cracking of the hot rolled sheet at that time is shown. As is clear from the figure, the effect of reducing edge cracking decreases when the amount of Si in the shell layer is 1.0 wt% or more. Therefore, the present invention aims at reducing Si in the shell layer, that is, the surface layer.
The amount should be less than 1.0wt%. Furthermore, by controlling the Si content to less than 1.0 wt%, it is possible to appropriately avoid the occurrence of ridging defects that inevitably occur in high-Si electrical steel sheets. The alloy composition of the inner layer is determined with consideration to the original magnetic properties. Considering the essential effect of improving magnetic properties by adding Si, it can be expected that up to about 6.5 wt% of Si can reduce magnetostriction, improve magnetic permeability, and reduce iron loss. On the other hand, when the amount of Si added exceeds 7.0 wt%, the magnetic permeability decreases conversely, and the advantages in terms of alloy design decrease. Therefore, in the present invention, the upper limit of the amount of Si in the inner layer is 7.0 wt%.
Regarding the lower limit, we also take into account the fact that the magnetic properties of the entire material must be maintained by the magnetic properties of the inner layer, and that if the composition is the same as that of the shell layer, the advantage of a multilayer structure is lost. 1.0wt
% is the lower limit of the amount of Si. The thickness of the surface layer is first regulated from the viewpoint of maintaining and improving the final magnetic properties. Figure 4 shows hot-rolled sheets with shell compositions of Steel-1 in Table 1, inner layer compositions of Steel-7 and Steel-8 in Table 2, and with various shell thicknesses. After cold rolling to
This figure shows the relationship between the ratio of the shell layer to the total thickness of the material obtained by finishing annealing for seconds (= the ratio of the surface layer of the steel plate) and the iron loss at a magnetic flux density of 1.5T at 50Hz. . According to the figure, for any material, there is almost no increase in iron loss up to a shell ratio of about 10%. This is because the presence of a shell layer with a low Si composition lowers the resistivity of the surface layer and tends to increase eddy current loss, but on the other hand, the shell layer suppresses the formation of subscale layers during decarburization annealing. However, in order to effectively reduce the iron loss caused by the irreversible movement of the domain wall near the surface layer of the material due to the subscale layer, the positive and negative effects of both cancel each other out and there is almost no change in iron loss. it is conceivable that. Therefore, in the present invention, from a practical point of view, the upper limit of the ratio of the surface layer portion is set to 20%, preferably 10% or less, which is a region in which no significant deterioration of magnetic properties appears. Next, the thickness of the surface layer is regulated from the viewpoint of suppressing the formation of subscale layers. Figure 5 shows a 1.0 mm thick hot rolled sheet with a shell layer composition of Steel-1 in Table 1, an inner layer of Steel-8 in Table 2, and a shell ratio of 3% (1.5% per side). Materials whose surface layer (shell) thickness is varied by rolling from 0.1 mm to 0.1 mm, and steel
The relationship between the thickness of the subscale layer immediately below the surface layer and the thickness of the surface layer was investigated using a material obtained by decarburizing the No. 8 shell-less material at 800°C for 5 minutes.
From the figure, it can be seen that if the surface layer thickness is 3 μm or more, the formation of the subscale layer is considerably suppressed, and if the surface layer thickness is 5 μm or more, the subscale layer is hardly formed in a short time decarburization treatment. Therefore, in the present invention, the thickness of the surface layer is 3 μm or more on one side,
Preferably it is 5 μm or more. Next, reasons for limiting other compositional components in the present invention will be explained. Regarding magnetic properties, C acts as a barrier to domain wall movement when precipitated as Fe 3 C, and as a direct cause of magnetic aging when in a solid solution C state, so it is preferable to have a small amount after final annealing. Therefore, in the present invention, the content is set to 0.010 wt% or less in both the surface layer portion and the inner layer portion. Mn contributes to reducing iron loss by increasing the resistivity of steel, but its effect is smaller than that of Si, and this effect cannot be expected in steel containing 1.0 wt% or more of Si. Furthermore, if it is contained in a large amount, it causes deterioration of magnetic properties such as magnetic permeability, so the upper limit is set at 0.5 wt%. The lower limit is set for the purpose of fixing S, which has a negative effect on magnetic properties.
