JPH05188606A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH05188606A
JPH05188606A JP232892A JP232892A JPH05188606A JP H05188606 A JPH05188606 A JP H05188606A JP 232892 A JP232892 A JP 232892A JP 232892 A JP232892 A JP 232892A JP H05188606 A JPH05188606 A JP H05188606A
Authority
JP
Japan
Prior art keywords
charge
layer
lower alkyl
charge transport
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP232892A
Other languages
Japanese (ja)
Inventor
Azuma Matsuura
東 松浦
Tomoaki Hayano
智明 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP232892A priority Critical patent/JPH05188606A/en
Publication of JPH05188606A publication Critical patent/JPH05188606A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body having high sensitivity which enables fast printing and causes no deterioration of characteristics even for repeated use by incorporating an enamine deriv. expressed by specified formula into a charge transfer layer. CONSTITUTION:This electrophotographic sensitive body is a layered type having at least a charge generating layer and a charge transfer layer on a conductive supporting body. The charge transfer layer contains an enamine deriv. expressed by formula. In formula, R1-R3 are independently lower alkyl groups, R4 and R5 are independently lower alkyl, lower alkoxy, phenyl or naphthyl groups with substitution of lower alkyl or lower alkoxy groups. This charge transfer layer is formed by dissolving a compd. expressed by the formula with a binder resin in a solvent, applying the liquid on the charge generating layer, and drying. As for the charge generating material which constitutes the charge generating layer or is included in the charge generating layer, dyes or pigments such as azo, phthalocyanine, indigo, perylene, etc., are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体に関
し、更に詳しくは高い感度と秀れた連続安定性を示す電
子写真感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member exhibiting high sensitivity and excellent continuous stability.

【0002】[0002]

【従来の技術】電子写真感光体は、電子写真方式を応用
した複写機、プリンターなどに広く適用されている。電
子写真の一例として、帯電、露光、現像、転写、および
定着の各工程の繰り返しによって印刷物を得る方法が一
般的である。帯電は、光導電性を有する感光体の表面に
正または負の均一静電荷を施す。続く露光プロセスで
は、レーザー光などを照射して特定部分の表面電荷を消
去することによって感光体上に画像情報に対応した静電
潜像を形成する。次に、この潜像をトナーという粉体イ
ンクによって静電的に現像することにより、感光体上に
トナーによる可視像を形成する。最後に、このトナー像
を記録紙上に静電的に転写し、熱、光、および圧力など
によって融着させることにより印刷物を得るものであ
る。
2. Description of the Related Art Electrophotographic photoreceptors are widely applied to copying machines, printers and the like to which an electrophotographic method is applied. As an example of electrophotography, it is common to obtain a printed matter by repeating the steps of charging, exposing, developing, transferring, and fixing. The charging applies a uniform positive or negative electrostatic charge to the surface of the photoconductor having photoconductivity. In the subsequent exposure process, a laser beam or the like is irradiated to erase the surface charge of a specific portion, thereby forming an electrostatic latent image corresponding to image information on the photoconductor. Next, this latent image is electrostatically developed with powder ink called toner to form a visible image with toner on the photoconductor. Finally, this toner image is electrostatically transferred onto a recording paper and fused by heat, light, pressure or the like to obtain a printed matter.

【0003】従来、前記の光導電性を有する感光体とし
て、セレン系に代表される無機感光体が広く使用されて
いた。この無機感光体は感度が高い上に機械的摩耗に強
く、高速・大型機に適しているという特長を有する反
面、真空蒸着法で製造しなければならないこと、人体に
有害であるため回収する必要があることなどの理由によ
りコストが高く、メインテナンスフリーの小型・低価格
機への適用が困難であるという問題点を有していた。
Conventionally, inorganic photoconductors represented by selenium have been widely used as the photoconductors having photoconductivity. Although this inorganic photoconductor has high sensitivity and resistance to mechanical abrasion and is suitable for high-speed and large-scale machines, it has to be manufactured by the vacuum deposition method, and it is harmful to the human body, so it needs to be recovered. However, there is a problem in that it is difficult to apply to maintenance-free small-sized and low-priced machines because of high cost due to such reasons.

