JPH0518892A - Determination of iodine value and acid value of fats and oils - Google Patents
Determination of iodine value and acid value of fats and oilsInfo
- Publication number
- JPH0518892A JPH0518892A JP3168084A JP16808491A JPH0518892A JP H0518892 A JPH0518892 A JP H0518892A JP 3168084 A JP3168084 A JP 3168084A JP 16808491 A JP16808491 A JP 16808491A JP H0518892 A JPH0518892 A JP H0518892A
- Authority
- JP
- Japan
- Prior art keywords
- data
- oils
- fats
- absorbance
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、赤外線の吸収を利用し
た油脂のヨウ素価および酸価の定量法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying the iodine value and acid value of fats and oils by utilizing infrared absorption.
【0002】[0002]
【従来の技術】従来の赤外線の吸収を利用した油脂のヨ
ウ素価および酸価の定量法においては、まず、複数(た
とえばn個)の波長を用いてヨウ素価(または酸価)が既
知であるサンプル(液体)の吸光度Aを測定する。次
に、そのデータAとヨウ素価(または酸価)Cとの相関を
表わす検量線式(例えば次式)を求める。
C=P1A1+P2A2+……+PnAn+P0 (1)
ここで、Ai(i=1〜n)は各波長の吸光度、Piは係数、
Cはヨウ素価(または酸価)である。係数Pは、他の手段
によりヨウ素価(または酸価)が既知であるn個以上の基
準サンプルについて測定した吸光度を用いて、既知量と
検量線式による計算値との差が最小になるように(たと
えば最小二乗法を使用して)決められる。未知サンプル
については、吸光度から検量線式を用いてヨウ素価(ま
たは酸価)が求められる。2. Description of the Related Art In conventional methods for quantifying the iodine value and acid value of fats and oils by utilizing infrared absorption, first, the iodine value (or acid value) is known using a plurality of wavelengths (for example, n). The absorbance A of the sample (liquid) is measured. Next, a calibration curve formula (for example, the following formula) representing the correlation between the data A and the iodine value (or acid value) C is determined. C = P 1 A 1 + P 2 A 2 + ... + P n A n + P 0 (1) where A i (i = 1 to n) is the absorbance of each wavelength, P i is a coefficient,
C is an iodine value (or acid value). The coefficient P uses the absorbance measured for n or more reference samples whose iodine value (or acid value) is known by other means so that the difference between the known amount and the calculated value by the calibration curve formula is minimized. (Using, for example, the least squares method). For an unknown sample, the iodine value (or acid value) can be calculated from the absorbance using a calibration curve formula.
【0003】特開平2−306936号公報に開示され
た自動エステル化方法においては、赤外線吸収スペクト
ル測定装置により酸値などを測定して、エステル化の反
応を制御している。In the automatic esterification method disclosed in Japanese Unexamined Patent Publication No. 2-306936, the acid value is measured by an infrared absorption spectrum measuring device to control the esterification reaction.
【0004】[0004]
【発明が解決しようとする課題】分光測定によって得ら
れるデータ(吸光度)には、各種の誤差が含まれているた
め、何らかの方法で除去する必要がある。この誤差の原
因には、サンプルの散乱、光源の変動、サンプルの温度
などがある。従来の方法では、検量線式を求める際に使
用するサンプルの測定時に、これらの誤差を均等に含め
ることで除去できる。サンプル温度は一定に保てばよ
い。しかし、実際には、これらの誤差を均等に含めるこ
とは困難であり、また求めた検量線式がこれらの誤差を
除去できるという保証は得られない。さらに、サンプル
の温度を一定に保つため、分光装置が複雑になり、また
温度制御自体が難しい。Since the data (absorbance) obtained by the spectroscopic measurement contains various errors, it is necessary to remove them by some method. Causes of this error include sample scattering, light source variation, and sample temperature. In the conventional method, these errors can be removed by including them evenly when measuring the sample used when obtaining the calibration curve formula. The sample temperature should be kept constant. However, in reality, it is difficult to evenly include these errors, and it is not possible to guarantee that the obtained calibration curve formula can remove these errors. Furthermore, since the temperature of the sample is kept constant, the spectroscopic device becomes complicated and the temperature control itself is difficult.
【0005】また、要求されるヨウ素価の油脂を製造す
るため水素添加が行われている。この工程はオートクレ
ーブ内で行われ、通常、温度は100〜200℃の範囲
である。これを冷却してヨウ素価を測定するのであれ
ば、測定に時間がかかってしまう。ファクトリオートメ
ーションに使用する場合には、できるだけ速く測定して
フィードバックすることが求められるので、高温のまま
吸光度が測定できることが望ましい。Further, hydrogenation is carried out in order to produce oils and fats having the required iodine value. This step is performed in an autoclave and the temperature is usually in the range of 100 to 200 ° C. If this is cooled and the iodine value is measured, the measurement will take time. When used in factory automation, it is required to measure and feed back as quickly as possible, so it is desirable that the absorbance can be measured at high temperature.