The content shall be 0.05wt%. Like Si, P is a ferrite stabilizing element and at the same time increases resistivity, so it is an effective element for improving AC magnetic properties. However, on the other hand, it is also an element that segregates at ferrite grain boundaries and makes steel brittle. In particular, in steel with Si exceeding 1.0wt%,
The embrittlement effect of P becomes a problem. Therefore, in the present invention, P is regulated to 0.1 wt% or less. Since S is an element harmful to magnetic properties, it is preferable to minimize the amount of S. Therefore, in the present invention, the upper limit is set in consideration of fixation by Mn.
The content shall be 0.05wt%. Since N is an element that participates in magnetic aging like C, it is preferable that the amount of N be as small as possible. However, it is also possible to fix it with Al etc.
In the present invention, the upper limit is set to 0.005wt from a practical point of view.
%. Al contributes to the improvement of AC magnetic properties through the same effect as Si, but when added in large amounts compared to Si, the formation of alumina inclusions during the steelmaking stage becomes significant, and conversely it impairs the cleanliness of the material. lower.
Therefore, the maximum amount of Al added in the inner layer is 1.0 wt%. In the surface layer (shell layer), high Al content increases the ferrite grain size and further promotes the formation of a subscale layer during the decarburization annealing process.
The upper limit of is regulated to 0.1wt%. Furthermore, the lower limit of Al is set to 0.005% or more for the purpose of fixing N in the steel in both the surface layer and the inner layer. Next, the manufacturing method of the present invention will be explained. In the method of the present invention, a steel ingot as described above is obtained by manufacturing a steel ingot from an inner layer with a high Si content and a shell layer with a low Si content, and rolling this ingot under predetermined conditions. Steel ingots are manufactured by first casting a shell and then casting steel that will become the inner layer of the steel ingot, or by casting steel that will become the inner layer of the steel ingot and then casting the shell. Figure 1 shows the steel ingots manufactured in this way (shell layer: Table 1 Middle Steel-1, inner layer: Table 2 Middle Steel-1).
5) shows the cross-sectional macrostructure (photo taken from direction A in Figure 2), and it can be seen that the shell layer has a finer ferrite structure than the inner layer by regulating its Si content. . As mentioned above, this plays an important role in preventing edge cracking of the material. In such a steel ingot, the total thickness of the shell on both sides of the steel ingot is 20% or less of the total thickness of the steel ingot for the reasons mentioned above. Furthermore, the thickness of the shell layer (thickness on one side)
It should be 2.5mm or more. Steels having the compositions of Steel-5 and Steel-6 in Table 2 were cast into a solidified shell having a thickness of 2 mm to 15 mm having the composition of Steel-1 in Table 1 to prepare a clad slab. For comparison, slabs of Steel-5 and Steel-6 without shells were also cast. Four such slabs were heated at 1150° C. for 2 hours, immediately hot rolled to a thickness of 2 mm, and rolled up. For the steel strip obtained in this way, the degree of edge cracking that occurred on both edges of the steel strip was measured using ordinary low carbon hot rolled steel strip (SPHC).
The condition of the edge in the class) was evaluated on a five-point scale, with the condition being 5. The results are shown in FIG. According to this, whether the internal composition is Steel-5 or Steel-6, the shell layer is 2
It can be seen that the effect of reducing edge cracking is remarkable in the region increasing from mm to 3 mm. This is to prevent exposure of the inner layer due to scaling off during the slab heating stage and cracking of the shell layer during hot rolling.
This indicates that a minimum shell layer must be ensured, and in the present invention, based on these results, the lower limit of the shell thickness was determined to be 2.5 mm. The composition of the steel ingot is basically the same as described for the steel plate, but when decarburizing annealing is performed in the post-manufacturing process, C can be reduced to 0.010wt% or less by short-time decarburizing annealing. The upper limit to which the amount of C can be reduced is set at 0.060wt%. In the present invention, such a steel ingot is directly or
After heating and soaking to a temperature of 1000 to 1350°C, hot rolling is performed. After the scale removal treatment, this hot-rolled sheet is cold-rolled and annealed at least once, resulting in a final product with a surface layer (shell layer) thickness of 3 μm or more, and usually 1.0 mm or less. . In addition, in the present invention, at least one of the two or more annealing times can be decarburization annealing to reduce C in the steel to 0.010 wt% or less.