【0004】無機感光体に代わるものとして開発された
のが有機感光体である。これは塗布法によって製造でき
るため量産によるコスト低減が容易であること、セレン
などの無機物を用いる無機感光体に比べて材料選択範囲
が広いため有害性の無い化合物を選ぶことができ、ユー
ザ廃棄によるメインテナンスフリー化も可能であるこ
と、などという特長を持つ。
The organic photoconductor has been developed as an alternative to the inorganic photoconductor. This is because it can be manufactured by the coating method, so it is easy to reduce the cost by mass production, and since the material selection range is wider than the inorganic photoconductor that uses an inorganic substance such as selenium, it is possible to select a compound that is not harmful. It has the feature that it can be maintenance-free.

【0005】特に、電荷発生層と電荷輸送層とを積層し
た機能分離積層型感光体(図1)が注目されている。図
中、1は感光層、2は電荷輸送層、3は電荷発生層、4
は支持体をそれぞれ示す。ここで、電荷発生層は入射光
を吸収して電子・正孔ペア(キャリアペア)を発生させ
る機能を有し、電荷輸送層はその表面に帯電を保持する
と共に、電荷発生層で発生したキャリアの片方を感光体
表面まで輸送して静電潜像を形成させる機能を持つ。電
荷発生層は、光を吸収してキャリアペアを発生させる電
荷発生物質を蒸着膜にするか、あるいはバインダー樹脂
中に分散させて形成する。電荷発生物質としてはアゾ系
顔料やフタロシアニンなどが知られており、バインダー
樹脂としてはポリエステルやポリビニルブチラールなど
が用いられている。電荷輸送層は、キャリア輸送能を有
する電荷輸送物質をバインダー樹脂中に相溶させて形成
する。電荷輸送物質としては電子を輸送する性質を持つ
トリニトロフルオレノンやクロラニルなどの電子輸送性
電荷輸送物質と、正孔を輸送する性質を有するヒドラゾ
ンやピラゾリンなどの正孔輸送性電荷輸送物質があり、
バインダー樹脂としてはポリカーボネートやスチレン−
アクリルなどが使用される。
In particular, the function-separated laminated type photoreceptor (FIG. 1) in which a charge generation layer and a charge transport layer are laminated has attracted attention. In the figure, 1 is a photosensitive layer, 2 is a charge transport layer, 3 is a charge generation layer, 4
Indicates a support, respectively. Here, the charge generation layer has a function of absorbing incident light to generate an electron-hole pair (carrier pair), and the charge transport layer holds charge on its surface and also generates carriers generated in the charge generation layer. Has the function of transporting one of them to the surface of the photoconductor to form an electrostatic latent image. The charge generation layer is formed by depositing a charge generation substance that absorbs light to generate a carrier pair or by dispersing it in a binder resin. Azo pigments and phthalocyanines are known as charge generating substances, and polyester, polyvinyl butyral and the like are used as binder resins. The charge transport layer is formed by making a binder resin compatible with a charge transport material having a carrier transport ability. As the charge-transporting substance, there are electron-transporting charge-transporting substances such as trinitrofluorenone and chloranil, which have an electron-transporting property, and hole-transporting charge-transporting substances such as hydrazone and pyrazoline, which have a hole-transporting property.
As binder resin, polycarbonate or styrene-
Acrylic is used.

【0006】このように感光体の機能を二つの層に分離
することにより、それぞれの機能に最適な化合物をほぼ
独立に選択することができ、感度、分光特性、機械的耐
摩耗性などの諸特性を向上させることができる。
By separating the function of the photoconductor into two layers in this way, it is possible to select the compounds most suitable for each function almost independently, and to obtain various properties such as sensitivity, spectral characteristics and mechanical abrasion resistance. The characteristics can be improved.

【0007】[0007]

【発明が解決しようとする課題】しかし、セレンなど従
来の無機系感光体に比べると感度は未だ低く、高速プリ
ンタへの適用は困難であった。そこで高感度でかつ高速
度印刷を可能とする電子写真感光体の開発が望まれてい
た。
However, the sensitivity is still lower than that of conventional inorganic photoconductors such as selenium, and it is difficult to apply it to high-speed printers. Therefore, there has been a demand for the development of an electrophotographic photosensitive member that has high sensitivity and enables high-speed printing.