【0006】また、常温では固化するサンプルについて
は高温で溶かした状態で測定する必要があるが、一方、
固化しないサンプルは常温で測定したい。従来の方法で
は、温度ごとに(たとえば、100℃、常温、0℃の各
温度で)検量線を作成することで対処できるが、この作
成には膨大なサンプルと測定が必要になる。[0006] For a sample which solidifies at room temperature, it is necessary to measure it in a state of being melted at a high temperature.
A sample that does not solidify should be measured at room temperature. In the conventional method, it can be dealt with by creating a calibration curve for each temperature (for example, at each temperature of 100 ° C., room temperature, and 0 ° C.), but this creation requires a huge amount of samples and measurements.
【0007】本出願人は、特願平2−4042号におい
て、分光計測データ中から各種誤差変動(温度を含む)
を効率よく除去できる分光測定法を開示した。この分光
測定法では、分光計測したデータ中に含まれる各種誤差
変動についてそれぞれあらかじめ各波長毎に単位当たり
の出力変動データを求めておき、次に、この各種出力変
動データを測定波長数の次元の空間でのベクトルとみな
し、これらの全ベクトルに直交するベクトルを求める。
これらのベクトルからなる部分空間は上記の各種誤差変
動の影響を全くうけない空間である。そして、部分空間
の次元数以上の数の既知サンプルの各波長での測光デー
タをベクトルとみなし、この部分空間に射影する。(す
なわち測定波長数の次元の空間で座標変換を行い、各種
変動誤差の影響をうけないデータに変換する。)次に、
この射影データを基に測定対象の物理量または化学量の
検量線式を求める。従って、この検量線式は、上記の各
種出力変動による影響をうけない。この出願には、濃度
測定の結果が開示されている。The applicant of the present invention, in Japanese Patent Application No. 2-4042, has various error fluctuations (including temperature) from the spectroscopic measurement data.
A spectroscopic measurement method capable of efficiently removing the above has been disclosed. In this spectroscopic measurement method, output variation data per unit is obtained in advance for each wavelength for each error variation contained in the spectroscopically measured data, and then these various output variation data are measured in the number of measurement wavelengths. It is regarded as a vector in space, and a vector orthogonal to all these vectors is obtained.
The subspace consisting of these vectors is a space that is completely unaffected by the above-mentioned various error variations. Then, the photometric data at each wavelength of the known samples of which the number is equal to or larger than the dimension of the subspace is regarded as a vector, and the vector is projected onto this subspace. (That is, coordinate conversion is performed in the space of the dimension of the number of measured wavelengths, and converted into data that is not affected by various fluctuation errors.)
Based on this projection data, a calibration curve formula of the physical quantity or chemical quantity to be measured is obtained. Therefore, this calibration curve formula is not affected by the above-mentioned various output fluctuations. This application discloses the results of densitometry.
【0008】本発明は、赤外線の吸収(吸光度)を射影変
換したデータを用いて、各種誤差変動とくに温度変動の
影響をなくし、油脂のヨウ素価および酸価を定量する光
学測定法を提供することを目的とする。The present invention provides an optical measurement method for quantitatively determining the iodine value and the acid value of oils and fats by eliminating the effects of various error fluctuations, particularly temperature fluctuations, by using the data obtained by projectively converting infrared absorption (absorbance). With the goal.
【0009】[0009]
【課題を解決するための手段】所定の複数の波長で分光
測光する装置において、図2に示すように、各種出力変
動原因(温度を含む)のそれぞれについて、出力変動を
各波長ごとに測定する(ステップS1)。各種出力変動
の1つとして、油脂の温度の変化を含めることにより、
油脂の温度の影響を受けない測定が可能になる。次に、
各出力変動データをそれぞれ測定波長数の次元の空間に
おけるベクトルと考え、すべてのベクトルに直交する部
分空間を求める(ステップS2)。油脂のヨウ素価(ま
たは酸価)が既知である複数のサンプルについて、各波
長での測定を行い、吸光度を求める(ステップS3)。
次に、吸光度データを上記の部分空間に射影したデータ
に変換する(ステップS4)。次に、射影されたデータ
と油脂のヨウ素価(または酸価)の間の相関を表わす検量
線式を求める(ステップS5)。未知サンプルの測定に
おいては、サンプルについて各波長での分光測定を行
い、吸光度を求める(ステップS11)。次に、吸光度
データを上記の部分空間に射影したデータに変換する
(ステップS12)。次に、射影されたデータについて
上記の検量線式を用いてヨウ素価(または酸価)を求める
(ステップS13)。吸光度を求める際、通常は基準サ
ンプルを空気としてあらかじめ測定しておき、測定対象
サンプルの測定値により次式で計算する。In an apparatus for spectrophotometry at a plurality of predetermined wavelengths, as shown in FIG. 2, output fluctuations are measured for each wavelength for each of various output fluctuation causes (including temperature). (Step S1). By including the change in the temperature of oil and fat as one of various output fluctuations,
It enables measurement that is not affected by the temperature of fats and oils. next,
Each output fluctuation data is considered as a vector in a space having a dimension of the number of measured wavelengths, and a subspace orthogonal to all the vectors is obtained (step S2). With respect to a plurality of samples of which the iodine value (or acid value) of fats and oils is known, measurement is performed at each wavelength to obtain the absorbance (step S3).