【表】【table】

【表】 [実施例] ● 実施例1 無方向性電磁鋼板の製造製造を目的とし、第1
表及び第2表に示す鋼を適宜組合せたスラブを、
1150℃に加熱後、連続熱間圧延機にて2.0mm厚ま
で圧延して700℃で巻き取つた。この熱延板につ
いて表面およびエツジの特性評価を行つた後、酸
洗、冷圧工程にて0.35mm厚まで減厚し、しかる
後、Cレベルに応じて、コア部(内層)のC量が
0.010wt%以下のものについては直接850℃で2分
の連続焼鈍を、また0.01wt%以上のものについて
は、800℃×5分の脱炭焼鈍を行つた後、900℃×
30秒の仕上げ焼鈍を行つた。このようにして得ら
れた鋼板の磁気特性及び上記熱延板段階での特性
評価を、その製造条件と共に第3表に示す。同表
から、本発明法に基づいて製造した無方向性電磁
鋼板は、従来法に比べて板性状、電磁特性共に優
れていることが判る。 ● 実施例2 方向性電磁鋼板の製造を目的とし、第1表及び
第2表に示す鋼を適宜組合せたスラブを、1300℃
に加熱後、連続熱間圧延機にて2.0mm厚まで圧延
して、550℃で巻き取つた。熱延板の表面及びエ
ツジ割れの評価を行つた後、1100℃×5分の焼準
処理、酸洗、中間焼鈍を含む冷間工程圧延にて
0.35mm厚まで減厚した。その後、800℃×5分の
脱炭焼鈍を行い、さらにMgOを主成分とするコ
ーテイングを行つた後、1段が850℃、2段が
1150℃からなる2段階の仕上げ焼鈍を行い、最終
的に850℃×2分の平坦化焼鈍を行つた。このよ
うにして得られた鋼板の磁気特性及び上記熱延板
段階での特性評価を、その製造条件と共に第3表
に示す。同表から、シエルを有する多層構造のス
ラブを素材とすることにより高温加熱時のスケー
ル溶融が軽減され、これによつて熱延板の表面性
状、エツジ割れなどが著しく改善されると共に、
磁気特性的にも優れた値が得られることがわか
る。
[Table] [Example] ● Example 1 For the purpose of manufacturing non-oriented electrical steel sheets, the first
Slabs made by appropriately combining the steels shown in Tables 2 and 2,
After heating to 1150°C, it was rolled to a thickness of 2.0 mm using a continuous hot rolling mill and wound at 700°C. After evaluating the surface and edge characteristics of this hot-rolled sheet, the thickness was reduced to 0.35 mm through a pickling and cold pressing process, and then the amount of C in the core (inner layer) was reduced according to the C level.
Items below 0.010wt% are directly annealed continuously at 850℃ for 2 minutes, and items over 0.01wt% are decarburized at 800℃ for 5 minutes, followed by 900℃ x
Finish annealing was performed for 30 seconds. The magnetic properties of the steel sheet thus obtained and the characteristic evaluation at the hot-rolled sheet stage are shown in Table 3 together with the manufacturing conditions. From the same table, it can be seen that the non-oriented electrical steel sheet manufactured based on the method of the present invention is superior in both sheet properties and electromagnetic properties as compared to the conventional method. ● Example 2 For the purpose of manufacturing grain-oriented electrical steel sheets, slabs made by appropriately combining the steels listed in Tables 1 and 2 were heated to 1300°C.
After heating to , it was rolled to a thickness of 2.0 mm using a continuous hot rolling mill and rolled up at 550°C. After evaluating the surface and edge cracks of the hot-rolled sheet, it was subjected to cold process rolling including normalization treatment at 1100°C for 5 minutes, pickling, and intermediate annealing.
The thickness was reduced to 0.35mm. After that, decarburization annealing was performed at 800°C for 5 minutes, and after coating with MgO as the main component, the first stage was heated to 850°C, and the second stage was heated to 850°C.
A two-stage finish annealing was performed at 1150°C, and finally a flattening annealing was performed at 850°C for 2 minutes. The magnetic properties of the steel sheet thus obtained and the characteristic evaluation at the hot-rolled sheet stage are shown in Table 3 together with the manufacturing conditions. From the same table, by using a slab with a multilayer structure with shells as a material, scale melting during high temperature heating is reduced, and as a result, the surface quality and edge cracking of the hot rolled sheet are significantly improved.
It can be seen that excellent values can be obtained in terms of magnetic properties.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼板の素材たる鋼塊断面の金属
組織を示す写真である。第2図は第1図に示す鋼
塊の断面方向及び寸法を示す説明図である。第3
図は、シエル層と内層からなる鋼塊のシエル層中
のSi濃度が圧延時のエツジ割れに及ぼす影響を示
すものである。第4図はシエル層と内層とからな
る鋼塊において、全厚に対する合計シエル層厚比
率が最終製品の磁気特性に及ぼす影響を示すもの
である。第5図は内層部と表層部からなる珪素鋼
板の表層部厚がサブスケール層形成に及ぼす影響
を示すものである。第6図はシエル層と内層とか
らなる鋼塊のシエル層厚が圧延時のエツジ割れに
及ぼす影響を示すものである。
FIG. 1 is a photograph showing the metallographic structure of a cross section of a steel ingot, which is the raw material for the steel plate of the present invention. FIG. 2 is an explanatory diagram showing the cross-sectional direction and dimensions of the steel ingot shown in FIG. 1. Third
The figure shows the effect of the Si concentration in the shell layer of a steel ingot consisting of a shell layer and an inner layer on edge cracking during rolling. FIG. 4 shows the influence of the ratio of the total shell layer thickness to the total thickness on the magnetic properties of the final product in a steel ingot consisting of a shell layer and an inner layer. FIG. 5 shows the influence of the thickness of the surface layer of a silicon steel plate, which consists of an inner layer and a surface layer, on the formation of a subscale layer. FIG. 6 shows the influence of the shell layer thickness of a steel ingot consisting of a shell layer and an inner layer on edge cracking during rolling.

