JPH0518891A - Correcting method for chemical analyzer - Google Patents

Correcting method for chemical analyzer

Info

Publication number
JPH0518891A
JPH0518891A JP17118191A JP17118191A JPH0518891A JP H0518891 A JPH0518891 A JP H0518891A JP 17118191 A JP17118191 A JP 17118191A JP 17118191 A JP17118191 A JP 17118191A JP H0518891 A JPH0518891 A JP H0518891A
Authority
JP
Japan
Prior art keywords
value
slide
difference
optical density
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17118191A
Other languages
Japanese (ja)
Inventor
Toru Ozeki
徹 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17118191A priority Critical patent/JPH0518891A/en
Publication of JPH0518891A publication Critical patent/JPH0518891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable accurate correction to be conducted by weighting for primary feedback with high (low) weight in the photo-concentration range of small (large) acceptable optical concentration difference converted with an error factor. CONSTITUTION:The reflected light applied 2 to a chemical analysis slide 1 of a measured object is converted 3 to electric signal and a CPU 5 converts this to logarithm and then converts to an optical concentration value and a clinical value. A measurement accuracy is generally defined by the error factor to the clinical value, however; the acceptable optical concentration difference corresponding to an acceptable error factor along a measurement curve differs for the concentration range. To improve accuracy, the measured value is weighted accordingly to the concentration difference. That is, to a clinical value error Ni calculated by multiplying the clinical value Ci by a defined error ratio Mi%, the value Ci is added to get a value CEi. The CEi and Ci are inversely converted to optical concentration on the inverse function of the measurement curve to obtain a small difference dDi between the concentrations DEi and Di, which is an acceptable optical concentration difference. For a large (small) difference, a small (large) weight is put to a standard slide measurement value for primary feedback.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光学濃度による化学
分析装置の補正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting a chemical analysis device by optical density.

【0002】[0002]

【従来の技術】透明支持体上に少なくとも一層の試薬層
を有し、被検体の適着により光学濃度変化を生じる分析
スライドに対し、血液又は血清等の検体を適下して光学
反射濃度(又は透過濃度)を測定し、この濃度値から演
算により臨床値に変換して検体における特定の成分の含
有の有無や含有量等を化学的に分析する化学分析装置が
ある。
2. Description of the Related Art For an analytical slide having at least one reagent layer on a transparent support, which causes a change in optical density due to suitable attachment of an analyte, an analyte such as blood or serum is appropriately adjusted to obtain an optical reflection density ( Alternatively, there is a chemical analyzer that measures the concentration (or permeation concentration) and converts the concentration value into a clinical value by calculation to chemically analyze the presence or absence, content, etc. of a specific component in a sample.

【0003】この化学分析装置を量産する際に量産装置
個々の濃度測定値にバラツキを生ずる。そのため量産装
置個々の濃度値を補正しなければならない。そこで基準
となる化学分析装置を準備し、この基準の化学分析装置
に他の(補正すべき)化学分析装置の濃度値を一致させ
ることが考えられる。このため、複数の基準スライドを
基準の化学分析装置と他の化学分析装置とで濃度を測定
し、それぞれの測定濃度値に基づき前記の「他の化学分
析装置」の測定値を、基準の化学分析装置の測定値へ変
換するような変換式を求める方法がある。この補正方法
は特開平1-124751号公報に記載されていて、簡便な作業
で量産装置の補正を比較的安価に行うことが可能であ
る。
When the chemical analyzer is mass-produced, the concentration measurement value of each mass-produced device varies. Therefore, it is necessary to correct the density value of each mass production device. Therefore, it is conceivable to prepare a reference chemical analysis device and make the concentration value of another (to be corrected) chemical analysis device coincident with the reference chemical analysis device. For this reason, the concentration of a plurality of reference slides is measured by a reference chemical analysis device and another chemical analysis device, and the measured value of the above-mentioned "other chemical analysis device" is used as the reference chemical analysis device based on each measured concentration value. There is a method of obtaining a conversion formula for converting into a measurement value of an analyzer. This correction method is described in Japanese Patent Laid-Open No. 1-124751, and correction of a mass production device can be performed at a relatively low cost by a simple operation.

【0004】[0004]

【発明が解決しようとする課題】以上述べた補正方法
は、いずれも補正すべき化学分析装置の測光特性が基準
の化学分析装置の測光特性に対して非直線性である場合
には補正効果に限界がある。
In any of the correction methods described above, when the photometric characteristic of the chemical analyzer to be corrected is non-linear with respect to the photometric characteristic of the reference chemical analyzer, the correction effect is obtained. There is a limit.