Next, the absorbance data is converted into the data projected onto the subspace (step S4). Next, a calibration curve formula representing the correlation between the projected data and the iodine value (or acid value) of the oil and fat is obtained (step S5). In the measurement of the unknown sample, the sample is subjected to spectroscopic measurement at each wavelength to obtain the absorbance (step S11). Next, the absorbance data is converted into the data projected onto the subspace (step S12). Next, the iodine value (or acid value) of the projected data is calculated using the above calibration curve formula (step S13). When obtaining the absorbance, usually, the reference sample is preliminarily measured as air, and the following equation is used to calculate the measured value of the sample to be measured.
【数1】
しかし、好ましくは、基準サンプルを測定値が測定対象
の油脂と近いもの(脂肪酸や所定の油脂など)とすること
により、定量精度が向上する。なお、使用できることを
確認した基準サンプルは、油脂、カプロン酸、ラウリン
酸、ミリスチン酸、パルミチン酸、ステアリン酸などの
飽和脂肪酸、パルミトレイン酸、オレイン酸、リノール
酸、リノレン酸、エイコセン酸などの不飽和脂肪酸、ヘ
キサン、エタノール、トリアセチレン、グリセリン、酢
酸エチル、酢酸ブチル、酢酸アミル、トリパルミチン、
トリミリスチンである。基準サンプルは、測定温度範囲
において液体でなければならない。[Equation 1] However, preferably, the reference sample is one whose measured value is close to that of the fat or oil to be measured (fatty acid, predetermined fat or oil, etc.), so that the quantitative accuracy is improved. The reference samples that were confirmed to be usable are saturated fatty acids such as fats and oils, caproic acid, lauric acid, myristic acid, palmitic acid, and stearic acid, and unsaturated compounds such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, and eicosenoic acid. Fatty acid, hexane, ethanol, triacetylene, glycerin, ethyl acetate, butyl acetate, amyl acetate, tripalmitin,
It is trimyristin. The reference sample must be a liquid in the measuring temperature range.
【0010】[0010]
【作用】所定の複数の波長で分光測定する装置におい
て、あらかじめ油脂の温度変動を含む各種出力変動を各
波長ごとに測定し、測定波長数の次元の空間におけるベ
クトルとみなして、すべてのベクトルに直交する部分空
間を求めておく。ヨウ素価(酸価)が既知の複数の油脂
について吸光度を測定し、上記の部分空間に射影したデ
ータに変換する。この温度変動などの影響を取り除いた
射影されたデータとヨウ素価(酸価)の相関を表す検量
線式を求める。そして、この検量線式を用い油脂のヨウ
素価(酸価)を測定する。本発明を用いると、温度など
が変動しても、1つの同じ検量線が使用できるので、測
定が非常に簡略化できる。[Function] In an apparatus for spectroscopic measurement at a plurality of predetermined wavelengths, various output fluctuations including temperature fluctuations of oils and fats are measured in advance for each wavelength, and are regarded as vectors in the space of the dimension of the number of measured wavelengths, and all vectors are calculated. Find orthogonal subspaces. Absorbances of a plurality of fats and oils having a known iodine value (acid value) are measured and converted into data projected on the above partial space. A calibration curve formula representing the correlation between the projected data and the iodine value (acid value) from which the effects of such temperature fluctuations have been removed is obtained. Then, the iodine value (acid value) of the fat is measured using this calibration curve formula. When the present invention is used, one and the same calibration curve can be used even if the temperature or the like fluctuates, so that the measurement can be greatly simplified.
【0011】[0011]
【実施例】以下、添付の図面を用いて本発明の実施例を
説明する。図1に本発明の実施例に使用した透過型分光
測定装置の構成を示す。この装置において、光源1より
出た光は、レンズ2により干渉フィルター3に集光され
分光される。ディスク4には6枚の異なった波長用の干
渉フィルター3が取りつけてあり、毎秒15回の速さで
回転する。干渉フィルター3を透過した光は、レンズ5
によりセル6に集光される。液体のサンプル7は、セル
6に注入されている。サンプル7を透過した光はレンズ
8によりセンサ9に集光される。センサ9は、光信号を
電気信号に変換する。データ処理部11は、センサ9か
らの電気信号を6波長の信号に分離し、AD変換により
デジタル値に変換する。そして次の式により基準(ブラ
ンク)データを用いて6波長の吸光度Ai(i=1〜6)を
求める。
Ai=−log(Ii/I0i) (3)
ここで、IiとI0iは、i番目の波長でのサンプル透過光強
度と基準(ブランク)透過光強度である。さらに、以下に
説明するデータ処理を行った後、その結果をレコーダ1
2などに出力する。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the configuration of a transmission type spectroscopic measurement device used in an example of the present invention. In this device, the light emitted from the light source 1 is condensed on the interference filter 3 by the lens 2 and is dispersed. Six interference filters 3 for different wavelengths are attached to the disk 4 and rotate at a speed of 15 times per second. The light transmitted through the interference filter 3 is reflected by the lens 5
Is focused on the cell 6. A liquid sample 7 is injected into the cell 6. The light transmitted through the sample 7 is focused on the sensor 9 by the lens 8. The sensor 9 converts an optical signal into an electric signal. The data processing unit 11 separates the electric signal from the sensor 9 into signals of 6 wavelengths and converts them into digital values by AD conversion. Then, using the reference (blank) data, the absorbances A i (i = 1 to 6) of 6 wavelengths are calculated by the following formula. A i = −log (I i / I 0i ) (3) where I i and I 0i are the sample transmitted light intensity and the reference (blank) transmitted light intensity at the i-th wavelength. Further, after the data processing described below is performed, the result is recorded by the recorder 1.
