JPH05188238A - Optical path angle converter of optical fiber - Google Patents

Optical path angle converter of optical fiber

Info

Publication number
JPH05188238A
JPH05188238A JP4001256A JP125692A JPH05188238A JP H05188238 A JPH05188238 A JP H05188238A JP 4001256 A JP4001256 A JP 4001256A JP 125692 A JP125692 A JP 125692A JP H05188238 A JPH05188238 A JP H05188238A
Authority
JP
Japan
Prior art keywords
optical fiber
lens
optical
optical path
reflection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4001256A
Other languages
Japanese (ja)
Inventor
Teruhiro Shiono
照弘 塩野
Kuni Ogawa
久仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4001256A priority Critical patent/JPH05188238A/en
Publication of JPH05188238A publication Critical patent/JPH05188238A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size, weight and cost and to facilitate the assembly by forming a reflection type diffraction optical lens, consisting of plural grating zones in an elliptic pattern shape and a reflecting layer, on the oblique surface of a triangular prism. CONSTITUTION:At the center part of the oblique surface of the triangular prism 1 having, for example, a right-angled isosceles triangle shape in section, the reflection type diffraction optical lens 4 of elliptic shape is formed integrally. This reflection type diffraction optical lens 4 consists of a grating zone 2 having saw-tooth wave-shaped in section and the reflecting layer 3 provided on the grating zone 2. The converter in this structure serves also as a collimator lens, a condenser lens, a mirror, and a base and the positioning is facilitated. Light 7 emitted from an input optical fiber 5 is made incident on the reflection type diffraction optical lens 4, reflected and diffracted, emitted and converged at the same projection angle as the incoming angle and coupled with an output optical fiber 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバーの光路角
変換器に関するものであり、特に、小形軽量で低価格、
組立が簡単な光ファイバーの光路角変換器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical path angle converter for an optical fiber, and more particularly to a compact, lightweight, low price,
The present invention relates to an optical path angle converter of an optical fiber which is easy to assemble.

【0002】[0002]

【従来の技術】光ファイバは、光をその中に閉じ込め
て、比較的自由に光を任意の位置に導くことができる。
現在多く使われている長距離の光通信用だけでなく、短
距離でも電気配線の代わりに、光ファイバを媒体とした
光配線を用いれば、無誘導であるため高密度可能、高速
広帯域等といった数多くの特長をもたせることができ
る。こういった短距離での光配線では、光の向きを、短
距離で任意に変換することが多く要求される。しかしな
がら、光ファイバ中に光を閉じ込めたままで曲げようと
すると、ファイバ自体の曲げ強度の問題と、強く曲げる
と光の伝搬ロスが増大するということから、曲げの曲率
半径が大きくなり、コンパクト化することが不可能であ
る。
BACKGROUND OF THE INVENTION Optical fibers are capable of confining light therein and guiding the light relatively freely to any location.
Not only for long-distance optical communication that is often used at present, but for short distances, if optical wiring using an optical fiber as a medium is used instead of electrical wiring, high density is possible because of non-induction, high speed broadband, etc. It can have many features. In such short-distance optical wiring, it is often required to arbitrarily change the direction of light in a short distance. However, when trying to bend while confining light in an optical fiber, the bending strength of the fiber itself increases, and the propagation loss of light increases when strongly bent. Therefore, the radius of curvature of bending increases and the size becomes compact. Is impossible.

【0003】このため、光を一旦外に出して、光路を変
えて、再び入力する方式が有力である。従来の光ファイ
バー光路角変換器として、図2(断面図)に示すものが
あった。同図において、入力用光ファイバ5から出射さ
れた光7(レンズ13への入射光)はコリメータレンズ
13で平行化し、ミラー11で反射されて、90°向き
を変え、集光レンズ10で集光されて、出射光8とな
り、出力用光ファイバー6に結合される。
For this reason, a method in which light is once emitted, the optical path is changed, and the light is input again is effective. As a conventional optical fiber optical path angle converter, there is one shown in FIG. 2 (cross-sectional view). In the figure, light 7 emitted from the input optical fiber 5 (incident light to the lens 13) is collimated by the collimator lens 13, reflected by the mirror 11, changed in direction by 90 °, and collected by the condenser lens 10. The light is emitted and becomes the emitted light 8, which is coupled to the output optical fiber 6.