【0008】[0008]

【課題を解決するための手段】本発明はかかる従来の課
題を解決するためをその目的とするものであり、この目
的達成のため本発明の電子写真感光体は、導電性支持体
上に少なくとも電荷発生層と電荷輸送層とを有する積層
型電子写真感光体において、電荷輸送層中に下記構造式
(I):
The present invention has as its object to solve the above-mentioned conventional problems, and in order to achieve this object, the electrophotographic photosensitive member of the present invention is at least on a conductive support. In a laminated electrophotographic photoreceptor having a charge generation layer and a charge transport layer, the following structural formula (I) is contained in the charge transport layer:

【0009】[0009]

【化2】 [Chemical 2]

【0010】(前記式中、R1 ,R2 およびR3 はそれ
ぞれ互いに独立に低級アルキルを表わし、R4 およびR
5 はそれぞれ互いに独立に低級アルキル、低級アルコキ
シ又は低級アルキルもしくは低級アルコキシで置換され
たフェニルもしくはナフチルを表わす。)で表わされる
エナミン誘導体を含有することを特徴とする。
(In the above formula, R 1 , R 2 and R 3 each independently represent lower alkyl, R 4 and R 3
5's each independently represent phenyl or naphthyl substituted with lower alkyl, lower alkoxy or lower alkyl or lower alkoxy. ) It is characterized by containing an enamine derivative represented by.

【0011】このように本発明において、導電性支持体
としては感光体をアースでき得るものなら如何なる種類
のものでもよく、各種金属円筒、導電性を施した樹脂や
紙などの円筒、絶縁性円筒表面に金属を蒸着あるいはラ
ミネートとしたもの、絶縁性円筒上に導電性を有する有
機薄膜を施したもの、および上記と同様の構成を有する
フィルムなどを好ましく用いることができる。
As described above, in the present invention, the conductive support may be of any type as long as it can ground the photoreceptor, and various metal cylinders, cylinders of conductive resin or paper, insulating cylinders, etc. A metal vapor-deposited or laminated surface, a conductive organic thin film formed on an insulating cylinder, and a film having the same structure as described above can be preferably used.

【0012】電荷発生層を構成する、あるいは電荷発生
層に含有される電荷発生物質としてはアゾ系、フタロシ
アニン系、インジゴ系、ペリレン系、スクアリリウム
系、キノン系等の染料もしくは顔料を使用できるが、特
にフタロシアニン系顔料を用いると良好な感度を得るこ
とができる。フタロシアニンとしては無金属フタロシア
ニン、銅フタロシアニン、塩化アルミニウムフタロシア
ニン、チタニルフタロシアニン、バナジルフタロシアニ
ン、インジウムフタロシアニンなど各種の金属フタロシ
アニンを用いることができる。電荷発生層は支持体上に
これらの電荷発生物質を蒸着するか、あるいはバインダ
ー樹脂と共に溶媒中に分散させたものを塗布・乾燥させ
ることにより形成する。バインダー樹脂としてはポリエ
ステル、ポリビニルアルコール、ポリビニルアセター
ル、ポリアミド、エポキシ、シリコーンなど各種の樹
脂、あるいはカゼインなどの成膜性を有する各種有機化
合物を用いることができ、下地への密着性や電荷発生物
質の分散性などを考慮して選択する。溶媒は用いる電荷
発生物質とバインダー樹脂に合わせて選択するが、テト
ラヒドロフラン、ジオキサン、メタノール、エタノー
ル、ヘキサン、エーテル、ジクロルメタン、ジクロルエ
タン、ベンゼン、トルエン、クロルベンゼン、キシレ
ン、メチルセロソルブ、エチルセロソルブ、酢酸エチル
など各種有機溶媒を単独あるいは混合して用いることが
できる。支持体への塗布方法としては浸漬コート、スプ
レーコート、ワイヤーバーコート、ドクターブレードコ
ートなどがある。膜厚は0.01〜3μm程度である
が、1μm以下とするのが望ましい。
As the charge generating substance constituting the charge generating layer or contained in the charge generating layer, azo type, phthalocyanine type, indigo type, perylene type, squarylium type, quinone type dyes or pigments can be used. Particularly when a phthalocyanine pigment is used, good sensitivity can be obtained. As the phthalocyanine, various metal phthalocyanines such as metal-free phthalocyanine, copper phthalocyanine, aluminum chloride phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine and indium phthalocyanine can be used. The charge generation layer is formed by vapor-depositing these charge generation substances on a support or by coating and drying a dispersion of the charge generation substance together with a binder resin in a solvent. As the binder resin, various resins such as polyester, polyvinyl alcohol, polyvinyl acetal, polyamide, epoxy, and silicone, or various organic compounds having a film-forming property such as casein can be used. Select in consideration of dispersibility. The solvent is selected according to the charge generating substance and the binder resin used, but tetrahydrofuran, dioxane, methanol, ethanol, hexane, ether, dichloromethane, dichloroethane, benzene, toluene, chlorobenzene, xylene, methyl cellosolve, ethyl cellosolve, ethyl acetate, etc. Various organic solvents can be used alone or as a mixture. Examples of the method for applying to the support include dip coating, spray coating, wire bar coating and doctor blade coating. The film thickness is about 0.01 to 3 μm, but it is desirable to set it to 1 μm or less.