Output to 2.
【0012】次に、各種誤差変動を避けるため、6波長
の出力値(吸光度)Aiは、下に示す方法で、誤差変動の
影響を受けないデータに変換される(以下これを射影変
換と呼ぶ。) まず、サンプルの温度変動に対する6波長
の出力変化ΔA1,ΔA2,…,ΔA6を測定波長数次元のベ
クトルTとする。
T=(ΔA1,ΔA2,…,ΔA6) (4)
同様に、サンプルの散乱の影響による変動と機器変動に
対する出力変化を、それぞれ測定波長数次元のベクトル
S,Mとする。そして、測定波長数次元の空間で、3ベ
クトルT,SおよびMに直交する部分空間を求める。す
なわち、
P・S=0
P・T=0 (5)
P・M=0
を満足するベクトルPを求める。独立な解は3つ存在
し、それらをP1,P2,P3とする。そして、6波長の出
力値(吸光度)A1,A2,…,A6を同様に測定波長数次元の
ベクトルAとし、この部分空間に射影して、誤差変動の
影響を受けないデータX1,X2,X3に変換する。そし
て、このX1,X2,X3を基に、測定対象のヨウ素価cま
たは酸価dに対する検量線式の係数Qiを求める。検量
線式は、例えば次の式を使用する。
c=Q1X1+Q2X2+Q3X3+Q0 (6)
未知サンプルのヨウ素価および酸価の定量においては、
図1の測定装置を使用して6波長における出力値(吸光
度)Ai(i=1〜6)を求め、そのデータを射影変換を用
いてXiに変換し、検量線式により、そのヨウ素価cま
たは酸価dを計算する。Next, in order to avoid various error fluctuations, the output values (absorbance) A i of the 6 wavelengths are converted into data not affected by the error fluctuations by the method described below (hereinafter, this is referred to as projective conversion). First, the output changes ΔA 1 , ΔA 2 , ..., ΔA 6 of 6 wavelengths with respect to the temperature change of the sample are set as a vector T of several dimensions of the measurement wavelength. T = (ΔA 1 , ΔA 2 , ..., ΔA 6 ) (4) Similarly, the variation due to the influence of the scattering of the sample and the output variation due to the instrument variation are respectively set as vectors S and M of the measurement wavelength number dimension. Then, a subspace orthogonal to the three vectors T, S, and M is obtained in the measurement wavelength dimensionally dimensional space. That is, a vector P satisfying P · S = 0 P · T = 0 (5) P · M = 0 is obtained. There are three independent solutions, which are P 1 , P 2 , and P 3 . Then, the output values (absorbance) of 6 wavelengths A 1 , A 2 , ..., A 6 are similarly set as a vector A of several dimensions of the measurement wavelength, and projected onto this subspace to obtain the data X 1 which is not affected by the error variation. , X 2 , X 3 . Then, based on these X 1 , X 2 , and X 3 , the coefficient Q i of the calibration curve formula for the iodine value c or the acid value d of the measurement object is determined. As the calibration curve formula, for example, the following formula is used. c = Q 1 X 1 + Q 2 X 2 + Q 3 X 3 + Q 0 (6) In the determination of iodine value and acid value of an unknown sample,
An output value (absorbance) A i (i = 1 to 6) at 6 wavelengths is obtained by using the measuring apparatus of FIG. 1, the data is converted into X i by projective transformation, and the iodine is calculated by a calibration curve formula. Calculate the value c or the acid value d.
【0013】以下に食用油のヨウ素価定量例を示す。こ
こで測定波長は、1020,1040,1180,121
0,1300,1330,1400,1445,1480,1
680,1730,1780,1820,1850,188
0,1910,1950,2000,2050,2090,2
100,2140,2160,2180,2210,227
0,2340(単位nm)の中から6波長を選択し使用し
た。以下の測定例では、使用波長は、1020、118
0、1210、1300、1330、1480nmであ
る。また、吸光度を求める際の基準サンプル(ブランク)
には食用油を使用した。An example of determining the iodine value of edible oil is shown below. Here, the measurement wavelength is 1020, 1040, 1180, 121
0,1300,1330,1400,1445,1480,1
680, 1730, 1780, 1820, 1850, 188
0,1910,1950,2000,2050,2090,2
100,2140,2160,2180,2210,227
Six wavelengths were selected from 0.2340 (unit nm) and used. In the measurement examples below, the used wavelengths are 1020 and 118.
