JPH01234855A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01234855A
JPH01234855A JP6022488A JP6022488A JPH01234855A JP H01234855 A JPH01234855 A JP H01234855A JP 6022488 A JP6022488 A JP 6022488A JP 6022488 A JP6022488 A JP 6022488A JP H01234855 A JPH01234855 A JP H01234855A
Authority
JP
Japan
Prior art keywords
carbazole derivative
charge
charge transport
group
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6022488A
Other languages
Japanese (ja)
Inventor
Koji Tsukamoto
浩司 塚本
Tsuneo Watanuki
恒夫 綿貫
Tomosumi Kamisaka
友純 上坂
Michiko Ogata
緒方 道子
Norio Saruwatari
紀男 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6022488A priority Critical patent/JPH01234855A/en
Publication of JPH01234855A publication Critical patent/JPH01234855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Indole Compounds (AREA)

Abstract

PURPOSE:To obtain high sensitivity and low residual potential and to prevent deterioration of characteristics even at the time of repeated uses by using a specified carbazole derivative as an electric charge transfer material. CONSTITUTION:The carbazole derivative to be used as the charge generating material is represented by formula I in which R is vinylene, phenylene, or the like; each of X1-X8 is H, halogen, or 1-4C alkyl, optionally same or different. The charge transfer layer 4 is obtained by dissolving this carbazole derivative in a solvent together with a binder resin, coating a charge generating layer formed in advance, and drying it, thus permitting high transfer efficiency of charge carriers generated in a photosensitive layer, high sensitivity, and low residual potential, and superior successive use stability to be all ensured, without deterioration due to ozone and light exposure.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、電子写真感光体に関し、高感度と低い残留電
位を得、かつ繰返し使用において特性の劣化を少なくす
る目的で新規なカルバゾール誘導体を電荷輸送物質とし
て用いるように構成したものである。
Detailed Description of the Invention [Summary] The present invention relates to an electrophotographic photoreceptor, in which a novel carbazole derivative is used as a charge transport material for the purpose of obtaining high sensitivity and low residual potential, and reducing the deterioration of characteristics upon repeated use. It is configured to be used as a.

〔従来の技術〕[Conventional technology]

電子写真のプロセスは、帯電、露光、現像、転写および
定着の各工程から成り、これらの繰り返しによって印刷
物を得ることができる。ここで帯電は、光導電性を有す
る感光体の表面に正または負の均一静電荷を施す。続く
露光プロセスでは、レーザ光などを照射して特定部分の
表面電荷を消去することによって感光体上に画像情報に
対応した静電潜像を形成する。次に、この潜像をトナー
すなわち粉体インクによって静電的に現像することによ
り、感光体上にトナーによる可視像を形成する。最後に
、このトナー像を記録紙上に静電的に転写し、熱、光、
および圧力などによって融着させることにより所望の印
刷物を得ることができる。従来、上述のような光導電性
を有する感光体として、セレン系に代表される無機感光
体が広く使用されていた。この無機感光体は感度が高い
上に機械的摩耗に強く、高速・大型機に適しているとい
う特長を有する反面、真空蒸着法で製造しなければなら
ないこと、人体に有害であるため回収する必要があるこ
となどの理由によりコストが高く、メインテナンスフリ
ーの小型・低価格機への適用が困難であるという問題点
を有していた。
The electrophotographic process consists of charging, exposure, development, transfer, and fixing steps, and printed matter can be obtained by repeating these steps. Charging here applies a uniform positive or negative electrostatic charge to the surface of the photoreceptor having photoconductivity. In the subsequent exposure process, an electrostatic latent image corresponding to the image information is formed on the photoreceptor by irradiating it with laser light or the like to erase the surface charge on a specific portion. Next, this latent image is electrostatically developed with toner, ie, powder ink, to form a visible toner image on the photoreceptor. Finally, this toner image is electrostatically transferred onto recording paper, and then exposed to heat, light, and
A desired printed material can be obtained by fusing with pressure or the like. Conventionally, inorganic photoreceptors typified by selenium-based photoreceptors have been widely used as photoreceptors having photoconductivity as described above. This inorganic photoreceptor is highly sensitive and resistant to mechanical abrasion, making it suitable for high-speed, large-scale machines. However, it must be manufactured using a vacuum evaporation method and must be collected because it is harmful to the human body. However, due to such reasons, the cost is high and it is difficult to apply it to maintenance-free, small, low-cost machines.

無機感光体に代わるものとして有機感光体が開発されて
いる。有機感光体は塗布法によって製造できるため量産
によるコスト低減が容易であること、セレンなどの無機
物を用いる無機感光体に比べて材料選択範囲が広いため
有害性の無い化合物を選ぶことができ、ユーザ廃棄によ
るメインテナンスフリー化も可能であることなどの特長
を持つ。
Organic photoreceptors have been developed as an alternative to inorganic photoreceptors. Organic photoreceptors can be manufactured by a coating method, which makes it easy to reduce costs through mass production.Compared to inorganic photoreceptors that use inorganic substances such as selenium, organic photoreceptors have a wider range of materials to choose from, allowing users to choose compounds that are not harmful. It has the advantage of being maintenance-free by being disposed of.