【0004】[0004]

【発明が解決しようとする課題】図2に示した従来の光
ファイバー光路角変換器では、レンズ2つとミラーの合
計3つの部品からなるため、相互の位置合わせが面倒で
あり、また、低価格化や一層の小形軽量化が難しかっ
た。また、光を光ファイバ中から一旦空気中に出すた
め、特に光の損失をなくしたいときには、レンズやミラ
ーの空気との境界面で無反射コーティングをする必要が
あった。
The conventional optical fiber optical path angle converter shown in FIG. 2 is composed of a total of three parts, that is, two lenses and a mirror, so that the mutual alignment is troublesome and the cost is reduced. It was difficult to make it even smaller and lighter. Further, since the light is once emitted from the optical fiber into the air, it is necessary to perform antireflection coating on the boundary surface between the lens and the mirror with the air in order to eliminate the loss of the light.

【0005】本発明は、上記課題に鑑みてなされたもの
で、小形軽量で低価格、組立が簡単な光ファイバーの光
路角変換器を提供するものである。
The present invention has been made in view of the above problems, and provides an optical path angle converter for an optical fiber which is small, lightweight, inexpensive, and easy to assemble.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、三角形状プリズムと、上記プリズムの斜
面上に形成した反射形回折光学レンズからなり、上記反
射形回折光学レンズは、複数のグレーティングゾーン
と、上記グレーティングゾーン上に設けた反射層からな
り、上記グレーティングゾーンのパターン形状は楕円形
であり、入力用光ファイバーから出力用光ファイバーに
光を導くことを特徴とする光ファイバー光路角変換器を
提供するものである。
In order to solve the above-mentioned problems, the present invention comprises a triangular prism and a reflective diffractive optical lens formed on the slope of the prism. An optical fiber optical path angle conversion characterized by comprising a plurality of grating zones and a reflective layer provided on the grating zones, wherein the pattern shape of the grating zones is elliptical, and guides light from the input optical fiber to the output optical fiber. To provide a container.

【0007】[0007]

【作用】本発明は、三角形状プリズムの斜面に、グレー
ティングで構成された反射形の楕円回折光学レンズを集
積化した構造により、コリメータレンズと集光レンズと
ミラーとベースの役割を兼ねることができ、位置合わせ
を簡単化し、低価格化を可能とする。レンズのグレーテ
ィングパターン形状を楕円形とすることにより、斜め入
射で生じる収差を補正し、良好な集光特性を実現するも
のである。
The present invention has a structure in which a reflective elliptical diffractive optical lens composed of a grating is integrated on the inclined surface of a triangular prism, so that it can serve as a collimator lens, a condenser lens, a mirror and a base. , Simplifies the alignment and enables cost reduction. By making the grating pattern shape of the lens elliptical, aberrations caused by oblique incidence are corrected and good condensing characteristics are realized.

【0008】[0008]

【実施例】図1(a)は本発明の一実施例の光ファイバ
ー光路角変換器の基本構成、光の入出射の様子を示す側
面図、図1(b)は本発明の一実施例の光ファイバー光
路角変換器の、プリズム斜面から見た反射形回折光学レ
ンズの形状を示す構成図である。
1 (a) is a side view showing the basic structure of an optical fiber optical path angle converter according to an embodiment of the present invention, showing how light enters and exits. FIG. 1 (b) shows an embodiment of the present invention. It is a block diagram which shows the shape of the reflection type diffractive optical lens seen from the prism slope of an optical fiber optical path angle converter.