0, 1210, 1300, 1330, 1480 nm. Also, a reference sample (blank) for determining absorbance
For this, edible oil was used.
【0014】まず、代表的な食用油について、温度を2
0℃から70℃まで変化させた時の吸光度の変化を求
め、温度による誤差変動ベクトルTとした。
T=(0.0038,0.0027,0.0019,0,3.001,0.001
9,0.0084) (7)
また、機器変動は波長依存性がないものとし、誤差変動
ベクトルMを
M=(1,1,1,1,1,1) (8)
とした。なお、サンプルの散乱による変動は考慮しなか
った。First, the temperature of typical edible oil is set to 2
The change in absorbance when the temperature was changed from 0 ° C. to 70 ° C. was obtained and used as an error variation vector T depending on temperature. T = (0.0038,0.0027,0.0019,0,3.001,0.001 9,0.0084) (7) Further, assuming that the device fluctuation does not have wavelength dependency, the error fluctuation vector M Was set to M = (1,1,1,1,1,1,1) (8). The fluctuation due to scattering of the sample was not considered.
【0015】この2つのベクトルT,Mに直交する4個
のベクトルPjを求めた。射影する部分空間は、これら
の4つのベクトルで表される。
P1=(−0.76, 0.62, 0, 0, 0, 0.14)
P2=(−0.17,−0.41,−0.27, 0, 0, 0.85)
P3=(−0.17,−0.24, 0.81,−0.5, 0, 0.11)
P4=(−0.32,−0.33,−0.06, 0.12,0.84,−0.24)
(9)
6波長の測定データAi(i=1〜6)を吸光度ベクトル
A=(A1,A2,A3,A4,A5,A6) (10)
とすると、部分空間に射影されたデータXj(j=1〜4)
は、
Xj=Pj・A (j=1〜4) (11)
となる。Four vectors P j orthogonal to the two vectors T and M were obtained. The projected subspace is represented by these four vectors. P 1 = (− 0.76, 0.62, 0, 0, 0, 0.14) P 2 = (− 0.17, −0.41, −0.27, 0, 0, 0.85) P 3 = (- 0.17, -0.24 , 0.81, -0.5, 0, 0.11) P 4 = (- 0.32, -0.33, -0.06, 0. 12, 0.84, -0.24) (9) Six wavelengths of measurement data A i (i = 1 to 6) are used as absorbance vectors A = (A 1 , A 2 , A 3 , A 4 , A 5 , A) 6 ) If (10), the data X j (j = 1 to 4) projected onto the subspace
X j = P j · A (j = 1 to 4) (11)
【0016】次に、ヨウ素価が60から150の食用油
の60個の基準サンプルについて吸光度を測定し、部分
空間に射影されたデータXj(j=1〜4)を求めた。この
データを使用して、次の検量線式を、真のヨウ素価と検
量線式により得られる計算値との差が最小になる方法
(最小二乗法)を用いて計算した。
c=Q1X1+Q2X2+Q3X3+Q4X4+Q0 (12)
ここで、cはヨウ素価、Qi(i=0〜4)は係数である。
なお、真のヨウ素価は、油脂検査協会規定の分析方法に
より求めた。なお、この測定は、極度硬化油(油脂中の
脂肪酸の不飽和部分(二重結合)の全てに水素を付加した
もの)の融点を考慮し、65℃で行った。Next, the absorbance was measured for 60 reference samples of edible oil having an iodine value of 60 to 150, and the data X j (j = 1 to 4) projected on the subspace were obtained. Using this data, the following calibration curve formula is used to minimize the difference between the true iodine value and the calculated value obtained by the calibration curve formula.
(Least squares method) was used for calculation. c = Q 1 X 1 + Q 2 X 2 + Q 3 X 3 + Q 4 X 4 + Q 0 (12) Here, c is an iodine value and Q i (i = 0 to 4) is a coefficient.
The true iodine value was determined by the analysis method prescribed by the Oil and Fat Testing Association. In addition, this measurement was performed at 65 ° C. in consideration of the melting point of an extremely hydrogenated oil (one obtained by adding hydrogen to all unsaturated portions (double bonds) of fatty acids in fats and oils).
【0017】次に、食用油(ヨウ素価が60から15
0)について吸光度を測定して部分空間に射影されたデ
ータを求め、先に求めた検量線式を使用してヨウ素価を
計算した。表1に、この計算結果を真のヨウ素価に対し
て示す。この測定は、その食用油が固化しない適当な温
度で行った。また真値は、油脂検査協会規定の分析方法
により求めた。Next, cooking oil (with an iodine value of 60 to 15)
Regarding 0), the absorbance was measured to obtain the data projected on the subspace, and the iodine value was calculated using the calibration curve formula obtained previously. Table 1 shows the calculation results with respect to the true iodine value. This measurement was performed at an appropriate temperature at which the edible oil did not solidify. The true value was determined by the analysis method prescribed by the Oil and Fat Testing Association.