中でも、電荷発生層と電荷輸送層とを積層した機能分離
積層型感光体(第1図)が注目されている。ここで、電
荷発生層は入射光を吸収して電子・正孔ペア(キャリア
ペア)を発生させる機能を有し、電荷輸送層はその表面
に電荷を保持すると共に、電荷発生層で発生したキャリ
アの片方を感光体表面まで輸送して静電潜像を形成させ
る機能をし持つ。電荷発生層は実際に光を吸収してキャ
リアペアを発生させる電荷発生物質を蒸着膜にするか、
あるいはバインダ樹脂中に分散させて形成する。電荷発
生物質としてはフタロシアニンやアゾ系顔料などが知ら
れており、バインダ樹脂としてはポリエステルやポリビ
ニルブチラールなどが用いられる。電荷輸送層はキャリ
ア輸送能を有する電荷輸送物質をバインダ樹脂中に相溶
させて形成する。電荷輸送物質としては電子を輸送する
性質を持つトリニトロフルオレノンなどの電子輸送性電
荷輸送物質と、正孔を輸送する性質を持つヒドラゾンや
ピラゾリンなどの正孔輸送性電荷輸送物質があり、バイ
ンダ樹脂としてはポリカーボネートやスチレン−アクリ
ルなどが使用される。
Among these, a functionally separated laminated type photoreceptor (FIG. 1), in which a charge generation layer and a charge transport layer are laminated, is attracting attention. Here, the charge generation layer has the function of absorbing incident light and generating electron-hole pairs (carrier pairs), and the charge transport layer holds charges on its surface and carries carriers generated in the charge generation layer. It has the function of transporting one side of the photoreceptor to the surface of the photoreceptor to form an electrostatic latent image. The charge generation layer may be a vapor-deposited film of a charge generation substance that actually absorbs light and generates carrier pairs, or
Alternatively, it is formed by dispersing it in a binder resin. Phthalocyanine, azo pigments, and the like are known as charge-generating substances, and polyester, polyvinyl butyral, and the like are used as binder resins. The charge transport layer is formed by dissolving a charge transport material having carrier transport ability in a binder resin. Charge transport materials include electron transport charge transport materials such as trinitrofluorenone, which have the property of transporting electrons, and hole transport charge transport materials such as hydrazone and pyrazoline, which have the property of transporting holes. As the material, polycarbonate, styrene-acrylic, etc. are used.

このように感光体の機能を二つの層に分離することによ
り、それぞれの機能に最適な化合物をほぼ独立に選択す
ることができ、感度、分光特性、帯電保持性、高速応答
性、機械的耐摩耗性などの緒特性を飛躍的に向上させる
ことができる。
By separating the functions of the photoreceptor into two layers in this way, it is possible to select the optimal compound for each function almost independently. It is possible to dramatically improve properties such as wear resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、有機感光体はセレンなどの無機系感光体に比べ
ると感度は未だ低く、高速プリンタへの適用は困難であ
る。また、帯電−露光のプロセスを繰返すに従って、帯
電の際発生するオゾンや照射光によって電荷輸送物質が
劣化し、帯電電位の低下や残留電位の上昇により印字品
位が低下するという問題点がある。
However, organic photoreceptors still have lower sensitivity than inorganic photoreceptors such as selenium, making it difficult to apply them to high-speed printers. In addition, as the charging-exposure process is repeated, the charge transporting material is degraded by ozone and irradiation light generated during charging, and there is a problem that printing quality is degraded due to a decrease in charging potential and an increase in residual potential.

〔課題を解決するための手段〕[Means to solve the problem]

上述した課題は本発明の電子写真感光体、すなわち電荷
輸送物質として下記構造式lで示される新規カルバゾー
ル誘導体を用いることにより、解決できる。
The above-mentioned problems can be solved by using the electrophotographic photoreceptor of the present invention, that is, by using a novel carbazole derivative represented by the following structural formula 1 as a charge transport material.

(式中、Rはビニレン(−CII=CH−) 、フェニ
レX l−X aはそれぞれ同一もしくは異なっていて
もよく、水素、ハロゲン、01〜c4アルキル基、01
〜C4アルコキシ基、アリール基、c1〜C4アラルキ
ル基、CI〜C4アルキルアミノ基、アリールアミノ基
、C1〜C4アラルキルアミノ基を表す。
(In the formula, R is vinylene (-CII=CH-), phenyleX l-X a may be the same or different, hydrogen, halogen, 01-c4 alkyl group, 01
~C4 alkoxy group, aryl group, c1-C4 aralkyl group, CI-C4 alkylamino group, arylamino group, C1-C4 aralkylamino group.