Claims (1)

【特許請求の範囲】 1 厚さが鋼板の全厚さに対して鋼板両面の合計
で20%以下、片面にて3μm以上である限定された
表層部における合金組成が、C≦0.010wt%、
0.05wt%≦Mn≦0.5wt%、Si<1.0wt%、P≦
0.1wt%、S≦0.05wt%、N≦0.005wt%、
0.005wt%≦Sol.Al≦0.1wt%、残部Feおよび不可
避的不純物で構成され、板厚方向残部の内層部に
おける合金組成が、C≦0.010wt%、0.05wt%≦
Mn≦0.5wt%、1.0wt%≦Si≦7.0wt%、P≦
0.1wt%、S≦0.05wt%、N≦0.005wt%、
0.005wt%≦Sol.Al≦0.1wt%、残部Feおよび不可
避的不純物で構成される多層構造とした表面特性
の優れた珪素鋼板。 2 鋼塊の全厚さに対して鋼塊両面の合計で20%
以下の厚さで、且つ肉厚2.5mm以上のシエルを鋳
造する工程、および鋼塊内部を鋳造する工程によ
り、シエル層の合金組成がC≦0.060wt%、
0.05wt%≦Mn≦0.5wt%、Si<1.0wt%、P≦
0.1wt%、S≦0.05wt%、N≦0.005wt%、
0.005wt%≦Sol.Al≦0.1wt%、残部Feおよび不可
避的不純物で構成され、鋼塊内層の合金組成が、
C≦0.060wt%、0.05wt%≦Mn≦0.5wt%、1.0wt
%≦Si≦7.0wt%、P≦0.1wt%、S≦0.05wt%、
N≦0.005wt%、0.005wt%≦Sol.Al≦0.1wt%、
残部Feおよび不可避的不純物で構成された鋼塊
を造塊し、該鋼塊を直接、または加熱均熱後、熱
間圧延し、次いでスケール除去処理後、1回以上
冷間圧延及び焼鈍を各行い、厚さが鋼板の全厚さ
に対して鋼板両面の合計で20%以下、片面にて
3μm以上である限定された表層部における合金組
成が、C≦0.010wt%、0.05wt%≦Mn≦0.5wt%、
Si<1.0wt%、P≦0.1wt%、S≦0.05wt%、N≦
0.005wt%、0.005wt%≦Sol.Al≦0.1wt%、残部
Feおよび不可避的不純物で構成され、板厚方向
残部の内層部における合金組成が、C≦0.010wt
%、0.05wt%≦Mn≦0.5wt%、1.0wt%≦Si≦
7.0wt%、P≦0.1wt%、S≦0.05wt%、N≦
0.005wt%、0.005wt%≦Sol.Al≦1.0wt%、残部
Feおよび不可避的不純物で構成される多層構造
の珪素鋼板を製造することを特徴とする表面特性
の優れた珪素鋼板の製造方法。 3 2回以上の焼鈍のうち、少なくとも1回が鋼
中Cを0.010wt%以下とする脱炭焼鈍であること
を特徴とする特許請求の範囲2記載の表面特性の
優れた珪素鋼板の製造方法。
[Claims] 1. The alloy composition in a limited surface layer portion whose thickness is 20% or less in total on both sides of the steel plate and 3 μm or more on one side of the total thickness of the steel plate is C≦0.010wt%,
0.05wt%≦Mn≦0.5wt%, Si<1.0wt%, P≦
0.1wt%, S≦0.05wt%, N≦0.005wt%,
0.005wt%≦Sol.Al≦0.1wt%, the remainder consists of Fe and unavoidable impurities, and the alloy composition in the remaining inner layer in the thickness direction is C≦0.010wt%, 0.05wt%≦
Mn≦0.5wt%, 1.0wt%≦Si≦7.0wt%, P≦
0.1wt%, S≦0.05wt%, N≦0.005wt%,
A silicon steel sheet with excellent surface properties and a multilayer structure consisting of 0.005wt%≦Sol.Al≦0.1wt%, the balance being Fe and unavoidable impurities. 2 20% of the total thickness of both sides of the steel ingot
Through the process of casting a shell with the following thickness and a wall thickness of 2.5 mm or more, and the process of casting the inside of the steel ingot, the alloy composition of the shell layer is C≦0.060wt%,