【0018】また、比較のため、温度による出力の変動
を考慮せずに射影に使用する部分空間を求め、上記と同
じ食用油を使用して検量線式を作成し、同じ食用油の定
量を行った。この時の結果を表2に示す。表1と表2を
比較すると、温度の変動を考慮することにより、明らか
に定量精度が向上していることがわかる。For comparison, the subspace to be used for projection is determined without considering the fluctuation of the output due to temperature, a calibration curve formula is prepared using the same edible oil as above, and the same edible oil is quantified. went. The results at this time are shown in Table 2. Comparing Table 1 and Table 2, it can be seen that the quantitative accuracy is obviously improved by considering the temperature variation.
【表1】 [Table 1]
【表2】 [Table 2]
【0019】また、表3は、基準サンプル(ブランク)
として空気を使用した場合の測定値を示す。表3と表1
を比較すると、空気をブランクとしても、温度の変動を
考慮することにより、明らかに定量精度が向上している
ことがわかる。Table 3 shows the reference sample (blank).
The measured values when air is used as the above are shown. Table 3 and Table 1
From the comparison, it can be seen that even if air is used as a blank, the quantitative accuracy is obviously improved by considering the temperature variation.
【表3】 [Table 3]
【0020】次に、油脂の酸価定量例を食用油について
示す。ここで測定波長は、1020,1180,121
0,1300,1330,1480(単位nm)の6波長を使
用した。また、吸光度を求める際の基準サンプル(ブラ
ンク)には食用油を使用した。まず、代表的な食用油に
ついて、温度を20℃から70℃まで変化させた時の吸
光度の変化を求め、温度による誤差変動ベクトルTとし
た。
T=(0.38,0.27,0.19,0,3.1,0.19,0.84)
(13)
また、機器変動は波長依存性がないものとし、誤差変動
ベクトルMを
M=(1,1,1,1,1,1) (14)
とした。なお、サンプルの散乱による変動は考慮しなか
った。この2つのベクトルT,Mに直交する4個のベク
トルPjを求めた。射影する部分空間は、これらの4つ
のベクトルで表される。
P1=(−0.76, 0.62, 0, 0, 0, 0.14)
P2=(−0.17,−0.41,−0.27, 0, 0, 0.85)
P3=(−0.17,−0.24, 0.81,−0.5, 0, 0.11)
P4=(−0.32,−0.33,−0.06, 0.12,0.84,−0.24)
(15)
6波長の測定データAi(i=1〜6)を吸光度ベクトル
A=(A1,A2,A3,A4,A5,A6) (16)
とすると、部分空間に射影されたデータXj(j=1〜4)
は、
Xj=Pj・A (j=1〜4) (17)
となる。Next, an example of determining the acid value of fats and oils will be shown for edible oils. Here, the measurement wavelength is 1020,1180,121
Six wavelengths of 0, 1300, 1330, and 1480 (unit nm) were used. Further, edible oil was used as a reference sample (blank) for obtaining the absorbance. First, with respect to a typical edible oil, the change in the absorbance when the temperature was changed from 20 ° C. to 70 ° C. was obtained and used as an error variation vector T depending on the temperature. T = (0.38, 0.27, 0.19, 0, 3.1, 0.19, 0.84) (13) Further, it is assumed that the device fluctuation does not have wavelength dependence, and the error fluctuation vector M is M = (1,1,1,1,1,1,1) (14) The fluctuation due to scattering of the sample was not considered. Four vectors P j orthogonal to these two vectors T and M were obtained. The projected subspace is represented by these four vectors. P 1 = (- 0.76, 0.62 , 0, 0, 0, 0.14) P 2 = (- 0.17, -0.41, -0.27, 0, 0, 0.85) P 3 = (- 0.17, -0.24 , 0.81, -0.5, 0, 0.11) P 4 = (- 0.32, -0.33, -0.06, 0. 12, 0.84, -0.24) (15) Measured data A i (i = 1 to 6) of 6 wavelengths is represented by an absorbance vector A = (A 1 , A 2 , A 3 , A 4 , A 5 , A). 6 ) (16), the data X j (j = 1 to 4) projected onto the subspace
X j = P j · A (j = 1 to 4) (17)
【0021】ここで、酸価が0.1から0.5の食用油の
30個のサンプルについて吸光度を測定し、部分空間に
射影されたデータXj(j=1〜4)を求めた。このデータ
を使用して、次の検量線式を最小二乗法を用いて計算し
た。
d=R1X1+R2X2+R3X3+R4X4+R0 (18)
ここで、dは酸価、Ri(i=0〜4)は係数である。な
お、真の酸価は、油脂検査協会規定の分析方法により求
めた。なお、この測定は65℃で行った。Here, the absorbance was measured for 30 samples of edible oil having an acid value of 0.1 to 0.5, and the data X j (j = 1 to 4) projected on the subspace was obtained. Using this data, the following calibration curve equation was calculated using the method of least squares. d = R 1 X 1 + R 2 X 2 + R 3 X 3 + R 4 X 4 + R 0 (18) Here, d is an acid value and R i (i = 0 to 4) is a coefficient. The true acid value was determined by the analysis method prescribed by the Oil and Fat Testing Association. The measurement was performed at 65 ° C.