【0009】同図において、断面が例えば直角二等辺三
角形(例えば斜辺の長さ7.1mm,縦と横の長さ5m
m)である、高さが例えば5mmの三角形状プリズム1
の斜面の中央部に、楕円形状の反射形回折光学レンズ4
を一体化した構造をしている。 反射形回折光学レンズ
4は、断面が鋸歯形状のグレーティングゾーン2(溝の
深さは、例えば0.2μm)と、このグレーティングゾー
ン2上に設けた、例えばAgやAl、Au等の金属層ま
たは誘電体の多層膜の反射層3からなり、例えばレンズ
4のサイズとしては長軸方向が0.7mm、短軸方向が
0.5mmで、焦点距離は2.5mmである。
In the figure, the cross section is, for example, an isosceles right triangle (eg, hypotenuse length 7.1 mm, length and width 5 m).
m), a triangular prism 1 with a height of 5 mm, for example
At the center of the slope of the, the elliptical reflective diffractive optical lens 4
It has a structure that integrates. The reflective diffractive optical lens 4 has a grating zone 2 (having a groove depth of 0.2 μm, for example) having a saw-tooth cross section, and a metal layer such as Ag, Al, or Au provided on the grating zone 2 or The reflective layer 3 is a multilayered dielectric film. For example, the lens 4 has a size of 0.7 mm in the major axis direction and 0.5 mm in the minor axis direction, and a focal length of 2.5 mm.

【0010】本実施例では、耐環境性を一層向上させる
ために、反射層3の上に保護層9として、例えば、A
l、Cu、Cr等の金属層、UV硬化樹脂やラッカー塗
料等の合成樹脂、誘電体多層膜、SiO、SiO2、M
gF2、SiC、グラファイト、ダイヤモンド等を、例
えば1000Åから数μm堆積した構造とした。
In this embodiment, in order to further improve the environment resistance, a protective layer 9 such as A is formed on the reflective layer 3.
1, metal layers such as Cu, Cr, synthetic resins such as UV curable resins and lacquer paints, dielectric multilayer films, SiO, SiO 2 , M
The structure is such that gF 2 , SiC, graphite, diamond, etc. are deposited from 1000 Å to several μm.

【0011】入力用光ファイバー5から出射された光7
は、反射形回折光学レンズ4に、例えば入射角θ=45
°で入射し、反射回折されて、入射角と同じ出射角(4
5°)で出射集光され、出力用光ファイバー6に結合さ
れる。出力用光ファイバー6は、入力用光ファイバー5
に対して、90°向きを変えて配置されてあり、光路の
向きを90°変換することができる。入力用光ファイバ
ー5と出力用光ファイバー6は、合成樹脂等からなる光
学ボンド(屈折率がファイバーのコアとほぼ同じ)で、
三角形状プリズム1に接着されてあり、光ファイバー中
を伝搬してきた光を、一度も空気中に出すことなく、光
路の向きを変換することができる。そのため、境界面で
のフレネル反射をなくすことができるため、低損失で、
外乱の影響がなく安定化が図れる。
Light 7 emitted from the input optical fiber 5
Is incident on the reflection type diffractive optical lens 4 by, for example, an incident angle θ = 45.
Incident at 4 °, reflected and diffracted, and emitted at the same exit angle (4
It is emitted and condensed at 5 ° and is coupled to the output optical fiber 6. The output optical fiber 6 is the input optical fiber 5
In contrast, they are arranged with their directions changed by 90 °, and the direction of the optical path can be changed by 90 °. The input optical fiber 5 and the output optical fiber 6 are optical bonds made of synthetic resin or the like (refractive index is almost the same as the core of the fiber),
It is attached to the triangular prism 1, and the direction of the optical path can be changed without ever letting the light propagating through the optical fiber into the air. Therefore, it is possible to eliminate the Fresnel reflection at the boundary surface, resulting in low loss,
Stabilization can be achieved without the influence of disturbance.