【0005】一般に化学分析装置に要求される測定精度
は光学濃度から演算で変換された臨床値に対する誤差比
率%で規定される。しかしこの臨床値は、測定された光
学濃度が非一次関数である変換カーブ、即ち検量線によ
り変換されたものであり、例えば臨床値に対して求めら
れる精度が臨床値全体に渡って5%均一である場合で
も、臨床値精度を確保するための光学濃度測定精度は各
光学濃度域で異なっている。前記、特開平1-124751に記
載の方法では、全ての光学濃度域で測定値の重みを等し
くして一次回帰を行っているため、光学濃度測定に求め
られる精度が光学濃度測定域毎に異なる性質が反映され
ない。例えば、必要な光学濃度測定精度が比較的低い光
学濃度域では回帰残差が小さく、逆に高い光学濃度域で
は回帰残差が大きくなりかねないという課題がある。
Generally, the measurement accuracy required for a chemical analyzer is defined by an error ratio% with respect to a clinical value converted by calculation from optical density. However, this clinical value is obtained by converting the measured optical density by a conversion curve that is a non-linear function, that is, a calibration curve. For example, the accuracy required for the clinical value is 5% uniform over the entire clinical value. Even in such a case, the optical density measurement accuracy for ensuring the clinical value accuracy is different in each optical density range. In the method described in Japanese Patent Laid-Open No. 1-124751, the accuracy required for the optical density measurement is different for each optical density measurement area because the weights of the measured values are equalized in all the optical density areas and the primary regression is performed. The nature is not reflected. For example, there is a problem that the regression residual may be small in the optical density range where the required optical density measurement accuracy is relatively low, and conversely may be large in the high optical density range.

【0006】[0006]

【課題を解決するための手段】基準スライドと基準化学
分析装置を用いて任意の化学分析装置の測定値を補正す
る方法において、本発明は以上の課題を解決する目的で
なされたものであって、化学分析装置の精度を臨床値に
対する誤差比で表現し、この誤差比を許容光学濃度差に
換算し、該許容光学濃度差が小さい光学濃度範囲では高
い重み付けを行い許容光学濃度差が大きい光学濃度範囲
では低い重み付けを行って一次回帰により補正すること
を特徴とする化学分析装置の補正方法である。
SUMMARY OF THE INVENTION In a method of correcting a measurement value of an arbitrary chemical analysis device using a reference slide and a reference chemical analysis device, the present invention has been made for the purpose of solving the above problems. The accuracy of the chemical analyzer is expressed as an error ratio with respect to a clinical value, the error ratio is converted into an allowable optical density difference, and high weighting is performed in an optical density range in which the allowable optical density difference is small. This is a correction method for a chemical analysis device, characterized by performing low-weighting in the concentration range and performing correction by linear regression.

【0007】[0007]

【実施例】本発明に係る分析スライド1は第9図及び第
10図に示すように構成され、GOT、GPT、グリコー
ス、尿素窒素等をはじめとする多項目に応じて用意され
る。
EXAMPLE An analysis slide 1 according to the present invention is shown in FIGS.
It is configured as shown in FIG. 10 and prepared according to many items including GOT, GPT, glucose, urea nitrogen and the like.

【0008】この分析スライド1は中央部の凹所に測光
用の透孔50aを有するマウントベース50の凹所に試薬を
有する分析素子51が装着され、その上から中央部に検体
滴下用の透孔52aを有するマウントカバー52を重ね、超
音波等の接着手段により接着されている。このマウント
ベース50の両側には挿入方向を決める段部50bが形成さ
れており、またマウントカバー52の表面には挿入方向を
示す矢印53a、測定項目名53b、測定項目を判別するた
めの測定項目識別コード54が表示されている。
In this analysis slide 1, an analytical element 51 having a reagent is mounted in a recess of a mount base 50 having a through hole 50a for photometry in the recess of the central part, and a transparent part for dropping a sample is mounted in the central part from above. The mount covers 52 having the holes 52a are overlapped with each other and bonded by a bonding means such as ultrasonic waves. On both sides of the mount base 50, stepped portions 50b that determine the insertion direction are formed, and on the surface of the mount cover 52, an arrow 53a indicating the insertion direction, a measurement item name 53b, and a measurement item for determining the measurement item. The identification code 54 is displayed.

【0009】化学分析装置はその外観を図11に示す。ま
た図12は化学分析装置の概略図、図13はその測定部の平
面図、図14はその断面図である。
The external appearance of the chemical analyzer is shown in FIG. Further, FIG. 12 is a schematic view of the chemical analysis device, FIG. 13 is a plan view of the measuring part thereof, and FIG. 14 is a sectional view thereof.

【0010】この化学分析装置は分析スライド1に試料
を滴下し、その反応による色の濃度変化を測定して、試
料における特定の成分の含有の有無等を化学的に分析す
るもので、スライド供給部A、恒温部B、試料滴下部
C、測光部D、スライド排出部Eが備えられている。
This chemical analyzer is a device for dropping a sample onto an analysis slide 1 and measuring a change in color density due to the reaction to chemically analyze the presence or absence of a specific component in the sample. A section A, a constant temperature section B, a sample dropping section C, a photometric section D, and a slide discharge section E are provided.

【0011】スライド供給部A スライド供給部Aは分析スライド1を恒温部Bへ供給す
るもので、分析スライド1を一定の方向で挿入するよう
になっている。この分析スライド1は1枚ずつ挿入して
もよく、また自動的に連続して供給するようにしてもよ
い。
Slide Supply Section A The slide supply section A supplies the analysis slide 1 to the constant temperature section B, and the analysis slide 1 is inserted in a fixed direction. The analysis slides 1 may be inserted one by one, or may be automatically and continuously supplied.

【0012】恒温部B 恒温部Bは試料が滴下された分析スライド1を所定の温
度にして、試料の反応による色の濃度変化が適正に行わ
れるようにするものである。この恒温部Bにはディスク
22が回転可能に設けられており、このディスク22の外方
へ挿入口を有するスライド収納室23が複数形成されてい
る。このスライド収納室23にはスライド供給部Aから供
給される分析スライド1が収納され、ディスク22の回転
で分析スライド1は試料滴下部C、測光部D、スライド
排出部Eの順に搬送される。
Constant Temperature Part B The constant temperature part B is for keeping the analysis slide 1 on which the sample is dropped at a predetermined temperature so that the color density change due to the reaction of the sample is appropriately performed. This constant temperature section B has a disc
22 is rotatably provided, and a plurality of slide storage chambers 23 each having an insertion opening are formed outside the disc 22. The analysis slide 1 supplied from the slide supply unit A is stored in the slide storage chamber 23, and the analysis slide 1 is conveyed by the rotation of the disk 22 in the order of the sample dropping unit C, the photometric unit D, and the slide discharge unit E.

【0013】試料滴下部C 試料滴下部Cには恒温部Bのスライド収納室23から分析
スライド1が移動され、ここでシャッタ24を開くことに
よって、検査者が分析スライド1に試料を滴下すること
ができる。試料の滴下が終了すると、再び分析スライド
1は恒温部Bのスライド収納室23に収納して搬送され
る。
Sample Dropping Section C To the sample dropping section C, the analysis slide 1 is moved from the slide accommodating chamber 23 of the constant temperature section B, and the shutter 24 is opened here so that the inspector drops the sample on the analysis slide 1. You can When the dropping of the sample is completed, the analysis slide 1 is again stored in the slide storage chamber 23 of the constant temperature part B and conveyed.

【0014】測光部D 測光部Dでは分析スライド1に滴下した試料の反応によ
る色の濃度変化を測定する。この測光部Dには分析スラ
イド1を支持する支持板25に形成した測光窓26の下方に
測光器7が備えられ、この測光窓26の上方の恒温部Bの
ハウジング28には永久磁石29が設けられている。
Photometric unit D The photometric unit D measures the change in color density due to the reaction of the sample dropped on the analysis slide 1. The photometric unit D is provided with a photometric device 7 below a photometric window 26 formed on a support plate 25 that supports the analysis slide 1, and a permanent magnet 29 is provided in a housing 28 of the constant temperature unit B above the photometric window 26. It is provided.

【0015】ディスク22のスライド収納室23の上壁には
窓部22aが形成され、永久磁石29と対向する位置に永久
磁石30が押圧板31を介して支持されている。この押圧板
31は弾性体32を介して分析スライド1に圧着して覆い、
分析スライド1に滴下した試料が乾燥することを防止し
ている。
A window 22a is formed on the upper wall of the slide storage chamber 23 of the disk 22, and a permanent magnet 30 is supported at a position facing the permanent magnet 29 via a pressing plate 31. This pressing plate
31 is pressure-bonded to the analysis slide 1 through the elastic body 32 to cover it,
The sample dropped on the analytical slide 1 is prevented from drying.

【0016】ディスク22のスライド収納室23に収納され
た分析スライド1がディスク22の回転で測光部Dへ搬送
されると、分析スライド1は測光部Dの永久磁石29と、
スライド収納室23の永久磁石30との反発力で、スライド
収納室23の永久磁石30はそれが取り付けられている押圧
板31を下方に押し、その結果分析スライド1が支持板25
の測定基準面Xに圧着保持される。
When the analysis slide 1 stored in the slide storage chamber 23 of the disk 22 is conveyed to the photometric section D by the rotation of the disk 22, the analysis slide 1 is connected to the permanent magnet 29 of the photometric section D,
By the repulsive force of the permanent magnet 30 of the slide storage chamber 23, the permanent magnet 30 of the slide storage chamber 23 pushes the pressing plate 31 to which it is attached downward, so that the analysis slide 1 is supported by the support plate 25.
It is pressure-bonded to the measurement reference plane X of.

【0017】このように、永久磁石29、30の反発力を利
用して分析スライド1が測定基準面Xに圧接保持される
ため、分析スライド1の押圧保持で測光部が振動するこ
とが防止され、しかも分析スライド1を測定基準面Xに
圧接保持する構造が簡単である。
As described above, since the analysis slide 1 is held in pressure contact with the measurement reference plane X by utilizing the repulsive force of the permanent magnets 29, 30, the photometry unit is prevented from vibrating due to the pressing and holding of the analysis slide 1. Moreover, the structure for holding the analysis slide 1 in pressure contact with the measurement reference plane X is simple.

【0018】また、この圧接保持状態で分析スライド1
の濃度を測定するため、測定精度を一層向上させること
ができる。
The analysis slide 1 is also held in this pressure-contact holding state.
Since the concentration is measured, the measurement accuracy can be further improved.

【0019】さらに、この実施例では押圧板31が分析ス
ライド1に直接接しているが、間に他の部材を配置し
て、間接的に分析スライド1を圧着するようにしてもよ
い。
Further, although the pressing plate 31 is in direct contact with the analysis slide 1 in this embodiment, another member may be disposed between them to indirectly press-bond the analysis slide 1.

【0020】また、押圧板31は分析スライド1に弾性体
32を介して密着されており、前記したように滴下された
試料の蒸発を防ぐ効果を兼ねている。
Further, the pressing plate 31 is an elastic member on the analysis slide 1.
It is closely attached via 32, and also has the effect of preventing evaporation of the dropped sample as described above.

【0021】さらに、化学分析装置内に複数の分析スラ
イド1の搬送機構を有し、その搬送機構で分析スライド
1が挿入された状態で測定が行なわれる場合には、各々
の搬送機構に磁石を配置すればよい。
Further, when the chemical analysis apparatus has a transport mechanism for a plurality of analysis slides 1 and the measurement is performed with the transport slides inserted in the transport mechanism, a magnet is provided for each transport mechanism. Just place it.

【0022】この分析スライド1は測光を行なう位置で
のみ圧着保持され、他の位置を搬送される時には圧着さ
れないように構成される。
The analysis slide 1 is constructed so as to be pressure-bonded and held only at a position where photometry is performed, and not to be pressure-bonded when transported to another position.

【0023】また、測光部Dの永久磁石29を電磁石に代
え、測定時のみ磁界を発生させて、分析スライド1を圧
着保持させ、ディスク22が回転して移動する時には磁界
を発生させないようにすることができ、この場合分析ス
ライド1の搬送時は圧着しないので、より円滑に分析ス
ライド1を搬送することができる。
Further, the permanent magnet 29 of the photometry section D is replaced with an electromagnet, and a magnetic field is generated only during measurement, the analysis slide 1 is press-held, and no magnetic field is generated when the disk 22 rotates and moves. In this case, since the analysis slide 1 is not crimped when it is conveyed, the analysis slide 1 can be conveyed more smoothly.

【0024】次に本発明の基本概念について説明する。
図1は、光学濃度を利用した乾式化学分析装置の一例で
ある。図1の構成図に示すように水平に置かれた被測定
物である化学分析スライド1に光源2として例えば発光
素子の光を四方向から45°の角度で照射し、その反射光
を受光素子3で電気記号に変換し、これを対数に変換し
て光学濃度値としている。そしてその濃度値を変換式に
よって臨床値に変換して目的とする臨床値を表示する装
置であって、これらの変換演算はCPU5によって行わ
れる。前記変換式の一例としては、 Y=〔B/(X−A)〕+C (1) ただし、Yは臨床値、Xは光学濃度、A、B、Cは、と
もに分析スライドと分析装置固有の定数がある。これら
の変換式に基づく変換カーブ(検量線)を図2に示す。
図2で縦軸は臨床値、横軸は光学濃度値である。臨床値
Ci及びCjにおける許容誤差範囲(比率)を例えばそれ
ぞれa%と規定すれば、これに対応する各濃度値Di、
Djでの許容誤差範囲光学濃度差ΔbおよびΔcは、Δ
b=Δcではなく、それぞれ異なった値となる。本発明
はこの光学濃度での許容誤差範囲の濃度範囲毎の違いに
着目し、許容誤差範囲の狭い濃度範囲における光学濃度
測定精度を上げるために同範囲の測定値について重み付
けを施した後、一次回帰を行なう事により化学分析装置
に必要な精度を容易に達成しようとするものである。
Next, the basic concept of the present invention will be described.
FIG. 1 is an example of a dry chemical analyzer utilizing optical density. As shown in the configuration diagram of FIG. 1, a chemical analysis slide 1 which is a horizontally placed object to be measured is irradiated with light from a light emitting element as a light source 2 at an angle of 45 ° from four directions, and the reflected light is received by a light receiving element. In step 3, it is converted into an electric symbol and converted into a logarithm to obtain an optical density value. Then, the concentration value is converted into a clinical value by a conversion formula and the target clinical value is displayed, and these conversion operations are performed by the CPU 5. As an example of the conversion formula, Y = [B / (X−A)] + C (1) where Y is a clinical value, X is an optical density, and A, B, and C are both unique to an analysis slide and an analyzer. There is a constant. The conversion curve (calibration curve) based on these conversion formulas is shown in FIG.
In FIG. 2, the vertical axis represents the clinical value and the horizontal axis represents the optical density value. If the permissible error range (ratio) in the clinical values Ci and Cj is defined as a%, for example, each density value Di,
The permissible error range optical density difference Δb and Δc at Dj is Δ
Not b = Δc but different values. The present invention pays attention to the difference in the allowable error range in the optical density for each density range, weights the measured values in the same range in order to improve the optical density measurement accuracy in the narrower allowable error range, and then By performing regression, it is intended to easily achieve the accuracy required for the chemical analysis device.

【0025】以下に、本発明を実施するための手順を示
す。化学分析装置の測定精度は、一般に複数の臨床値C
iに着目し、その各臨床値Ciに於ける誤差比率Mi%
を規定する。そしてその誤差比率Mi%に対応する臨床
値誤差Ni(Ni=Ci×Mi)÷100を計算し、その
臨床値誤差Niに臨床値Ciを加えこれをCEiとす
る。即ち、 CEi=[臨床値誤差Ni]+[臨床値Ci]を計算す
る。
The procedure for carrying out the present invention will be described below. The measurement accuracy of a chemical analyzer is generally several clinical values C
Focusing on i, the error ratio Mi% in each clinical value Ci
Stipulate. Then, a clinical value error Ni (Ni = Ci × Mi) ÷ 100 corresponding to the error ratio Mi% is calculated, and the clinical value Ci is added to the clinical value error Ni to obtain CEi. That is, CEi = [clinical value error Ni] + [clinical value Ci] is calculated.

【0026】そしてこのCEiと臨床値Ciの両方を検量
線関数の逆関数を用いてそれぞれ光学濃度に逆変換す
る。即ちCEiに対応する濃度DEiと臨床値Ciに対応
する濃度Diが求まる。更にこの濃度DEiと濃度Diと
の微少差dDiを求め、この微少差dDiが大きい場合に
は小さい重みを又微少差dDiが小さい場合は大きい重
みを上記基準スライドの測定値に付して一次回帰を行う
のを基本とする。
Then, both CEi and the clinical value Ci are inversely converted into optical densities by using the inverse function of the calibration curve function. That is, the density DEi corresponding to CEi and the density Di corresponding to the clinical value Ci are obtained. Further, a small difference dDi between the density DEi and the density Di is obtained, and when the small difference dDi is large, a small weight is attached to it, and when the small difference dDi is small, a large weight is attached to the measured value of the reference slide, and the primary regression Is basically done.

【0027】誤差比率は正負の両方について、等量に規
定され、また、検量線も微少範囲においては、ほぼ直線
と見なせる事が多いので正の微少差+dDiと負の微少
差−dDiの絶対値はほぼ等しいことが多いが、等しく
ない場合には正と負の微少差±dDiの各絶対値のどち
らか小さい方を用いて回帰上の重みを決定する微少濃度
値dDiとする。この±dDiの差が大きくなるのは許容
誤差比率が正負で異なる場合と許容誤差比率領域内で検
量線カーブが直線から大きく剥離する場合である。
The error ratio is defined as an equal amount for both positive and negative, and the calibration curve is often regarded as a substantially straight line in the minute range, so the absolute value of the positive minute difference + dDi and the negative minute difference −dDi. Are often almost equal, but when they are not equal, the smaller absolute value of positive and negative minute difference ± dDi, whichever is smaller, is used as the minute concentration value dDi for determining the weight on regression. The difference of ± dDi becomes large when the allowable error ratio is different between positive and negative and when the calibration curve is largely separated from the straight line in the allowable error ratio region.

【0028】例えば重みTは当該化学分析装置の測定可
能な臨床値領域即ち測定ダイナミックレンジ内での微少
差濃度dDiの最大値MAX(dDi)に基づき、 T=MAX(dDi)/dDi (2) で決定すれば良い。
For example, the weight T is based on the maximum value MAX (dDi) of the minute difference concentration dDi in the measurable clinical value region of the chemical analyzer, that is, within the measurement dynamic range, and T = MAX (dDi) / dDi (2) You can decide with.

【0029】また別の方法においては、当該測定項目の
臨床値領域に相当する光学濃度範囲では、 T=MAX(dDi)/dDi+1 (3) これ以外の光学濃度値範囲では、 T=1 (4) としても良い。
In another method, T = MAX (dDi) / dDi + 1 (3) in the optical density range corresponding to the clinical value region of the measurement item, and T = 1 (4 ) Is good.

【0030】後者の方法は比較的データ点数が少ない場
合に、統計上の回帰精度を確保する上で有効であり、更
にこれ以外の重み決定方法でも、その重みに微少差濃度
dDiが反映される限り本発明の主旨に沿うものであ
る。
The latter method is effective in securing statistical regression accuracy when the number of data points is relatively small, and the weight determination method other than this is also effective for the weight of the minute difference density.
As long as dDi is reflected, it is in accordance with the gist of the present invention.

【0031】上記の計算を行なう臨床値Ciは基準スラ
イドの基準の測定機による測定光学濃度値から検量線カ
ーブを用いて換算して設定しても良く、この場合には測
定可能な臨床値領域に相当する光学濃度範囲を包含する
のに必要十分な基準スライドについて(2)式又は
(3)式に従って重みTを決定することが望ましい。
The clinical value Ci for performing the above calculation may be set by converting from the optical density value measured by the standard measuring device of the standard slide using a calibration curve, and in this case, the measurable clinical value region It is desirable to determine the weight T according to the formula (2) or the formula (3) for the reference slide that is necessary and sufficient to include the optical density range corresponding to.

【0032】更に当該化学分析装置で測定する化学分析
スライドの種類に同一の波長でほぼ同一の呈色濃度範囲
を有し、しかも類似の検量線で臨床値を求めるものが2
種以上存在する場合には、それらの項目を1つのグルー
プとして取り扱う事が可能である。即ちこの場合の回帰
操作は、そのグループについて行えば良く、項目毎に行
う必要はない。
Further, there are two types of chemical analysis slides which are measured by the chemical analysis device, which have almost the same color density range at the same wavelength and which are used to obtain a clinical value with a similar calibration curve.
If there are more than one species, these items can be treated as one group. That is, the regression operation in this case may be performed for that group, and does not have to be performed for each item.

【0033】一例として、グルコースの場合について説
明する。グルコースの検量線は、(1)式により、その
係数は、A;3.3072,B;1610.1,C;561.7である。
As an example, the case of glucose will be described. The glucose calibration curve has the coefficients of A; 3.3072, B; 1610.1, C; 561.7 according to the equation (1).

【0034】また、許容誤差としての微少差濃度dDi
を求めると図5のようになる。
Further, the minute difference density dDi as an allowable error
Is obtained as shown in FIG.

【0035】また、図3に、グルコースの検量線カーブ
を、図4に臨床値について規定された誤差比率を示す。
また臨床値測定範囲(ダイナミックレンジ)は20mg/dL
〜500mg/dLで、誤差比率範囲はこの領域で5%均一で
ある。臨床値で5%均一の精度を確保するには、図5か
ら光学濃度値0.6付近において光学濃度測定誤差約0.007
以内、光学濃度値1.7付近において光学濃度誤差約0.034
以内に収めなければならない事が分かる。臨床値測定範
囲内における微少差濃度dDiの最大値MAX(dDi)は0.
035である。
Further, FIG. 3 shows a calibration curve of glucose, and FIG. 4 shows an error ratio defined for clinical values.
The clinical value measurement range (dynamic range) is 20 mg / dL.
At ~ 500 mg / dL, the error ratio range is 5% uniform in this region. In order to ensure a 5% uniform accuracy in the clinical value, the optical density measurement error of about 0.007 is observed in the vicinity of the optical density value of 0.6 from FIG.
Within, optical density error around 0.034 near optical density value 1.7
I know that I have to keep it within. The maximum value MAX (dDi) of the minute difference concentration dDi within the clinical value measurement range is 0.
It is 035.

【0036】一方量産出荷調整時に使用される基準スラ
イドの概略濃度の一例を表1に示す。
On the other hand, Table 1 shows an example of the approximate density of the reference slide used at the time of mass production and shipping adjustment.

【0037】 これらの概略濃度に対応するグルコースの例の微少差濃
度dDiを表2に示す。
[0037] Table 2 shows the minute difference concentrations dDi of glucose examples corresponding to these approximate concentrations.

【0038】 また上記基準スライドを基準の測定機で測定した値を
表3のS欄、量産機での測定値をR欄に示す。
[0038] The values measured with the standard measuring machine on the above reference slide are shown in column S of Table 3, and the values measured with the mass production machine are shown in column R.

【0039】 (表3) スライド番号 R S 波長546 1 0.518 0.515 2 0.522 0.559 3 0.743 0.772 4 0.735 0.738 5 0.894 0.902 6 0.907 0.922 7 1.051 1.094 8 1.085 1.145 9 1.301 1.376 10 1.347 1.397 11 1.474 1.589 12 1.535 1.698 13 1.746 1.982 14 1.828 2.185 15 1.873 2.249 更に(2)式に従って決定したグルコースの重み値を
表4に示すが、この値は、小数点1位を四捨五入し、整
数に変換している。
(Table 3) Slide number RS wavelength 546 1 0.518 0.515 2 0.522 0.559 3 0.743 0.772 4 0.735 0.738 5 0.894 0.902 6 0.907 0.922 7 1.051 1.094 8 1.085 1.145 9 1.301 1.376 10 1.347 1.397 11 1.474 1.589 12 1.535 1.698 13 1.746 1.982 14 1.828 2.185 15 1.873 2.249 Furthermore, the weight value of glucose determined according to the equation (2) is shown in Table 4, and this value is converted into an integer by rounding off to the first decimal place.

【0040】 これら表3、表4から求められたグルコースの量産機の
補正値を表5に示す。
[0040] Table 5 shows the correction values of the glucose mass-production machine obtained from these Tables 3 and 4.

【0041】 また別の例として尿素に関する場合を示す。[0041] As another example, the case of urea is shown.

【0042】図6は、検量線カーブ、図7は、臨床値に
ついて規定された誤差比率である。この場合の(1)式
の係数はA;2.8446 B;84.98 C;35であり、臨床
値測定範囲(ダイナミックレンジ)は1mg/dL〜10mg/
dL、誤差比率は1mg/dLにおいて12%、4.4mg/dLにお
いて8%、6.8mg/dL以上において5%であり、これら
の値の間は直線により補間される。この例の許容誤差と
しての微少差濃度dDiを図8に示する。臨床値測定範
囲内での微少差濃度dDiの最大値MAX(dDi)は0.020
8である。
FIG. 6 is a calibration curve, and FIG. 7 is an error ratio defined for clinical values. In this case, the coefficient of the equation (1) is A; 2.8446 B; 84.98 C; 35, and the clinical value measurement range (dynamic range) is 1 mg / dL to 10 mg /
The dL and error ratios are 12% at 1 mg / dL, 8% at 4.4 mg / dL, and 5% at 6.8 mg / dL and above, and the values are interpolated by a straight line. FIG. 8 shows the minute difference density dDi as the allowable error in this example. The maximum value MAX (dDi) of the minute difference concentration dDi within the clinical value measurement range is 0.020.
8

【0043】基準スライドの概略濃度に対する尿素の微
少差濃度dDiを表6に示す。
Table 6 shows the minute difference concentration dDi of urea with respect to the approximate concentration of the reference slide.

【0044】 更に(2)式、(3)式に従って決定したグルコースの
重み値を表7に示すが、この値は小数点1位を四捨五入
し、整数に変換している。これら、表3、表7から求め
られた尿素の当該量産機の補正値を表8に示す。
[0044] Further, the weight values of glucose determined according to the equations (2) and (3) are shown in Table 7. These values are rounded to one decimal place and converted into integers. Table 8 shows the correction values of urea for the mass production machine obtained from these Tables 3 and 7.

【0045】 [0045]

【0046】[0046]

【発明の効果】化学分析装置の補正を行う場合、従来測
光特性が基準の化学分析装置の測光特性に対して直線性
がある場合には良いが、非直線性である場合には補正効
果に限界があり、例えば、必要な光学濃度測定精度が比
較的低い光学濃度域では回帰残差が小さく、逆に高い光
学濃度域では回帰残差が大きくなりかねないという課題
があった。しかし本発明によって臨床値上で規定された
精度を実現するために、比較的高い光学濃度測定精度を
要求される光学濃度領域において、特に残差が少なくな
るような化学分析装置の補正値を簡単に求めることが可
能になり、高精度で安価な補正方法を提供出来るように
なった。
EFFECTS OF THE INVENTION When correcting a chemical analysis device, it is preferable if the conventional photometric characteristic has linearity with respect to the reference photometric characteristic, but if it has non-linearity, the correction effect is There is a limit, and for example, there is a problem that the regression residual may be small in the optical density range where the required optical density measurement accuracy is relatively low, and conversely the regression residual may be large in the high optical density range. However, in order to realize the accuracy specified on the clinical value by the present invention, the correction value of the chemical analysis device which makes the residual error particularly small in the optical density region where relatively high optical density measurement accuracy is required is simple. It has become possible to provide a highly accurate and inexpensive correction method.

【図面の簡単な説明】[Brief description of drawings]

【図1】化学分析装置の光学系の図。FIG. 1 is a diagram of an optical system of a chemical analyzer.

【図2】検量線カーブの図。FIG. 2 is a diagram of a calibration curve.

【図3】グルコースの検量線カーブの図。FIG. 3 is a diagram showing a calibration curve of glucose.

【図4】グルコースの誤差比率の図。FIG. 4 is a diagram of an error rate of glucose.

【図5】グルコースの微少差濃度の図。FIG. 5 is a diagram showing the minute difference concentration of glucose.

【図6】尿素の検量線カーブの図。FIG. 6 is a diagram of a calibration curve of urea.

【図7】尿素の誤差比率の図。FIG. 7 is a diagram of an error ratio of urea.

【図8】尿素の微少差濃度の図。FIG. 8 is a diagram showing a slight difference concentration of urea.

【図9】分析スライドの構成図。FIG. 9 is a block diagram of an analysis slide.

【図10】マウントされた分析スライド図。FIG. 10: Mounted analysis slides.

【図11】化学分析装置の外観図。FIG. 11 is an external view of a chemical analyzer.

【図12】化学分析装置の概略図。FIG. 12 is a schematic view of a chemical analyzer.

【図13】測定部の平面図。FIG. 13 is a plan view of a measurement unit.

【図14】測定部の断面図。FIG. 14 is a sectional view of a measurement unit.

【符号の説明】[Explanation of symbols]

1 スライド 2 光源 3 受光素子 4 液検体 5 CPU Ci 臨床値 Di 濃度値 dDi 微少差濃度 Ni 臨床値誤差 M 誤差比率 1 slide 2 light source 3 light receiving element 4 liquid sample 5 CPU Ci clinical value Di concentration value dDi minute difference concentration Ni clinical value error M error ratio

Claims (1)

【特許請求の範囲】 【請求項1】 基準スライドと基準化学分析装置を用い
て任意の化学分析装置の測定値の補正を行う化学分析装
置の補正方法において、化学分析装置の測定精度を臨床
値に対する誤差比で表現し、この誤差比を対応する許容
光学濃度に換算し、該許容光学濃度差が小さい光学濃度
範囲では高い重み付けを行い許容光学濃度差が大きい光
学濃度範囲では低い重み付けを行って一次回帰により補
正することを特徴とする化学分析装置の補正方法。
Claim: What is claimed is: 1. A method for correcting a chemical analysis device for correcting a measurement value of an arbitrary chemical analysis device using a reference slide and a reference chemical analysis device, wherein the measurement accuracy of the chemical analysis device is set to a clinical value. The error ratio is converted into a corresponding allowable optical density, and high weighting is performed in the optical density range in which the allowable optical density difference is small, and low weighting is performed in the optical density range in which the allowable optical density difference is large. A method for correcting a chemical analysis device, which comprises correcting by linear regression.
JP17118191A 1991-07-11 1991-07-11 Correcting method for chemical analyzer Pending JPH0518891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17118191A JPH0518891A (en) 1991-07-11 1991-07-11 Correcting method for chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17118191A JPH0518891A (en) 1991-07-11 1991-07-11 Correcting method for chemical analyzer

Publications (1)

Publication Number Publication Date
JPH0518891A true JPH0518891A (en) 1993-01-26

Family

ID=15918509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17118191A Pending JPH0518891A (en) 1991-07-11 1991-07-11 Correcting method for chemical analyzer

Country Status (1)

Country Link
JP (1) JPH0518891A (en)

Similar Documents

Publication Publication Date Title
US6274384B1 (en) Method for specific substance and molecule detection
US20050107956A1 (en) Concentration measuring method
Budinova et al. Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum
US6629057B2 (en) Comprehensive verification systems and methods for analyzer-read clinical assays
US20010028862A1 (en) Test device for a multi-items test and the method for producing the same as well as a measuring instrument for the test device
EP0840122A3 (en) Method and apparatus for calibrating a sensor element
JPH0134337B2 (en)
US20060199221A1 (en) Correction for temperature dependence assays
US20140147336A1 (en) Impedance biosensor for electrical impedance biological sensing and manufacturing method thereof
CN209028001U (en) A kind of device measuring the anti-condensation coating result of stainless steel sink
JPH0518891A (en) Correcting method for chemical analyzer
EP1592962B1 (en) Phase shift measurement system
AU4056395A (en) Calibrating and testing immunoassays to minimize interference
US7486388B2 (en) Method and apparatus for standardization of a measuring instrument
JPH06308131A (en) Data processing apparatus
EP1558921B1 (en) Method of performing calibration and quality control of a sensor and apparatus for performing said method
Murayama et al. Determination of human serum albumin and γ-globulin in a control serum solution by near-infrared spectroscopy and partial least squares regression
JPH04507144A (en) analytical assay
JPH0518895A (en) Optical concentration measuring device
Adlercreutz et al. Evaluation of the new" System Olli 3000" kinetic ultraviolet analyzer for measuring aspartate and alanine aminotransferase and lactate dehydrogenase activities in serum
JPS6111642A (en) Chemical analysis instrument
Moss Automatic enzyme analyzers
Treskes et al. Multicentre evaluation of the EBIO plus glucose analyser
JP2004219218A5 (en)
JPS6060558A (en) Analyzing method for plural measurements