電荷発生物質としては無金属フタロシアニン、銅フタロ
シアニン、塩化アルミニウムフタロシアニン、チタニル
フタロシアニン、バナジルフタロシアニン、インジウム
フタロシアニンなど各種の金属フタロシアニンやアゾ系
顔料を用いることができる。電荷発生層は支持体上にこ
れらの電荷発生物質を蒸着するか、あるいはバインダー
樹脂と共に溶媒中に分散させたものを塗布・乾燥させる
ことにより形成することができる。電荷発生層のバイン
ダー樹脂としてはポリエステル、ポリビニルアルコール
、ポリビニルブチラール、ポリアミドなど下地への密着
性や電荷発生物質の分散性を考慮して選択する。溶媒は
用いる電荷発生物質とバインダー樹脂に合わせて選択す
るが、テトラヒドロフラン、ジオキサン、メタノール、
エタノール、ジクロルメタン、ジクロルエタン、トルエ
ン、キシレンなど各種有機溶媒を単独あるいは混合して
用いることができる。支持体への塗布方法としては浸漬
コート、スプレーコート、ワイヤーバーコード、ドクタ
ーブレードコートなどがある。膜厚は0.01〜3声で
あるが、特にIJ1m以下とするのが望ましい。
As the charge generating substance, various metal phthalocyanines and azo pigments can be used, such as metal-free phthalocyanine, copper phthalocyanine, aluminum chloride phthalocyanine, titanyl phthalocyanine, vanadyl phthalocyanine, and indium phthalocyanine. The charge generating layer can be formed by vapor depositing these charge generating substances on the support, or by coating and drying a mixture dispersed in a solvent together with a binder resin. The binder resin for the charge generation layer is selected from polyester, polyvinyl alcohol, polyvinyl butyral, polyamide, etc., taking into consideration the adhesion to the base and the dispersibility of the charge generation substance. The solvent is selected according to the charge generating substance and binder resin used, but examples include tetrahydrofuran, dioxane, methanol,
Various organic solvents such as ethanol, dichloromethane, dichloroethane, toluene, and xylene can be used alone or in combination. Methods for coating the support include dip coating, spray coating, wire barcode coating, and doctor blade coating. The film thickness is 0.01 to 3 tones, but it is particularly desirable to have an IJ of 1 m or less.

導電性支持体としては、例えばアルミニウム、銅などの
金属や、酸化錫、カーボンなどの添加により導電性を付
与した樹脂などをあげることができる。
Examples of the conductive support include metals such as aluminum and copper, and resins imparted with conductivity by adding tin oxide, carbon, and the like.

電荷輸送物質として用いる本発明のカルバゾール誘導体
としては、例えば以下のような化合物をあげることがで
きる。
Examples of the carbazole derivative of the present invention used as a charge transport substance include the following compounds.

1社2 Nn 5 (m、p、210° ) lh6 階7 階10 11hll 隘15 隘16 l1lT 隘18 !1h32 隘33 l134 11h35 11h36 1’1k14  υ N[L42 魚48 # 49 (m、p、260℃) rl n !1h52 1′1kLb  υ 階64 NIEi8 Nn 69 (m、p、300° ) rρ 1m72 Nl18  υ 前記カルバゾール誘導体は、 例えば次式■: C1−C0,−x−cnzc*        (II
)で表わされる化合物と、次式■: (式中、X、〜Xaはそれぞれ同一もしくは異なってい
てもよく、水素、ハロゲン、CI−C4アルキル基、0
1〜C4アルコキシ基、アリール基、C1〜C4アラル
キル基、CI−Caアルキルアミノ基、アリールアミノ
基、CI”” Caアラルキルアミノ基を表す。) で表わされる化合物を反応させることによって容易に得
ることができる。
1 company 2 Nn 5 (m, p, 210°) lh6 floor 7 floor 10 11hll 15 16 l1lT 18! 1h32 隘33 l134 11h35 11h36 1'1k14 υ N[L42 Fish 48 # 49 (m, p, 260℃) rl n! 1h52 1'1kLb υ Floor 64 NIEi8 Nn 69 (m, p, 300°) rρ 1m72 Nl18 υ The carbazole derivative has, for example, the following formula ■: C1-C0,-x-cnzc* (II
) and the compound represented by the following formula (■): (wherein, X and ~Xa may be the same or different, hydrogen, halogen, CI-C4 alkyl group, 0
It represents a 1-C4 alkoxy group, an aryl group, a C1-C4 aralkyl group, a CI-Ca alkylamino group, an arylamino group, and a CI""Ca aralkylamino group. ) can be easily obtained by reacting a compound represented by:

上記反応は、例えば次のようにして行うことができる。The above reaction can be carried out, for example, as follows.

まず弐■のカルバゾール化合物を例えば水酸化カリウム
を用いてカルバゾールのに塩を調製する。
First, a carbazole salt is prepared from the carbazole compound (2) using, for example, potassium hydroxide.