【0013】電荷輸送層は、前記構造式Iで示される化
合物をバインダー樹脂と共に溶媒に溶解させ、前記電荷
発生層上に塗布・乾燥させることによって形成する。前
記構造式Iで示される化合物は、それぞれ下記構造式で
示されるアルデヒドIIとジアミンIII から公知の脱水縮
合反応により合成することができる。化合物の代表例を
後記の表1に示す。
The charge transport layer is formed by dissolving the compound represented by the structural formula I in a solvent together with a binder resin, and coating and drying the solution on the charge generating layer. The compound represented by Structural Formula I can be synthesized from an aldehyde II and a diamine III represented by the following structural formulas by a known dehydration condensation reaction. Representative examples of the compounds are shown in Table 1 below.

【0014】[0014]

【化3】 [Chemical 3]

【0015】式中、R1 ,R2 およびR3 はそれぞれ互
いに独立に低級アルキルを表わす。
In the formula, R 1 , R 2 and R 3 each independently represent lower alkyl.

【0016】[0016]

【化4】 [Chemical 4]

【0017】式中、R4 およびR5 それぞれ互いに独立
に低級アルキル、低級アルコキシ又は低級アルキルもし
くは低級アルコキシで置換されたフェニルもしくはナフ
チルを表わす。尚、本発明において低級アルキルおよび
低級アルコキシは、炭素数1〜3個までのアルキルおよ
びアルコキシをそれぞれ表わす。
In the formula, R 4 and R 5 each independently represent lower alkyl, lower alkoxy or phenyl or naphthyl substituted with lower alkyl or lower alkoxy. In the present invention, lower alkyl and lower alkoxy represent alkyl and alkoxy having 1 to 3 carbon atoms, respectively.

【0018】電荷輸送層のバインダー樹脂としてはポリ
エステル、ポリカーボネート、ポリスチレン、ポリアク
リロニトリル、アクリル−スチレン、ポリスルホンなど
公知のものが使用できる。溶媒は用いるバインダー樹脂
などに合わせて電荷発生層の塗工に用いたのと同様の物
の中から適宜選択する。塗布方法は電荷発生層の場合と
同様の方法を用いることができる。膜厚は5〜50μm
であるが、10〜30μmとするのが望ましい。
As the binder resin for the charge transport layer, known resins such as polyester, polycarbonate, polystyrene, polyacrylonitrile, acryl-styrene and polysulfone can be used. The solvent is appropriately selected from the same materials as those used for coating the charge generation layer, depending on the binder resin used. As the coating method, the same method as in the case of the charge generation layer can be used. The film thickness is 5-50 μm
However, it is desirable that the thickness is 10 to 30 μm.

【0019】尚、電荷輸送層中には、エナミン誘導体I
に加えて、他のヒドラゾン誘導体やピラゾリン誘導体の
ような他の正孔輸送性電荷輸送物質を添加しても良い。
その際、ヒドラゾン誘導体に対するその他の電荷輸送物
質の混合比は、100:1〜100:500の範囲が望
ましい。また、電荷発生層と電荷輸送層の積層順序は反
対にしても良い。
In the charge transport layer, the enamine derivative I
In addition, other hole transporting charge transporting substances such as other hydrazone derivatives and pyrazoline derivatives may be added.
At this time, the mixing ratio of the other charge transport material to the hydrazone derivative is preferably in the range of 100: 1 to 100: 500. Further, the order of stacking the charge generation layer and the charge transport layer may be reversed.

【0020】導電性支持体と電荷発生層の間には、接着
性の改良、支持体表面の平坦化、支持体表面の欠陥被
服、ホットキャリアの注入制御、帯電受容性や帯電保持
率の改良などの目的で下引層を設けても良い。下引層の
構成材料としては、電荷発生層や電荷輸送層に用いられ
る各種バインダ樹脂やカゼインなどのように成膜性を有
する材料単独、あるいはそれらの中に導電性物質を含有
させて抵抗値を1014Ω・cm以下に調整したものなどを
用いることができる。下引層の抵抗値を調整するための
導電性物質としては、各種金属粉、導電性金属酸化物
粉、カーボンなど、導電性を有するものなら何でもよ
い。
Between the conductive support and the charge generating layer, the adhesion is improved, the surface of the support is flattened, the surface of the support is covered with defects, hot carriers are controlled to be injected, and the charge acceptance and the charge retention are improved. An undercoat layer may be provided for the purpose such as. As a constituent material of the undercoat layer, a material having film-forming property such as various binder resins or casein used in the charge generation layer or the charge transport layer, or a resistance value by containing a conductive substance in them. It is possible to use the one having a value of 10 14 Ω · cm or less. As the conductive substance for adjusting the resistance value of the undercoat layer, any conductive substance such as various metal powders, conductive metal oxide powders and carbon may be used.

【0021】[0021]

【作用】本発明の感光体は、電荷輸送層に新規なエナミ
ン誘導体を用いているため、高い感度と優れた連続安定
性を示す。本発明の感光体が高感度を示す理由は次のよ
うに考えられる。一般に本発明のような積層型感光体の
場合、その感度は、電荷発生層におけるキャリア発生
効率ξ、電荷発生層から電荷輸送層へのキャリア注入
効率η、電荷輸送層におけるキャリア輸送効率ζ、の
各効率が大きく、それらの積が1に近いほど高感度であ
ると言われている。実施例1と比較例は電荷発生層が同
じであるため、両者のξは等しい。よって、実施例の方
が高感度なのは、η、ζが大きいためであると言える。
The photoreceptor of the present invention, which uses a novel enamine derivative in the charge transport layer, exhibits high sensitivity and excellent continuous stability. The reason why the photoconductor of the present invention exhibits high sensitivity is considered as follows. Generally, in the case of a laminated type photoreceptor as in the present invention, its sensitivity is determined by the carrier generation efficiency ξ in the charge generation layer, the carrier injection efficiency η from the charge generation layer to the charge transport layer, and the carrier transport efficiency ζ in the charge transport layer. It is said that the higher each efficiency is, and the product thereof is closer to 1, the higher the sensitivity is. Since Example 1 and the comparative example have the same charge generation layer, both ξ are the same. Therefore, it can be said that the embodiment has higher sensitivity because η and ζ are larger.

【0022】電荷発生層から電荷輸送層へのキャリア注
入は、電荷発生層中の電荷発生物質内に生じた電子・正
孔ペアが分離し、独立した正孔が電界エネルギーによっ
て電荷発生物質から電荷輸送層中の電荷輸送物質に移動
することによって達成されると考えられる。この時、正
孔の移動に関わるそれぞれのエネルギーレベルが近いほ
ど、移動効率(すなわち注入効率)は高いと言われてい
る。これより、本発明のヒドラゾン誘導体は、その正孔
輸送に関わる分子軌道(最高被占分子軌道、HOMO)
が、電荷発生物質内に発生する正孔のエネルギーレベル
と近くなっており、そのために高い感度を示していると
考えられる。
In the carrier injection from the charge generation layer to the charge transport layer, electron-hole pairs generated in the charge generation material in the charge generation layer are separated, and independent holes are charged from the charge generation material by electric field energy. It is believed to be achieved by migrating to the charge transport material in the transport layer. At this time, it is said that the closer the respective energy levels involved in the movement of holes, the higher the transfer efficiency (that is, injection efficiency). From this, the hydrazone derivative of the present invention shows that the molecular orbital (highest occupied molecular orbital, HOMO) related to its hole transporting.
Is close to the energy level of the holes generated in the charge generating substance, and it is considered that this shows high sensitivity.

【0023】また、特にフタロシアニンで感度が良好に
なるのも、フタロシアニンと本発明のエナミン誘導体の
エネルギーレベルが近接しているためであると考えられ
る。電荷輸送層における正孔輸送は、電荷発生層から注
入された正孔が電荷輸送物質間を表面に向ってホッピン
グ伝導することによって達成されると考えられている。
よって、正孔のホッピングが起こり易いほど、輸送効率
ζは大きいと言える。さらに、電荷輸送物質が電子を出
しやすい(イオン化エネルギーが小さい)ほど、ホッピ
ングは起こりやすくなると考えられている。本発明のヒ
ドラゾン誘導体がζにすぐれる理由は、3つのドナー
(−OR)が結合したベンゼン環を有するために、HO
MOのエネルギーレベルが従来の電荷輸送物質に比べて
高くなり、電子をより放出しやすいためと考えられる。
Further, it is considered that the reason why the sensitivity is particularly good with phthalocyanine is that the energy levels of the phthalocyanine and the enamine derivative of the present invention are close to each other. It is considered that the hole transport in the charge transport layer is achieved by the holes injected from the charge generation layer performing hopping conduction between the charge transport materials toward the surface.
Therefore, it can be said that the transport efficiency ζ is higher as the hole hopping is more likely to occur. Further, it is considered that hopping is more likely to occur as the charge transport material more easily emits electrons (smaller ionization energy). The reason why the hydrazone derivative of the present invention is superior to ζ is that it has a benzene ring to which three donors (—OR) are bonded.
It is considered that the energy level of MO becomes higher than that of the conventional charge transport material, and electrons are more easily emitted.

【0024】以上の理由から、本発明の感光体は、従来
の電荷輸送物質を用いたものより高い感度を示すものと
考えられる。以下、本発明を実施例により説明するが、
本発明がこれらの実施例により制限されないことはもと
よりである。
For the above reasons, the photoconductor of the present invention is considered to exhibit higher sensitivity than those using the conventional charge transport material. Hereinafter, the present invention will be described with reference to Examples.
It goes without saying that the invention is not limited by these examples.

【0025】[0025]

【実施例】【Example】

合成例1〜4:エナミン誘導体の合成 エナミン合成例 3,4,5トリメトキシベンズアルデヒド 0.01mol およびジフェニルアミン 0.01mol およびベンゼン 40ml を200mlフラスコに入れ、N2 気流下にて、生成する
2 Oを除去しながら8時間加熱・還流した。
Synthesis Examples 1-4: Synthesis of Enamine Derivatives Enamine Synthesis Example 3,4,5 Trimethoxybenzaldehyde 0.01 mol, diphenylamine 0.01 mol and benzene 40 ml were put into a 200 ml flask, and H 2 O produced under N 2 gas stream. While heating, the mixture was heated and refluxed for 8 hours.

【0026】得られた微結晶を吸引ロ過で回収後メタノ
ールにて3回洗浄した後、エタノールで再結晶すること
により精製し、3,4,5−トリメトキシフェニル1,
1−ジフェニルエナミン(表1のNo. 1の化合物)(融
点112〜115℃)を収率55%で得た。合成1と同
様に操作して表1に示すNo. 2−No. 4の化合物をそれ
ぞれ合成した。
The obtained fine crystals were collected by suction filtration, washed with methanol three times, and then purified by recrystallizing with ethanol to obtain 3,4,5-trimethoxyphenyl 1,3.
1-Diphenylenamine (No. 1 compound in Table 1) (melting point 112-115 ° C) was obtained with a yield of 55%. The same operations as in Synthesis 1 were carried out to synthesize the compounds No. 2 to No. 4 shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例1 酸化チタンフタロシアニン1部(重量部)、ポリエステ
ル1部、ジクロロメタン9部、ジクロロエタン9部を硬
質ガラスボールと硬質ガラスポットを用いて24時間分
散混合したものをアルミ蒸着ポリエステルフィルムのア
ルミ面上にドクターブレードで塗布し、100℃で1時
間乾燥させて膜厚約0.3μmの電荷発生層とした。
Example 1 Titanium oxide phthalocyanine (1 part by weight), polyester (1 part), dichloromethane (9 parts) and dichloroethane (9 parts) were dispersed and mixed for 24 hours in a hard glass ball and a hard glass pot to prepare an aluminum vapor-deposited polyester film. It was applied onto an aluminum surface with a doctor blade and dried at 100 ° C. for 1 hour to form a charge generation layer having a film thickness of about 0.3 μm.

【0029】次に、表1に示したエナミン誘導体No. 1
を1部、ポリカーボネート1部をテトラヒドロフラン1
0部に溶解させ、前記電荷発生層上にドクターブレード
で塗布し、70℃で2時間乾燥させて膜厚約17μmの
電荷輸送層を形成し、実施例1の感光体を得た。 比較例1 実施例1において、電荷輸送物質であるエナミン誘導体
No. 1の代わりに下記構造式(V)で示されるヒドラゾ
ン誘導体を用いた以外は実施例1と同様にして比較例1
の感光体を得た。
Next, the enamine derivative No. 1 shown in Table 1
1 part, polycarbonate 1 part tetrahydrofuran 1
It was dissolved in 0 part, coated on the charge generation layer with a doctor blade, and dried at 70 ° C. for 2 hours to form a charge transport layer having a film thickness of about 17 μm, and a photoreceptor of Example 1 was obtained. Comparative Example 1 In Example 1, an enamine derivative that is a charge transport material
Comparative Example 1 was carried out in the same manner as in Example 1 except that a hydrazone derivative represented by the following structural formula (V) was used instead of No. 1.
To obtain a photoconductor.

【0030】[0030]

【化5】 [Chemical 5]

【0031】上記2種の感光体に対し次の測定を行っ
た。まず−5kVでコロナ帯電し、1秒後の表面電位をV
o(V)とする。その瞬間から780nmの入射光で露光
を行い、表面電位がVoの半分になるまでの時間t1/
2を求めて半減露光量E1/2(μJ/cm2 )を計算す
る。さらに露光開始後10t1/2の表面電位Vr
(V)を記録し、最後に630nmのLEDで除電してプ
ロセスを終える。このプロセスをそれぞれ5000回繰
り返した結果を表2に示す。
The following measurements were performed on the above two types of photoreceptors. First, the corona is charged at -5 kV, and the surface potential after 1 second is V
o (V). From that moment, the exposure is performed with incident light of 780 nm until the surface potential becomes half of Vo, t1 /
2 is calculated and the half-exposure amount E1 / 2 (μJ / cm 2 ) is calculated. Furthermore, the surface potential Vr of 10t1 / 2 after the start of exposure
(V) is recorded, and the process is completed by finally removing the charge with a 630 nm LED. The results of repeating this process 5000 times are shown in Table 2.

【0032】表2からわかるように、本発明の感光体は
比較例に比べてE1/2の値が4〜5割小さく、したが
って高感度である。さらに、5000回連続試験の後も
感度の低下や残留電位Vrの上昇を生じておらず、特性
の劣化は無いと考えられる。これに対し比較例の感光体
は初期には比較的良好な特性を示すにもかかわらず、連
続試験後には感度の低下、残留電位の上昇を伴い、感光
体が劣化(あるいは疲労)しているのがわかる。
As can be seen from Table 2, the photoconductor of the present invention has an E1 / 2 value of 40 to 50% smaller than that of the comparative example, and therefore has high sensitivity. Furthermore, it is considered that the sensitivity did not decrease and the residual potential Vr did not increase even after the continuous test of 5000 times, and that the characteristics did not deteriorate. On the other hand, although the photoconductor of the comparative example shows relatively good characteristics at the initial stage, the photoconductor is deteriorated (or fatigued) after the continuous test due to a decrease in sensitivity and an increase in residual potential. I understand.

【0033】実施例2〜4 実施例1において電荷輸送層のエナミン誘導体として表
1に示したものを用いた以外は全く同様にして実施例の
感光体2〜4を試作した。この感光体に対し実施例1と
同様の試験を行った結果を表2に示す。
Examples 2 to 4 Photoconductors 2 to 4 of Examples were manufactured in exactly the same manner as Example 1 except that the enamine derivative shown in Table 1 was used as the enamine derivative of the charge transport layer. Table 2 shows the results of the same tests as in Example 1 performed on this photoreceptor.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明は、以上説明したように電荷輸送
層に本発明のエナミン誘導体Iを含有させるように構成
したものであるから、高い感度と低い残留電位が得ら
れ、かつ、繰り返し使用においても特性の劣化を伴わな
い電子写真感光体を得る効果を奏する。
INDUSTRIAL APPLICABILITY As described above, the present invention is configured so that the charge transport layer contains the enamine derivative I of the present invention. Therefore, high sensitivity and low residual potential can be obtained, and repeated use is possible. Also in the case, there is an effect of obtaining an electrophotographic photosensitive member without deterioration of characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の感光体の構成の一例を示す概略
図である。 1…感光層 2…電荷輸送層 3…電荷発生層 4…支持体
FIG. 1 is a schematic diagram showing an example of the configuration of a photoconductor of the present invention. DESCRIPTION OF SYMBOLS 1 ... Photosensitive layer 2 ... Charge transport layer 3 ... Charge generation layer 4 ... Support

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に少なくとも電荷発生層
と電荷輸送層とを有する積層型電子写真感光体におい
て、電荷輸送層中に下記構造式(I)で表されるエナミ
ン誘導体を含有することを特徴とする電子写真感光体。 【化1】 前記式中、R1 ,R2 およびR3 はそれぞれ互いに独立
に低級アルキルを表わし、R4 およびR5 はそれぞれ互
いに独立に低級アルキル、低級アルコキシ又は低級アル
キルもしくは低級アルコキシで置換されたフェニルもし
くはナフチルを表わす。
1. A laminate type electrophotographic photoreceptor having at least a charge generation layer and a charge transport layer on a conductive support, wherein the charge transport layer contains an enamine derivative represented by the following structural formula (I). An electrophotographic photosensitive member characterized by the above. [Chemical 1] In the above formula, R 1 , R 2 and R 3 each independently represent lower alkyl, and R 4 and R 5 each independently represent lower alkyl, lower alkoxy or phenyl or naphthyl substituted with lower alkyl or lower alkoxy. Represents.
【請求項2】 請求項1の電荷輸送層と、アゾ系、フタ
ロシアニン系、インジゴ系、ペリレン系、スクアリリウ
ム系、キノン系の染料、顔料のうち少なくとも1種類を
含む電荷発生層とから構成される請求項1の電子写真感
光体。
2. The charge transport layer according to claim 1, and a charge generation layer containing at least one of an azo-based, phthalocyanine-based, indigo-based, perylene-based, squarylium-based, quinone-based dye and pigment. The electrophotographic photosensitive member according to claim 1.
JP232892A 1992-01-09 1992-01-09 Electrophotographic sensitive body Withdrawn JPH05188606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP232892A JPH05188606A (en) 1992-01-09 1992-01-09 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP232892A JPH05188606A (en) 1992-01-09 1992-01-09 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH05188606A true JPH05188606A (en) 1993-07-30

Family

ID=11526247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP232892A Withdrawn JPH05188606A (en) 1992-01-09 1992-01-09 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH05188606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002413A (en) * 2013-08-23 2014-01-09 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, novel enamine compound, electrophotographic photoreceptor cartridge, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002413A (en) * 2013-08-23 2014-01-09 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, novel enamine compound, electrophotographic photoreceptor cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0252360A (en) Electrophotographic sensitive body
JPH04289867A (en) Electrophotographic sensitive body
JPH01219838A (en) Electrophotographic sensitive body
JPH01234855A (en) Electrophotographic sensitive body
JPH04174859A (en) Electrophotographic sensitive material
JPH05188606A (en) Electrophotographic sensitive body
JPH05188608A (en) Electrophotographic sensitive body
JPH01142641A (en) Electrophotographic sensitive body
JPH04155348A (en) Electrophotography photosensitive body
JPH03155558A (en) Electrophotographic sensitive body
JPH05257303A (en) Electrophotographic sensitive body
JPH04155349A (en) Electrophotography photosensitive body
JPH04328565A (en) Electrophotographic sensitive body
JPH04328563A (en) Electrophotographic sensitive body
JPH0456865A (en) Electrophotographic sensitive body
JPH04338963A (en) Electrophotographic sensitive body
JPH0248670A (en) Electrophotographic sensitive body
JPH0456866A (en) Electrophotographic photosensitive body
JP3748347B2 (en) Electrophotographic photoreceptor
JPH0419752A (en) Electrophotographic sensitive body
JPH03105347A (en) Electrophotographic sensitive body
JPH0252359A (en) Electrophotographic sensitive body
JPH0545907A (en) Electrophotographic sensitive body
JPH04328562A (en) Electrophotographic sensitive body
JPH04328561A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408