【0022】次に、食用油(酸価が0.1から0.5)に
ついて吸光度を測定して部分空間に射影されたデータを
求め、先に求めた検量線式を使用して酸価を計算した。
表4に、この計算結果を真の酸価に対して示す。この測
定は、その食用油が固化しない適当な温度で行った。ま
た真値は、油脂検査協会規定の分析方法により求めた。Next, the absorbance of edible oil (with an acid value of 0.1 to 0.5) was measured to obtain the data projected on the subspace, and the acid value was calculated using the calibration curve formula obtained previously. I calculated.
Table 4 shows the calculation results with respect to the true acid value. This measurement was performed at an appropriate temperature at which the edible oil did not solidify. The true value was determined by the analysis method prescribed by the Oil and Fat Testing Association.
【表4】 [Table 4]
【0023】[0023]
【発明の効果】油脂のヨウ素価や酸価の分光測定におい
て、1つの同じ検量線が使用できるので、温度などが変
動しても、測定が非常に簡略化できる。温度ごとに検量
線を作成しなくても、油脂のヨウ素価、酸価が温度など
の変動の影響をうけずに、正確に測定できる。したがっ
て、温度変動の効果を取り入れた検量線作成のための膨
大なサンプルと測定が不要である。また、要求されるヨ
ウ素価の油脂を製造するため水素添加の工程は、オート
クレーブ内で、通常、100〜200℃の範囲で行われ
るが、高温のまま吸光度が測定できる。The same calibration curve can be used in the spectroscopic measurement of the iodine value and the acid value of fats and oils, so that the measurement can be greatly simplified even if the temperature changes. Even if a calibration curve is not created for each temperature, the iodine value and acid value of fats and oils can be accurately measured without being affected by fluctuations such as temperature. Therefore, an enormous amount of samples and measurements for creating a calibration curve that incorporates the effect of temperature fluctuations are unnecessary. Further, the step of hydrogenation for producing a fat and oil having a required iodine value is usually carried out in an autoclave in the range of 100 to 200 ° C, but the absorbance can be measured at a high temperature.
【図1】 赤外線透過光測定装置の構成を示す図であ
る。FIG. 1 is a diagram showing a configuration of an infrared transmitted light measuring device.
【図2】 ヨウ素価,酸価の検量線決定のフローチャー
トである。FIG. 2 is a flowchart for determining a calibration curve for iodine value and acid value.
【図3】 ヨウ素価、酸価測定のフローチャートであ
る。FIG. 3 is a flowchart for measuring iodine value and acid value.
3…フィルタ、 6…セル、7…サンプル、 9…
センサ、11…データ処理装置。3 ... Filter, 6 ... Cell, 7 ... Sample, 9 ...
Sensor, 11 ... Data processing device.
Claims (4)
おいて、 油脂の温度変化を含む各種出力変動原因のそれぞれにつ
いて、出力変動を各波長ごとに測定し、 次に、各出力変動データをそれぞれ測定波長数の次元の
空間におけるベクトルとみなし、これらのすべてのベク
トルに直交する部分空間を求め、 油脂のヨウ素価が既知である複数のサンプルについて、
各波長での測定を行い、吸光度を求め、 次に、吸光度データを上記の部分空間に射影したデータ
に変換し、 次に、射影されたデータと油脂のヨウ素価の間の相関を
表わす検量線式を求めることを特徴とする油脂のヨウ素
価定量法。1. An apparatus for spectrophotometry at a plurality of predetermined wavelengths, for each of the various output fluctuation causes including the temperature change of oil and fat, the output fluctuation is measured for each wavelength, and then each output fluctuation data is respectively measured. Considered as a vector in the space of the dimension of the number of measurement wavelengths, determine the subspace orthogonal to all these vectors, for a plurality of samples for which the iodine value of fats and oils is known,
Measurement is performed at each wavelength to obtain the absorbance, then the absorbance data is converted into data projected onto the above subspace, and then a calibration curve showing the correlation between the projected data and the iodine value of oil and fat. A method for determining the iodine value of fats and oils, characterized by obtaining a formula.
るいは所定の油脂を基準サンプルとして吸光度を求める
ことを特徴とする油脂のヨウ素価定量法。2. The iodine value determination method for fats and oils according to claim 1, wherein the absorbance is determined using a fatty acid or a predetermined fat and oil as a reference sample.