次にこのに塩をジハロゲン化物と約80〜120℃、1
〜3時間の加熱せしめることにより上記式■の化合物を
高収率で得ることができる。K塩とジハロゲン化物の使
用モル量は2対1である。
Next, add the salt to the dihalide at about 80-120℃ for 1 hour.
By heating for ~3 hours, the compound of formula (1) above can be obtained in high yield. The molar amounts of K salt and dihalide used are 2:1.

電荷輸送層は、上記したカルバゾール誘導体をバインダ
ー樹脂と共に溶媒に溶解させ、先に形成した電荷発生層
上に塗布・乾燥させることによって得ることができる。
The charge transport layer can be obtained by dissolving the above-mentioned carbazole derivative together with a binder resin in a solvent, coating the solution on the previously formed charge generation layer, and drying the solution.

電荷輸送層のバインダー樹脂としてはポリカーボネート
、ポリスチレン、ポリアクリロニトリル、アクリル−ス
チレン、ポリエステル、ポリスルホンなど公知のものが
使用できる。溶媒は電荷発生層の場合と同様に、用いる
バインダー樹脂によって適宜選択する。塗布方法も電荷
発生層の場合と同様の方法を用いることができる。膜厚
は5〜50mであるが、特に10〜25趨とするのが望
ましい。
As the binder resin for the charge transport layer, known binder resins such as polycarbonate, polystyrene, polyacrylonitrile, acrylic-styrene, polyester, and polysulfone can be used. As in the case of the charge generation layer, the solvent is appropriately selected depending on the binder resin used. As for the coating method, the same method as in the case of the charge generation layer can be used. The film thickness is 5 to 50 m, preferably 10 to 25 m.

なお、電荷輸送中には、前記カルバゾール誘導体■に加
えて、ヒドラゾン誘導体やピラゾリン誘導体のような他
の電荷輸送物質を添加しても良い。
During charge transport, other charge transport substances such as hydrazone derivatives and pyrazoline derivatives may be added in addition to the carbazole derivative (1).

また、電荷発生層と電荷輸送層の積層順序は反対にして
も良い。
Further, the stacking order of the charge generation layer and the charge transport layer may be reversed.

また、支持体と感光層の間には密着性の改良、熱キャリ
ア注入の防止などのために下引層を設けることができる
。下引層としてはポリビニルアルコール、ポリビニルブ
チラール、ポリアミド、エポキシなどの樹脂、あるいは
これら樹脂中に酸化錫、酸化インジウム、酸化チタンな
どの添加剤を加えたものが用いられる。
Further, an undercoat layer may be provided between the support and the photosensitive layer in order to improve adhesion, prevent thermal carrier injection, and the like. As the undercoat layer, resins such as polyvinyl alcohol, polyvinyl butyral, polyamide, and epoxy, or resins containing additives such as tin oxide, indium oxide, and titanium oxide are used.

〔作 用〕[For production]

本発明の電子写真感光体は、感光層中に正孔輸送性の優
れたカルバゾール誘導体Iを含有させることにより、感
光層中で発生した電荷キャリアの輸送効率を高め、高い
感度と低い残留電位を実現したものである。さらに、本
発明のカルバゾール誘導体Iはオゾンや光照射によって
も劣化を受は難いために優れた連続安定性を示す。
The electrophotographic photoreceptor of the present invention improves the transport efficiency of charge carriers generated in the photosensitive layer by containing carbazole derivative I having excellent hole transport properties in the photosensitive layer, thereby achieving high sensitivity and low residual potential. This has been achieved. Furthermore, the carbazole derivative I of the present invention exhibits excellent continuous stability because it is hardly susceptible to deterioration even by ozone or light irradiation.

〔実施例〕〔Example〕

200mjのフラスコにKOH1,12g (20mm
oJ ) 、メトキシカルバゾール3.94 g (2
0mmo1)キシレン100mZを加え、120℃で2
時間加熱しながらかく拌した。続いて、1,4−ジクロ
ロブテン12.5g(10mmo# )を加え、110
℃で4時間加熱しながらかく拌した。続いて、キシレン
を濃縮留去し、得られた固体をメタノールで再結晶した
。収ff15g。
1.12g of KOH in a 200mj flask (20mm
oJ), methoxycarbazole 3.94 g (2
0mmo1) Add 100mZ of xylene and heat at 120℃ for 2
The mixture was stirred while heating for an hour. Subsequently, 12.5 g (10 mmo#) of 1,4-dichlorobutene was added, and 110
The mixture was stirred while heating at ℃ for 4 hours. Subsequently, xylene was concentrated and distilled off, and the obtained solid was recrystallized from methanol. Yield: 15g.

融点140℃他のカルバゾール誘導体についても、原料
のみを変えて、同一の条件で合成した。
Other carbazole derivatives with a melting point of 140°C were synthesized under the same conditions, only the raw materials were changed.

炭量  塩化アルミニウムフタロシアニン1部(重置部
)、ポリエステル1部、ジクロルメタン18部を硬質ガ
ラスピーズと硬質ガラスポットを用いて24時間分散混
合したものをアルミ蒸着ポリエステルフィルムのアルミ
面上にドクターブレードで塗布し、100℃で1時間乾
燥させて膜厚約0.3迦の電荷発生層を形成した。
Amount of carbon: 1 part of aluminum chloride phthalocyanine (overlapping part), 1 part of polyester, and 18 parts of dichloromethane were dispersed and mixed for 24 hours using hard glass beads and a hard glass pot, and then mixed with a doctor blade on the aluminum surface of the aluminum vapor-deposited polyester film. It was coated and dried at 100° C. for 1 hour to form a charge generation layer with a thickness of about 0.3 mm.

次に、前記のカルバゾール誘導体(lIh1)1部、ポ
リカーボネート1部をテトラヒドロフラン9部に溶解さ
せ、先に形成した電荷発生層上にドクターブレードで塗
布し、80℃で2時間乾燥させて膜厚約18−の電荷輸
送層を形成した。こうして第1図に示すような感光体を
得た。
Next, 1 part of the carbazole derivative (lIh1) and 1 part of polycarbonate were dissolved in 9 parts of tetrahydrofuran, and the solution was applied onto the previously formed charge generation layer using a doctor blade, and dried at 80°C for 2 hours to form a film with a thickness of approximately A 18-charge transport layer was formed. In this way, a photoreceptor as shown in FIG. 1 was obtained.

続いて、この感光体に一5kVでコロナ帯電を行い、1
秒後の表面電位を■。(V)としてその瞬間から780
nm、の光で露光を行った。表面電位がVoの半分にな
るまでの時間t、/2を求めて半減露光量El/2  
(μJ /J)を計算した。さらに露光開始後10t+
z□の表面電位Vr(V)を記録し、最後に633nm
のLEDで除電して1プロセスを終えた。このプロセス
を1oooo回繰り返した結果を第1表に示す。
Next, this photoreceptor was corona charged at 15 kV, and 1
■ Surface potential after seconds. 780 from that moment as (V)
Exposure was performed with light of nm. Find the time t,/2 for the surface potential to become half of Vo, and calculate the halving exposure amount El/2.
(μJ/J) was calculated. Furthermore, 10t+ after the start of exposure
Record the surface potential Vr (V) of z□, and finally 633 nm
One process was completed by eliminating static electricity using the LED. Table 1 shows the results of repeating this process 100 times.

炎盈 電荷輸送物質としてカルバゾール誘導体t1の代
わりにカルバゾール誘導体N112を用いた以外は例2
と全く同様の手法を実施した。その結果を第1表に示す
Example 2 except that carbazole derivative N112 was used instead of carbazole derivative t1 as the charge transport material.
Exactly the same method was used. The results are shown in Table 1.

■土 電荷輸送物質としてカルバゾール誘導体階1の代
わりにカルバゾール誘導体隘3を用いた以外は例2と全
く同様の手法を実施した。゛その結果を第1表に示す。
■Soil The same method as in Example 2 was carried out except that carbazole derivative A3 was used instead of carbazole derivative A1 as the charge transport material.゛The results are shown in Table 1.

l  電荷輸送物質としてカルバゾール誘導体阻1の代
わりにカルバゾール誘導体N14を用いた以外は例2と
全く同様の手法を実施した。その結果を第1表に示す。
l The same procedure as in Example 2 was carried out except that carbazole derivative N14 was used instead of carbazole derivative N14 as the charge transport material. The results are shown in Table 1.

肛(比較例)電荷輸送物質としてカルバゾール誘導体阻
1の代わりに下記構造式で示されるヒドラゾンを用いた
以外は例1と全く同様な手法を実施した。その結果を第
1表に示す。
Example 1 (Comparative Example) The same procedure as in Example 1 was carried out except that hydrazone represented by the following structural formula was used instead of the carbazole derivative 1 as a charge transport substance. The results are shown in Table 1.

1− 塩化アルミニウムフタロシアニン1部(重量部)
、ポリエステル工部、ジクロルメタン18部を硬質ガラ
スピーズと硬質ガラスポットを用いて24時間分散混合
したものをアルミ蒸着ポリエステルフィルムのアルミ面
上にドクターブレードで塗布し、100℃で1時間乾燥
させて膜厚約0.3−の電荷発生層を形成した。
1- 1 part (by weight) of aluminum chloride phthalocyanine
, polyester, and 18 parts of dichloromethane were dispersed and mixed for 24 hours using hard glass beads and a hard glass pot, and then applied with a doctor blade onto the aluminum surface of the aluminum-deposited polyester film, and dried at 100°C for 1 hour to form a film. A charge generation layer having a thickness of about 0.3 - was formed.