0.05wt%≦Mn≦0.5wt%, Si<1.0wt%, P≦
0.1wt%, S≦0.05wt%, N≦0.005wt%,
0.005wt%≦Sol.Al≦0.1wt%, the balance consists of Fe and unavoidable impurities, and the alloy composition of the inner layer of the steel ingot is
C≦0.060wt%, 0.05wt%≦Mn≦0.5wt%, 1.0wt
%≦Si≦7.0wt%, P≦0.1wt%, S≦0.05wt%,
N≦0.005wt%, 0.005wt%≦Sol.Al≦0.1wt%,
A steel ingot composed of the balance Fe and unavoidable impurities is formed into an ingot, and the steel ingot is directly or hot rolled after being heated and soaked, and then subjected to a scale removal treatment, and then cold rolled and annealed one or more times. The total thickness of both sides of the steel plate is 20% or less of the total thickness of the steel plate, and the thickness of one side is 20% or less of the total thickness of the steel plate.
The alloy composition in a limited surface layer portion of 3 μm or more is C≦0.010wt%, 0.05wt%≦Mn≦0.5wt%,
Si<1.0wt%, P≦0.1wt%, S≦0.05wt%, N≦
0.005wt%, 0.005wt%≦Sol.Al≦0.1wt%, remainder
Composed of Fe and unavoidable impurities, the alloy composition in the remaining inner layer in the thickness direction is C≦0.010wt
%, 0.05wt%≦Mn≦0.5wt%, 1.0wt%≦Si≦
7.0wt%, P≦0.1wt%, S≦0.05wt%, N≦
0.005wt%, 0.005wt%≦Sol.Al≦1.0wt%, balance
A method for manufacturing a silicon steel sheet with excellent surface properties, which comprises manufacturing a silicon steel sheet with a multilayer structure composed of Fe and unavoidable impurities. 3. The method for producing a silicon steel sheet with excellent surface properties according to claim 2, wherein at least one of the two or more annealings is decarburization annealing to reduce C in the steel to 0.010 wt% or less. .
JP26171586A 1986-10-31 1986-10-31 Silicon steel sheet excellent in surface characteristic and its production Granted JPS63114940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26171586A JPS63114940A (en) 1986-10-31 1986-10-31 Silicon steel sheet excellent in surface characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26171586A JPS63114940A (en) 1986-10-31 1986-10-31 Silicon steel sheet excellent in surface characteristic and its production

Publications (2)

Publication Number Publication Date
JPS63114940A JPS63114940A (en) 1988-05-19
JPH0518900B2 true JPH0518900B2 (en) 1993-03-15

Family

ID=17365697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26171586A Granted JPS63114940A (en) 1986-10-31 1986-10-31 Silicon steel sheet excellent in surface characteristic and its production

Country Status (1)

Country Link
JP (1) JPS63114940A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7028148B2 (en) * 2018-12-07 2022-03-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177521A (en) * 1974-12-28 1976-07-05 Nippon Steel Corp
JPS54127829A (en) * 1978-03-28 1979-10-04 Kawasaki Steel Co Production of high silicon oneedirectional electromagnetic steel plate having good magnetic property
JPS5837367A (en) * 1981-08-27 1983-03-04 Hitachi Constr Mach Co Ltd Controller for variable capacity type oil-pressure pump in oil-pressure close circuit driver
JPS58151453A (en) * 1982-01-27 1983-09-08 Nippon Steel Corp Nondirectional electrical steel sheet with small iron loss and superior magnetic flux density and its manufacture
JPS60106915A (en) * 1983-11-15 1985-06-12 Kawasaki Steel Corp Production of semiprocess electrical steel sheet having excellent punchability
JPS61127817A (en) * 1984-11-26 1986-06-16 Kawasaki Steel Corp Manufacture of nonoriented silicon steel sheet causing hardly ridging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177521A (en) * 1974-12-28 1976-07-05 Nippon Steel Corp
JPS54127829A (en) * 1978-03-28 1979-10-04 Kawasaki Steel Co Production of high silicon oneedirectional electromagnetic steel plate having good magnetic property
JPS5837367A (en) * 1981-08-27 1983-03-04 Hitachi Constr Mach Co Ltd Controller for variable capacity type oil-pressure pump in oil-pressure close circuit driver
JPS58151453A (en) * 1982-01-27 1983-09-08 Nippon Steel Corp Nondirectional electrical steel sheet with small iron loss and superior magnetic flux density and its manufacture
JPS60106915A (en) * 1983-11-15 1985-06-12 Kawasaki Steel Corp Production of semiprocess electrical steel sheet having excellent punchability
JPS61127817A (en) * 1984-11-26 1986-06-16 Kawasaki Steel Corp Manufacture of nonoriented silicon steel sheet causing hardly ridging

Also Published As

Publication number Publication date
JPS63114940A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6256225B2 (en)
JPS62180014A (en) Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3846064B2 (en) Oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
JPH0518900B2 (en)
JPS59157259A (en) Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH0317892B2 (en)
JPH06179977A (en) Grain-oriented silicon steel sheet excellent in bendability and core loss property
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0419297B2 (en)
JP4123505B2 (en) Non-oriented electrical steel sheet with excellent high frequency characteristics
JPH11332183A (en) Method of annealing for eliminating distortion in laminated core