【0012】本発明者は、グレーティングゾーン2の形
状を、長軸と短軸の比(長軸/短軸)が、反射形回折光
学レンズ4への光の入射角(θ)に対して、1/cos
θである楕円形にすることにより、入射光7が、レンズ
4に対して斜め入射したときに生じる収差をなくし、良
好に集光できることを発見した。特に、入力用光ファイ
バー5から反射形回折光学レンズ4までの光路長と、出
力用光ファイバー6から反射形回折光学レンズ4までの
光路長が等しいとき(それぞれの光路長をレンズ4の焦
点距離の2倍にしたとき)にこのレンズ4の集光特性は
最もよく、さらにこのときには、光ファイバー5のコア
端面の光分布と同じ光分布が、出力用の光ファイバー6
のコア端面で実現されるため、光ファイバー6への結合
効率も良いことが分かった。
The present inventor has determined that the shape of the grating zone 2 is such that the ratio of the major axis to the minor axis (major axis / minor axis) with respect to the incident angle (θ) of light to the reflective diffractive optical lens 4. 1 / cos
It has been discovered that the elliptical shape of θ eliminates the aberration that occurs when the incident light 7 is obliquely incident on the lens 4 and can satisfactorily focus light. In particular, when the optical path length from the input optical fiber 5 to the reflection type diffractive optical lens 4 is equal to the optical path length from the output optical fiber 6 to the reflection type diffractive optical lens 4 (each optical path length is equal to the focal length of the lens 4 is 2). (When doubled), the condensing characteristic of this lens 4 is the best, and at this time, the same light distribution as the light distribution on the end face of the core of the optical fiber 5 is obtained.
It was found that the coupling efficiency with the optical fiber 6 is good because it is realized by the core end surface of.

【0013】本発明の反射形回折光学レンズの製造方法
としては、公知の電子ビームを用いた。すなわち、基板
1上にコーティングした、例えば、PMMAやCMS等
の電子ビームレジストという電子ビームに感光する合成
樹脂に電子ビームを照射するが、そのとき、製造するレ
ンズ4のグレーティングゾーン2の形状と同じ曲線(楕
円)上を、鋸歯形状となるように照射量を調整し、レン
ズの大きさになるまで徐々に楕円の大きさを大きくし、
繰り返し照射した。その後、現像処理を行なうことによ
り、膜厚を変化させた後、例えばAgの反射層3を、例
えば4000Å堆積し、その上に保護層9として、Al
を例えば1000Å堆積して、レンズ4とした。反射層
3の膜厚は、グレーティングゾーン2の最大膜厚よりも
大きくすることにより、反射効率を高めることができ
た。
A known electron beam was used as a method for manufacturing the reflection type diffractive optical lens of the present invention. That is, a synthetic resin coated on the substrate 1, for example, an electron beam resist such as PMMA or CMS, which is sensitive to an electron beam is irradiated with the electron beam, and at that time, the same shape as the grating zone 2 of the lens 4 to be manufactured is used. Adjust the irradiation amount on the curve (ellipse) so that it becomes a sawtooth shape, gradually increase the size of the ellipse until it becomes the size of the lens,
Repeated irradiation. After that, a development process is performed to change the film thickness, and then a reflective layer 3 of, for example, Ag is deposited, for example, 4000 Å.
Was deposited as 1000 Å to form the lens 4. The reflection efficiency could be increased by making the thickness of the reflective layer 3 larger than the maximum thickness of the grating zone 2.

【0014】大量生産は、反射層3を堆積する前のレン
ズ素子4を原盤として、例えば、ニッケル電鋳法で金型
を作製し、例えば、UV硬化樹脂を用いて金型から複製
し、反射層3を堆積すれば原盤と同一のレンズ素子が低
価格で作製可能である。特に、プリズム斜面に回折光学
レンズ4をアレイ配列して、ファイバーアレイの光路を
変換させる光ファイバー光路角変換器を製造したいとき
は、この方法を用いると、一度に同じ特性で、精度よく
レンズを形成できるため効果は大きい。
In mass production, the lens element 4 before the reflection layer 3 is deposited is used as a master to make a mold by, for example, a nickel electroforming method. For example, a UV curable resin is used to reproduce from the mold and the reflection is performed. If the layer 3 is deposited, the same lens element as that of the master can be manufactured at low cost. In particular, when it is desired to manufacture an optical fiber optical path angle converter that converts the optical path of the fiber array by arraying the diffractive optical lenses 4 on the prism slope, this method can be used to form the lenses with the same characteristics at a high accuracy. The effect is great because it can be done.

【0015】三角形状プリズム1としては、使用波長に
対して透明であれば良く、例えばガラスプリズムは、温
度的にも安定であり、合成樹脂のプリズムを用いた場合
では軽量になる。
The triangular prism 1 need only be transparent with respect to the wavelength used, and for example, a glass prism is stable with respect to temperature, and is lightweight when a prism made of synthetic resin is used.

【0016】本実施例では、光路の向きを90°変換さ
せる変換器について述べたが、これはプリズムの角度を
変えることのより、いろいろな角度の変換器を製造でき
る。また、プリズムとしては、三角形状のプリズムにつ
いて説明したが、光が通らない部分の形状は問題ではな
く、例えばその部分を切断した形状でもよいことは言う
までもない。
In this embodiment, the converter for changing the direction of the optical path by 90 ° has been described. However, by changing the angle of the prism, it is possible to manufacture converters with various angles. Further, as the prism, a triangular prism has been described, but it goes without saying that the shape of the portion through which light does not pass is not a problem and, for example, a shape obtained by cutting the portion may be used.

【0017】[0017]

【発明の効果】以上のように本発明によれば、小形軽量
で低価格、組立が簡単な光ファイバーの光路角変換器が
実現可能であるという効果を有する。
As described above, according to the present invention, there is an effect that it is possible to realize an optical path angle converter of an optical fiber which is small, lightweight, low in cost, and easy to assemble.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例の光ファイバー光路
角変換器の基本構成、光の入出射の様子を示す側面図 (b)は本発明の一実施例の光ファイバー光路角変換器
のプリズム斜面から見た構成図
FIG. 1A is a side view showing a basic configuration of an optical fiber optical path angle converter according to an embodiment of the present invention, and a state of entering and exiting light. FIG. 1B is an optical fiber optical path angle converter according to an embodiment of the present invention. Configuration view from the prism slope of

【図2】従来の光ファイバー光路角変換器の構成図FIG. 2 is a block diagram of a conventional optical fiber optical path angle converter.

【符号の説明】[Explanation of symbols]

1 三角形状プリズム 2 グレーティングゾーン 3 反射層 4 反射形回折光学レンズ 5 入力用光ファイバー 6 出力用光ファイバー 7 入射光 8 出射光 9 保護層 1 Triangular prism 2 Grating zone 3 Reflective layer 4 Reflective diffractive optical lens 5 Optical fiber for input 6 Optical fiber for output 7 Incident light 8 Emission light 9 Protective layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】三角形状プリズムと、上記プリズムの斜面
上に形成した反射形回折光学レンズからなり、上記反射
形回折光学レンズは、複数のグレーティングゾーンと、
上記グレーティングゾーン上に設けた反射層からなり、
上記グレーティングゾーンのパターン形状は楕円形であ
り、入力用光ファイバーから出力用光ファイバーに光を
導くことを特徴とする光ファイバー光路角変換器。
1. A triangular prism and a reflective diffractive optical lens formed on the slope of the prism, wherein the reflective diffractive optical lens includes a plurality of grating zones.
Consisting of a reflective layer provided on the grating zone,
An optical fiber optical path angle converter characterized in that the pattern shape of the grating zone is elliptical and guides light from the input optical fiber to the output optical fiber.
【請求項2】入力用光ファイバーから反射形回折光学レ
ンズまでの光路長と、出力用光ファイバーから反射形回
折光学レンズまでの光路長を、等しくすることを特徴と
する請求項1記載の光ファイバー光路角変換器。
2. The optical path angle of an optical fiber according to claim 1, wherein the optical path length from the input optical fiber to the reflection type diffractive optical lens is equal to the optical path length from the output optical fiber to the reflection type diffractive optical lens. converter.
【請求項3】楕円形であるグレーティングゾーンの長軸
と短軸の比(長軸/短軸)は、反射形回折光学レンズへ
の光の入射角(θ)に対して、1/cosθであること
を特徴とする請求項1記載の光ファイバー光路角変換
器。
3. The ratio of the major axis to the minor axis (major axis / minor axis) of the elliptical grating zone is 1 / cos θ with respect to the incident angle (θ) of light to the reflective diffractive optical lens. The optical fiber optical path angle converter according to claim 1, wherein:
【請求項4】反射層上に保護層を設けることを特徴とす
る請求項1記載の光ファイバー光路角変換器。
4. The optical path angle converter according to claim 1, wherein a protective layer is provided on the reflective layer.
JP4001256A 1992-01-08 1992-01-08 Optical path angle converter of optical fiber Pending JPH05188238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4001256A JPH05188238A (en) 1992-01-08 1992-01-08 Optical path angle converter of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4001256A JPH05188238A (en) 1992-01-08 1992-01-08 Optical path angle converter of optical fiber

Publications (1)

Publication Number Publication Date
JPH05188238A true JPH05188238A (en) 1993-07-30

Family

ID=11496381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001256A Pending JPH05188238A (en) 1992-01-08 1992-01-08 Optical path angle converter of optical fiber

Country Status (1)

Country Link
JP (1) JPH05188238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331679B2 (en) 2004-06-28 2008-02-19 Samsung Electronics Co., Ltd. Reflection unit having a mirror array, and projection display system employing the same
US10436987B2 (en) 2016-09-30 2019-10-08 Fujitsu Optical Components Limited Optical module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331679B2 (en) 2004-06-28 2008-02-19 Samsung Electronics Co., Ltd. Reflection unit having a mirror array, and projection display system employing the same
US10436987B2 (en) 2016-09-30 2019-10-08 Fujitsu Optical Components Limited Optical module

Similar Documents

Publication Publication Date Title
US5838497A (en) Chromatic aberration correction element and its application
US7616856B2 (en) Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength
JP2018533033A (en) Optical component having beam deflection element, method for manufacturing the same, and beam deflection element suitable for the component
IL106092A (en) Illumination system having an aspherical lens and a method of manufacturing such a system
JP2000162466A (en) Optical demultiplexer
US4422733A (en) Cladded spherical lens having uneven refractive index
US8917961B2 (en) Apparatus for transforming the aspect ratio of an optical input field based on stacked waveguides
JPH05188238A (en) Optical path angle converter of optical fiber
JP2586703B2 (en) Optical lens
US6791755B2 (en) Optical device for making light converge
JP2768154B2 (en) Optical device and manufacturing method thereof
EP1316835A2 (en) A micro-opto-electro-mechanical system (MOEMS) comprising reflective Fresnel zone plates
JP4138321B2 (en) Light separation method, light synthesis method, light separation / synthesis optical element, and light separation coupling device
JPH0792526B2 (en) Grating lens
JP2773401B2 (en) Optical lens
JP3003348B2 (en) Optical lens and manufacturing method thereof
JPH06258534A (en) Optical device
JPS6020722B2 (en) light distributor
JP3052528B2 (en) Optical lens and manufacturing method thereof
JPH01180504A (en) Optical integrated circuit
JPS59167863A (en) Optical system for optical disc
JPS6319602A (en) Light beam expander
US8744221B1 (en) Apparatus for transforming the aspect ratio of an optical input field based on stacked waveguides
CA1262580A (en) Wavelength division multiplexer and demultiplexer
JPH0682719A (en) Beam shaping optical element, manufacture thereof, and beam shaping method