次に前記のカルバゾール誘導体(m41)  1部、ポ
リカーボネート1部をテトラヒドロフラン9部に溶解さ
せ、先に形成した電荷発生層上にドクターブレードで塗
布し、80℃で2時間乾燥させて膜厚約18jImの電
荷輸送層を形成した。こうして第1図に示すような感光
体を得た。
Next, 1 part of the above carbazole derivative (m41) and 1 part of polycarbonate were dissolved in 9 parts of tetrahydrofuran, and the solution was coated on the previously formed charge generation layer with a doctor blade and dried at 80°C for 2 hours to give a film thickness of about 18JIm. A charge transport layer was formed. In this way, a photoreceptor as shown in FIG. 1 was obtained.

続いて、この感光体に一5kVでコロナ帯電を行い、1
秒後の表面電位を■。(V)としてその瞬間から780
nm、1μ−/ cJで露光を行った。表面電位がvo
の半分になるまでの時間tl/□を求めて半減露光量E
l/2  (μJ /aJ)を計算した。さらに露光開
始後10 t I7tの表面電位Vr(V)を記録し、
最後に633nmのLEDで除電して1プロセスを終え
た。このプロセスを10000回繰り返した結果を第2
表に示す。
Next, this photoreceptor was corona charged at 15 kV, and 1
■ Surface potential after seconds. 780 from that moment as (V)
Exposure was performed at nm, 1 μ-/cJ. The surface potential is vo
Find the time tl/□ to reduce to half, and calculate the halved exposure amount E.
l/2 (μJ/aJ) was calculated. Furthermore, the surface potential Vr (V) of 10 t I7t after the start of exposure was recorded,
Finally, one process was completed by eliminating static electricity using a 633 nm LED. The result of repeating this process 10,000 times is the second
Shown in the table.

■1 電荷輸送物質としてカルバゾール誘導体隘41の
代わりにカルバゾール誘導体隘42を用いた以外は例7
と全(同様の手法を実施した。その結果を第2表に示す
■1 Example 7 except that carbazole derivative 42 was used instead of carbazole derivative 41 as the charge transport material.
and all (a similar method was carried out. The results are shown in Table 2.

■工 電荷輸送物質としてカルバゾール誘導体歯41の
代わりにカルバゾール誘導体患43を用いた以外は例7
と全く同様の手法を実施した。その結果を第2表に示す
■Work Example 7 except that carbazole derivative tooth 43 was used instead of carbazole derivative tooth 41 as the charge transport material.
Exactly the same method was used. The results are shown in Table 2.

■土エ 電荷輸送物質としてカルバゾール誘導体鳩41
の代わりにカルバゾール誘導体1’h44を用いた以外
は例7と全く同様の手法を実施した。その結果を第2表
に示す。
■Carbazole derivative Hato 41 as a charge transport substance
Exactly the same procedure as in Example 7 was carried out, except that the carbazole derivative 1'h44 was used instead of . The results are shown in Table 2.

開上土(比較例)電荷輸送物質としてカルバゾール誘導
体11h41の代わりに下記構造式で示されるヒドラゾ
ンを用いた以外は例7と全く同様の手法を実施した。そ
の結果を第2表に示す。
Open soil (comparative example) The same procedure as in Example 7 was carried out except that hydrazone represented by the following structural formula was used instead of the carbazole derivative 11h41 as the charge transport substance. The results are shown in Table 2.

■上ユ 塩化アルミニウムフタロシアニン1部(重量部
)、ポリエステル1部、ジクロルメタン18部を硬質ガ
ラスピーズと硬質ガラスポットを用いて24時間分散混
合したものをアルミ蒸着ポリエステルフィルムのアルミ
面上にドクターブレードで塗布し、100℃で1時間乾
燥させて膜厚約0.3趨の電荷発生層を形成した。
■Top Yu 1 part (by weight) of aluminum chloride phthalocyanine, 1 part of polyester, and 18 parts of dichloromethane were dispersed and mixed for 24 hours using hard glass beads and a hard glass pot, and then applied with a doctor blade onto the aluminum surface of the aluminum vapor-deposited polyester film. It was coated and dried at 100° C. for 1 hour to form a charge generation layer with a thickness of about 0.3 mm.

次に、前記のカルバゾール誘導体(ffi61)  1
部、ポリカーボネート1部をテトラヒドロフラン9部に
溶解させ、先に形成した電荷発生層上にドクターブレー
ドで塗布し、80℃で2時間乾燥させて膜厚約18−の
電荷輸送層を形成した。こうして第1図に示すような感
光体を得た。
Next, the above carbazole derivative (ffi61) 1
1 part of polycarbonate was dissolved in 9 parts of tetrahydrofuran, and the solution was coated on the previously formed charge generation layer with a doctor blade and dried at 80 DEG C. for 2 hours to form a charge transport layer having a thickness of about 18 cm. In this way, a photoreceptor as shown in FIG. 1 was obtained.

続いて、この感光体に一5kVでコロナ帯電を行い、1
秒後の表面電位を■。(V)としてその瞬間から780
nm、 lμw/ruJで露光を行った。表面電位がv
oの半分になるまでの時間tl/□を求めて半減露光量
El/□ (μJ/−)を計算した。さらに露光開始後
10 t +/lの表面電位Vr(V)を記録し、最後
に633nmのLEDで除電して1プロセスを終えた。
Next, this photoreceptor was corona charged at 15 kV, and 1
■ Surface potential after seconds. 780 from that moment as (V)
Exposure was performed at nm, lμw/ruJ. The surface potential is v
The time tl/□ until half of o was obtained, and the half-reduction exposure amount El/□ (μJ/-) was calculated. Furthermore, after the start of exposure, a surface potential Vr (V) of 10 t +/l was recorded, and finally, the static electricity was removed using a 633 nm LED to complete one process.

このプロセスを10000回繰り返した結果を第3表に
示す。
Table 3 shows the results of repeating this process 10,000 times.

■土工 電荷輸送物質としてカルバゾール誘導体m61
の代わりにカルバゾール誘導体隘62を用いた以外は例
13と全く同様の手法を実施した。
■Earthwork Carbazole derivative m61 as a charge transport material
Exactly the same procedure as in Example 13 was carried out, except that the carbazole derivative A62 was used instead of.

その結果を第3表に示す。The results are shown in Table 3.

■土工 電荷輸送物質としてカルバゾール誘導体磁61
の代わりにカルバゾール誘導体N163を用いた以外は
例13と全(同様の手法を実施した。
■Earthwork Carbazole derivative magnet 61 as a charge transport material
A procedure similar to that of Example 13 was carried out except that the carbazole derivative N163 was used instead of .

その結果を第3表に示す。The results are shown in Table 3.

、LLfi−電荷輸送物質としてカルバゾール誘導体隘
61の代わりにカルバゾール誘導体!’h 64を用い
た以外は例13と全く同様の手法を実施した。
, LLfi - Carbazole derivative instead of carbazole derivative 61 as charge transport material! Exactly the same procedure as in Example 13 was carried out, except that 'h64 was used.

その結果を第3表に示す。The results are shown in Table 3.

l(比較例)電荷輸送物質としてカルバゾール誘導体胤
61の代わりに下記構造式で示されるヒドラゾンを用い
た以外は例13と全く同様の手法を実施した。その結果
を第3表に示す。
1 (Comparative Example) The same procedure as in Example 13 was carried out except that hydrazone represented by the following structural formula was used in place of the carbazole derivative 61 as a charge transport substance. The results are shown in Table 3.

第1表〜第3表かられかるように、本発明の感光体は1
0000 @繰返し試験した後もほとんど特性の劣化を
起こしていない。これに対し比較例の感光体は初期には
比較的良好な特性を示すにもかか−ねらず、連続試験後
には帯電電位や感度の低下、残留電位の上昇を伴い、感
光体が劣化(あるいは疲労)しているのがわかる。
As can be seen from Tables 1 to 3, the photoreceptor of the present invention has 1
0000 @ There is almost no deterioration in characteristics even after repeated tests. On the other hand, the photoreceptor of the comparative example may show relatively good characteristics in the initial stage, but after continuous testing, the photoreceptor deteriorates with a decrease in charging potential and sensitivity, and an increase in residual potential. or fatigue).

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、電荷輸送物質として本発
明のカルバゾール誘導体Iを用いるように構成したもの
であるから、高い感度と低い残留電位が得られ、かつ、
繰り返し使用においても特性の劣化を伴わない電子写真
感光体を得る効果を奏する。
As explained above, since the present invention is configured to use the carbazole derivative I of the present invention as a charge transport substance, high sensitivity and low residual potential can be obtained, and
It is possible to obtain an electrophotographic photoreceptor whose characteristics do not deteriorate even after repeated use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の感光体の構成の一例(断面図)を示す
ものであり、図中、1−感光層、2−電荷輸送層、3−
電荷発生層、4−支持体、をそれぞれ示す。 本発明の感光体の構成図 1・・・感光層 2・・・電荷輸送層 3・・・電荷発生層 4・・・支持体
FIG. 1 shows an example (cross-sectional view) of the structure of the photoreceptor of the present invention, and in the figure, 1-photosensitive layer, 2-charge transport layer, 3-
A charge generation layer and a 4-support are shown, respectively. Structure diagram of the photoreceptor of the present invention 1...Photosensitive layer 2...Charge transport layer 3...Charge generation layer 4...Support

Claims (1)

【特許請求の範囲】 導電性支持体上に少なくとも電荷発生層と電荷輸送層を
有する積層型感光体において、該電荷輸送層中に電荷輸
送物質として少なくとも下記構造式 I で示されるカル
バゾール誘導体を含有することを特徴とする電子写真感
光体。 ▲数式、化学式、表等があります▼( I ) (式中、Rはビニレン(−CH=CH−)、フェニレン
▲数式、化学式、表等があります▼、ナフタレン▲数式
、化学式、表等があります▼又はアン トリレン▲数式、化学式、表等があります▼を表わし、 X_1〜X_6はそれぞれ同一もしくは異なっていても
よく、水素、ハロゲン、C_1〜C_4アルキル基、C
_1〜C_4アルコキシ基、アリール基、C_1〜C_
4アラルキル基、C_1〜C_4アルキルアミノ基、ア
リールアミノ基、C_1〜C_4アラルキルアミノ基を
表す。
[Scope of Claims] A laminated photoreceptor having at least a charge generation layer and a charge transport layer on a conductive support, the charge transport layer containing at least a carbazole derivative represented by the following structural formula I as a charge transport substance. An electrophotographic photoreceptor characterized by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R is vinylene (-CH=CH-), phenylene▲There are mathematical formulas, chemical formulas, tables, etc.▼, naphthalene▲There are mathematical formulas, chemical formulas, tables, etc. ▼ or anthrylene ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and X_1 to X_6 may be the same or different, and hydrogen, halogen, C_1 to C_4 alkyl group,
_1-C_4 alkoxy group, aryl group, C_1-C_
It represents a 4-aralkyl group, a C_1-C_4 alkylamino group, an arylamino group, and a C_1-C_4 aralkylamino group.
JP6022488A 1988-03-16 1988-03-16 Electrophotographic sensitive body Pending JPH01234855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022488A JPH01234855A (en) 1988-03-16 1988-03-16 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022488A JPH01234855A (en) 1988-03-16 1988-03-16 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01234855A true JPH01234855A (en) 1989-09-20

Family

ID=13135981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022488A Pending JPH01234855A (en) 1988-03-16 1988-03-16 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01234855A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066426A (en) * 1998-10-14 2000-05-23 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
US6340548B1 (en) 2000-03-16 2002-01-22 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
KR100416718B1 (en) * 2000-12-19 2004-01-31 광주과학기술원 Process for synthesizing styrene derivatives containing carbazole as functional side group
JP2005062439A (en) * 2003-08-12 2005-03-10 Ricoh Co Ltd Image forming apparatus
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
JP2014178423A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
CN107819084A (en) * 2017-10-30 2018-03-20 深圳大学 Luminescent device of the one kind based on double (the 3,6 diaryl carbazyl) alkane of 1, ω

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066426A (en) * 1998-10-14 2000-05-23 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
US6140004A (en) * 1998-10-14 2000-10-31 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
US6340548B1 (en) 2000-03-16 2002-01-22 Imation Corp. Organophotoreceptors for electrophotography featuring novel charge transport compounds
KR100416718B1 (en) * 2000-12-19 2004-01-31 광주과학기술원 Process for synthesizing styrene derivatives containing carbazole as functional side group
JP2005062439A (en) * 2003-08-12 2005-03-10 Ricoh Co Ltd Image forming apparatus
JP4519429B2 (en) * 2003-08-12 2010-08-04 株式会社リコー Image forming apparatus
JP2005104971A (en) * 2003-09-05 2005-04-21 Qinghua Univ Carbazole derivative and its use for organic el element
US7227027B2 (en) * 2003-09-05 2007-06-05 Tsinghua University Carbazole derivative and its use in electroluminescent devices
JP2014178423A (en) * 2013-03-14 2014-09-25 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
CN107819084A (en) * 2017-10-30 2018-03-20 深圳大学 Luminescent device of the one kind based on double (the 3,6 diaryl carbazyl) alkane of 1, ω
CN107819084B (en) * 2017-10-30 2020-07-07 深圳大学 Light-emitting device based on 1, omega-bis (3, 6-diaryl carbazolyl) -alkane

Similar Documents

Publication Publication Date Title
JPH0516021B2 (en)
JPH0252360A (en) Electrophotographic sensitive body
JPH01234855A (en) Electrophotographic sensitive body
JPS63172274A (en) Photoconductive film and electrophotographic sensitive body using said film
JPH04289867A (en) Electrophotographic sensitive body
JPH01219838A (en) Electrophotographic sensitive body
JPH04174859A (en) Electrophotographic sensitive material
JPH02282262A (en) Electrophotographic sensitive body
JPH01142641A (en) Electrophotographic sensitive body
JPH04321649A (en) Bisstyryl compound, phosphorous acid compound and electrophotographic sensitized material
JPH05188606A (en) Electrophotographic sensitive body
JPH0456866A (en) Electrophotographic photosensitive body
JP3748347B2 (en) Electrophotographic photoreceptor
JPH05188608A (en) Electrophotographic sensitive body
JPH0248670A (en) Electrophotographic sensitive body
JPH0290173A (en) Electrophotographic sensitive body
JPH04338963A (en) Electrophotographic sensitive body
JPH01219840A (en) Electrophotographic sensitive body
JPH02308258A (en) Electrophotographic sensitive body
JPH0284658A (en) Electrophotographic sensitive body
JPH04155348A (en) Electrophotography photosensitive body
JPH02306248A (en) Electrophotographic sensitive body
JPH04328562A (en) Electrophotographic sensitive body
JPH05257303A (en) Electrophotographic sensitive body
JPH04328565A (en) Electrophotographic sensitive body