おいて、 油脂の温度変化を含む各種出力変動原因のそれぞれにつ
いて、出力変動を各波長ごとに測定し、 次に、各出力変動データを測定波長数の次元の空間にお
けるベクトルとみなし、すべてのベクトルに直交する部
分空間を求め、 油脂の酸価が既知である複数のサンプルについて、各波
長での測定を行い、吸光度を求め、 次に、吸光度データを上記の部分空間に射影したデータ
に変換し、 次に、射影されたデータと油脂の酸価の間の相関を表わ
す検量線式を求めることを特徴とする油脂の酸価定量
法。3. In an apparatus for spectrophotometry at a plurality of predetermined wavelengths, output fluctuation is measured for each wavelength for each of various output fluctuation causes including temperature change of oil and fat, and then each output fluctuation data is measured. Considered as a vector in the space of the dimension of the number of wavelengths, determine the subspace orthogonal to all the vectors, multiple samples for which the acid value of fats and oils is known, perform measurement at each wavelength, determine the absorbance, and then A method for quantifying the acid value of fats and oils, which comprises converting the absorbance data into data projected onto the above-mentioned subspace, and then obtaining a calibration curve formula representing the correlation between the projected data and the acid value of the fats and oils.
るいは所定の油脂を基準サンプルとして吸光度を求める
ことを特徴とする油脂の酸価定量法。4. The method for determining the acid value of oil or fat according to claim 3, wherein the absorbance is determined using a fatty acid or a predetermined oil or fat as a reference sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16808491A JP3212108B2 (en) | 1991-07-09 | 1991-07-09 | Determination of iodine value and acid value of fats and oils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16808491A JP3212108B2 (en) | 1991-07-09 | 1991-07-09 | Determination of iodine value and acid value of fats and oils |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0518892A true JPH0518892A (en) | 1993-01-26 |
JP3212108B2 JP3212108B2 (en) | 2001-09-25 |
Family
ID=15861551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16808491A Expired - Lifetime JP3212108B2 (en) | 1991-07-09 | 1991-07-09 | Determination of iodine value and acid value of fats and oils |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3212108B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080885A (en) * | 2000-09-07 | 2002-03-22 | Nisshin Oil Mills Ltd:The | Plant for manufacturing cooking oil and method for manufacturing cooking oil |
CN103149161A (en) * | 2013-02-28 | 2013-06-12 | 江苏汇杰电气有限公司 | Device for detecting color of water-soluble acid solution |
-
1991
- 1991-07-09 JP JP16808491A patent/JP3212108B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002080885A (en) * | 2000-09-07 | 2002-03-22 | Nisshin Oil Mills Ltd:The | Plant for manufacturing cooking oil and method for manufacturing cooking oil |
CN103149161A (en) * | 2013-02-28 | 2013-06-12 | 江苏汇杰电气有限公司 | Device for detecting color of water-soluble acid solution |
Also Published As
Publication number | Publication date |
---|---|
JP3212108B2 (en) | 2001-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0163788B1 (en) | Spectrometric method free from variations of error factors | |
Walshaw | Integrated absorbtion by the 9.6 μ band of ozone | |
EP0250707B1 (en) | Method and apparatus for measuring by infrared absorption the concentration of microcrystal defects in a silicon wafer used in the manufacture of a semiconductor element | |
US4482966A (en) | Detector for chromatographs | |
GB2270978A (en) | Acid value determination using ir spectroscopy | |
JP3212108B2 (en) | Determination of iodine value and acid value of fats and oils | |
CN113639891A (en) | High-speed optical fiber temperature sensing demodulation method based on equivalent wavelength | |
JP2022527850A (en) | Methods for configuring a spectroscopic measuring device | |
JPS6140928B2 (en) | ||
JPS6244203B2 (en) | ||
JP2020112478A (en) | Estimation method of fatty acid ester content | |
JP3212107B2 (en) | Spectrometry | |
JP2018077202A (en) | Reference sample for meat fatty acid composition value near infrared spectroscopy measurement, reference sample kit for meat fatty acid composition value near infrared spectroscopy measurement and meat fat measurement method | |
NZ512434A (en) | Reaction monitoring | |
JPH0414298B2 (en) | ||
JP2005091024A (en) | Quantity determination method and spectrum measuring instrument | |
JP2728773B2 (en) | Apparatus and method for evaluating thickness of semiconductor multilayer thin film | |
JP2977373B2 (en) | Optical fiber temperature distribution sensor | |
JP3820065B2 (en) | Dynamic light scattering particle size distribution measuring apparatus and dynamic light scattering particle size distribution measuring method | |
JPH04303768A (en) | Data processor for chromatograph | |
JPH01219529A (en) | Method and device for stress measurement | |
US20240133749A1 (en) | Brdf measurement system and method, electronic device, and storage medium | |
JP3628462B2 (en) | Spectroscopic measurement method and apparatus | |
CN115219562A (en) | Solution concentration detection method, device, equipment and storage medium | |
CN115184641A (en) | Middle and high-rise atmospheric wind speed measurement interference imaging spectrometer calibration device and calibration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070719 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |