JPH06258534A - Optical device - Google Patents

Optical device

Info

Publication number
JPH06258534A
JPH06258534A JP5044837A JP4483793A JPH06258534A JP H06258534 A JPH06258534 A JP H06258534A JP 5044837 A JP5044837 A JP 5044837A JP 4483793 A JP4483793 A JP 4483793A JP H06258534 A JPH06258534 A JP H06258534A
Authority
JP
Japan
Prior art keywords
light
transparent substrate
substrate
photodetector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5044837A
Other languages
Japanese (ja)
Inventor
Teruhiro Shiono
照弘 塩野
Kuni Ogawa
久仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5044837A priority Critical patent/JPH06258534A/en
Publication of JPH06258534A publication Critical patent/JPH06258534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical device which reduces unnecessary propagated light, and performs signal detection with good S/N, and is stable in the oscillation of its light source. CONSTITUTION:This device is constituted by forming reflection type diffracting optical lenses 3a and 3b on the top surface of a transparent substrate 2, providing the light source 1 and a photodetector 5 on the reverse surface of the transparent substrate 2, and forming a light absorbing means 10 on a flank 11 of the transparent substrate, and the projection light 6 emitted by the light source 1 is diffracted by the reflection type diffracting optical lens 3a, the primary diffracted light is collimated at an angle theta to become propagated light 7 and then reflected by the reflecting layer 4c on the reverse surface of the substrate 2 and made incident on another reflection type diffracting optical lens 3b, and the projected primary diffracted light becomes incident light 8 on the photodetector 5. Unnecessary propagated light such as 9 other than the primary diffracted light generated by the diffraction of the reflection type diffracting optical lenses 3a and 3b is absorbed by the light absorbing means 10 on the reverse surface 11 of the substrate and hardly made incident on the photodetector 5 and light source 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回折光学素子を含む光
学素子を、平板上に集積化した平板形光集積回路に関す
るものであり、特に、不用伝搬光を減らしSN比のよい
信号検出が可能な光デバイスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate type optical integrated circuit in which optical elements including diffractive optical elements are integrated on a flat plate. It concerns a possible optical device.

【0002】[0002]

【従来の技術】平板形光集積回路は、ガラス等の透明な
平板(基板)上に光学素子を集積化し、光路を各光学素
子を結ぶように平板界面の反射を利用してジグザグにと
り、光情報処理を行なうものである。この回路構成によ
れば、光応用システムの小形・安定・軽量化を実現で
き、注目されている。
2. Description of the Related Art A flat-plate optical integrated circuit integrates optical elements on a transparent flat plate (substrate) such as glass, and zigzags the optical path by using reflection at the flat plate interface so as to connect each optical element. It processes information. According to this circuit configuration, it is possible to realize a compact, stable and lightweight optical application system, which is drawing attention.

【0003】従来の平板形光集積回路として、図3(断
面図)に示すものがあった(J.Jahns, Y. H. Lee, C.
A. Burrus Jr., and J. L. Jewell : " Opticalinterco
nnection using top-surface-emmiting microlasers an
d planar optics", Applied Optics Vol. 31, No. 5, p
p. 592-597 (1992).)。
As a conventional flat type optical integrated circuit, there is one shown in FIG. 3 (cross-sectional view) (J. Jahns, YH Lee, C.
A. Burrus Jr., and JL Jewell: "Opticalinterco
nnection using top-surface-emmiting microlasers an
d planar optics ", Applied Optics Vol. 31, No. 5, p
p. 592-597 (1992).).

【0004】図3の光デバイスは、光源1の信号を光検
出器5に伝搬する光インターコネクションとしての例で
ある。同図において、透明基板2の表面に、反射形回折
光学レンズ3a、3bを形成し、透明基板2の裏面に、
光源1と光検出器5、反射層4cを設けた構造である。
反射形回折光学レンズ3a、3bは、上部に反射層4
a、4bをそれぞれ設けた、入射と出射の光軸が異なる
オフアキシス形のレンズである。
The optical device shown in FIG. 3 is an example of an optical interconnection for propagating the signal of the light source 1 to the photodetector 5. In the figure, reflective diffractive optical lenses 3 a and 3 b are formed on the front surface of the transparent substrate 2, and the rear surface of the transparent substrate 2 is
This is a structure in which the light source 1, the photodetector 5, and the reflective layer 4c are provided.
The reflective diffractive optical lenses 3a and 3b have a reflective layer 4 on the top.
It is an off-axis type lens provided with a and b, respectively, and having different incident and outgoing optical axes.

【0005】光源1から出射された出射光6は、反射形
回折光学レンズ3aで回折され、1次回折光が、角度θ
でコリメートされて伝搬光7になる。この伝搬光7は、
基板2裏面の反射層4cで反射され、もう1つの反射形
回折光学レンズ3bに入射し、その1次回折光が光検出
器5への入射光8となる。
The emitted light 6 emitted from the light source 1 is diffracted by the reflection type diffractive optical lens 3a, and the first-order diffracted light has an angle θ.
Is collimated to become propagating light 7. This propagating light 7 is
The light is reflected by the reflective layer 4c on the back surface of the substrate 2, enters the other reflective diffractive optical lens 3b, and the first-order diffracted light becomes incident light 8 on the photodetector 5.

【0006】[0006]

【発明が解決しようとする課題】図3に示した従来の光
学デバイスにおいて、反射形回折光学レンズ3a、3b
は、1次回折光のみが設計通りのコリメート作用・集光
作用を有し、他の回折光は不用伝搬光となる。反射形回
折光学レンズのような回折素子では、入射光を1次回折
光に変換させる割合、すなわち1次回折効率が重要であ
る。この1次回折効率は、素子の断面形状、素子を構成
するグレーティング周期、入射角等に依存しており、こ
の1次回折効率を100%にすることは理論的にもほぼ
不可能であり、典型的には実際の値として25%程度か
ら85%程度である。従って、平板形光集積回路のよう
な光デバイスに、回折形の光学素子を集積化する場合、
1次回折光以外の不用伝搬光が、すべて合わせて、15
%程度から75%程度まで生じる。
In the conventional optical device shown in FIG. 3, reflective diffractive optical lenses 3a and 3b are used.
In the above, only the first-order diffracted light has the collimating / focusing effect as designed, and the other diffracted light becomes unnecessary propagation light. In a diffractive element such as a reflective diffractive optical lens, the ratio of converting incident light into first-order diffracted light, that is, first-order diffraction efficiency is important. This first-order diffraction efficiency depends on the cross-sectional shape of the element, the grating period that constitutes the element, the incident angle, etc., and it is theoretically almost impossible to set this first-order diffraction efficiency to 100%. The actual value is typically about 25% to 85%. Therefore, when integrating a diffractive optical element in an optical device such as a flat optical integrated circuit,
Unwanted propagating light other than the first-order diffracted light is 15
% To about 75%.

【0007】例えば、反射形回折光学レンズ3bについ
て、0次回折光(透過光)9の様子を点線で示すと、こ
の光9はレンズ3b出射後、基板側面11cで部分的に
(側面での反射角が全反射角のときはすべて)反射し
て、光検出器5に入射している。すなわち、1次以外の
回折光(0次回折光、−1次回折光や高次回折光)は、
回折条件を満たす種々の方向に出現し、基板2の上下側
面で多重に反射して、不用伝搬光となり、特に、出射光
6が2次元情報を有している場合や、入射光8のみが情
報を有している場合には、この不用伝搬光は、光検出器
5に入射してSN比を悪くするという課題があった。さ
らに、基板2内で多重に反射して、光源1に入射する
と、光源1の発振が不安定になる場合もあった。
For example, regarding the reflection type diffractive optical lens 3b, when the state of the 0th order diffracted light (transmitted light) 9 is shown by a dotted line, this light 9 is partially emitted on the side surface 11c of the substrate (reflected on the side surface) after exiting the lens 3b. When the angle is the total reflection angle, the light is reflected and is incident on the photodetector 5. That is, the diffracted light other than the 1st order (the 0th order diffracted light, the −1st order diffracted light and the high order diffracted light) is
Appearing in various directions satisfying the diffraction condition and being reflected multiple times on the upper and lower side surfaces of the substrate 2 to become unnecessary propagating light, especially when the outgoing light 6 has two-dimensional information or only the incident light 8 is generated. In the case of having information, there is a problem that this unnecessary propagation light is incident on the photodetector 5 to deteriorate the SN ratio. Further, when the light is reflected multiple times in the substrate 2 and enters the light source 1, the oscillation of the light source 1 may become unstable.

【0008】本発明は、上記課題に鑑みてなされたもの
で、不用伝搬光を減らすことにより、光源の発振が安定
で、SN比のよい信号検出が可能な光デバイスを提供す
るものである。
The present invention has been made in view of the above problems, and provides an optical device in which oscillation of a light source is stable and a signal with a good SN ratio can be detected by reducing unnecessary propagation light.

【0009】[0009]

【課題を解決するための手段】透明基板と、上記透明基
板の表面または裏面の少なくとも一方に形成した回折形
の光学素子を含む複数個の光学素子からなり、上記透明
基板内をジグザグ状に光を伝搬させる光デバイスにおい
て、上記透明基板の側面の少なくとも1面に光吸収手段
を設けるように構成する。
A transparent substrate and a plurality of optical elements including a diffractive optical element formed on at least one of the front surface and the back surface of the transparent substrate, are arranged in a zigzag pattern in the transparent substrate. In the optical device for propagating light, the light absorbing means is provided on at least one side surface of the transparent substrate.

【0010】[0010]

【作用】本発明は、平板形の光集積回路において、光が
ジグザグに伝搬する透明基板の側面に、光吸収手段を設
けることにより、回折光学素子により生じた1次回折光
以外の不用伝搬光を吸収し、光源および光検出器への入
射を防ぎ、光源の発振を乱さず、光検出器のSN比を向
上させる。
According to the present invention, in a flat optical integrated circuit, by providing a light absorbing means on a side surface of a transparent substrate through which light propagates in a zigzag manner, unnecessary propagating light other than the first-order diffracted light generated by the diffractive optical element is provided. It absorbs and prevents the light source and the photodetector from entering, does not disturb the oscillation of the light source, and improves the SN ratio of the photodetector.

【0011】[0011]

【実施例】図1は、本発明の一実施例の光学デバイスの
構成を示す断面図(a)と平面図(b)である。
1 is a sectional view (a) and a plan view (b) showing the structure of an optical device according to an embodiment of the present invention.

【0012】同図において、透明基板1として、例えば
厚さ(z方向サイズ)2mm、幅(x方向サイズ)5m
m、長さ(y方向サイズ)10mmのガラス平板を用
い、基板2の表面に、反射形の回折光学レンズ3aと3
bを形成し、基板2の裏面にそれぞれに対向するよう
に、光源1と光検出器5を設けている。反射形の回折光
学レンズ3aと3bの上面と基板2の裏面には、それぞ
れ例えばAgやAl、Au等の金属層または誘電体の多
層膜である反射層4a、4b、4cを形成している。こ
の基板2の表面と裏面の反射を利用しジグザグ状に光が
伝搬する。基板2としては、使用波長に対して透明であ
れば良い。特に石英等のガラス基板は、温度的にも安定
である。
In the figure, as the transparent substrate 1, for example, the thickness (size in the z direction) is 2 mm and the width (size in the x direction) is 5 m.
On the surface of the substrate 2, reflective diffractive optical lenses 3a and 3 are used.
The light source 1 and the photodetector 5 are provided on the back surface of the substrate 2 so as to face each other. On the upper surfaces of the reflective diffractive optical lenses 3a and 3b and the back surface of the substrate 2, reflective layers 4a, 4b, and 4c, which are metal layers of, for example, Ag, Al, Au, or multilayer films of dielectrics, are formed. . The light propagates in a zigzag shape by utilizing the reflection on the front surface and the back surface of the substrate 2. The substrate 2 may be transparent to the wavelength used. In particular, a glass substrate such as quartz is stable in temperature.

【0013】光源1として、例えば3×3構造で、波長
0.78μmの半導体レーザアレイを用い、その光源1か
らの出射光6は、例えば焦点距離2mm、サイズが1m
m角のオフアキシス形回折光学レンズ3aに入射する。
オフアキシス形のレンズとは入射光の光軸の角度と、出
射光の光軸の角度が異なるレンズのことをいう(入射光
の光軸の角度と、出射光の光軸の角度が同じレンズをイ
ンライン形という)。このオフアキシス形回折光学レン
ズ3aは、発散球面波をコリメートして、角度θで出射
する回折形のレンズであり、y方向にいくに従って、徐
々に周期が大きくなり(中心周期は、例えば0.74μ
m)、同時に曲率が小さくなる、断面が矩形形状の放物
線状グレーティングから構成される。そのグレーティン
グの溝の深さは例えば0.17μmである。入射光は、例
えば、48%の1次回折効率で、例えば伝搬角θ=45
°で反射回折されて、コリメートされた伝搬光7とな
る。
As the light source 1, for example, a semiconductor laser array having a 3 × 3 structure and a wavelength of 0.78 μm is used. The emitted light 6 from the light source 1 has, for example, a focal length of 2 mm and a size of 1 m.
The light enters the off-axis diffractive optical lens 3a having an angle of m.
An off-axis lens is a lens in which the angle of the optical axis of the incident light and the angle of the optical axis of the emitted light are different (a lens in which the angle of the optical axis of the incident light and the angle of the optical axis of the emitted light are the same. In-line type). The off-axis type diffractive optical lens 3a is a diffractive lens that collimates a divergent spherical wave and emits it at an angle θ, and its cycle gradually increases in the y direction (center cycle is, for example, 0.74 μm).
m), which is composed of a parabolic grating with a rectangular cross-section that simultaneously reduces curvature. The groove depth of the grating is, for example, 0.17 μm. The incident light has, for example, a first-order diffraction efficiency of 48% and a propagation angle θ = 45, for example.
The light is reflected and diffracted at .degree. To become the collimated propagating light 7.

【0014】伝搬光7は、基板2の裏面で反射され、ジ
グザグ状に伝搬し、もう1つのオフアキシス形回折光学
レンズ3bに入射し、例えば、48%の1次回折効率で
集光されて、光検出器5への入射光8となる。オフアキ
シス形回折光学レンズ3bは、3aと仕様が同じで、1
80度回転した配置となっている。光検出器5は、例え
ばa−SiまたはSiのpin構造のものを用い、光源
1と対応して3×3の9分割構造のものであり、光源1
の各素子と、光検出器5の各素子がそれぞれ対応してお
り、光源1の各素子の信号が、光検出器5の各素子に伝
搬する光インターコネクションとしての光デバイスであ
る。
The propagating light 7 is reflected on the back surface of the substrate 2, propagates in a zigzag shape, enters another off-axis diffractive optical lens 3b, and is condensed with a first-order diffraction efficiency of 48%, for example. It becomes incident light 8 on the photodetector 5. The off-axis type diffractive optical lens 3b has the same specifications as 3a.
The arrangement is rotated by 80 degrees. The photodetector 5 has, for example, a pin structure of a-Si or Si and has a 3 × 3 9-division structure corresponding to the light source 1.
And each element of the photodetector 5 correspond to each other, and the signal of each element of the light source 1 is an optical device as an optical interconnection that propagates to each element of the photodetector 5.

【0015】図2は、オフアキシスレンズ3bの中心領
域での回折効率を示す図である。例えば、伝搬角がθ=
45°の場合、同図(b)に示すように、伝搬光7が、
オフアキシスレンズ3bに入射すると、0次、1次、2
次の3つの次数の回折光が生じ、それぞれの回折効率
は、例えば、33%、48%、18%であった。光検出
器5への入射光8となるのは1次回折光であるから、伝
搬光7の48%が光検出器5に入射する。0次回折光9
は図1(a)において、点線で示したように、基板側面
11cに到達するが、その側面11に設けた光吸収手段
10で、ほぼ吸収され、光検出器5にはほとんど入射し
ない。2次回折光は、図には示していないが、広がるよ
うに−y方向にジグザグ状に伝搬し、1部は、基板2の
表面から、外部に出射し、1部は、基板側面11a、1
1b、11dに到達し、その側面11に設けた光吸収手
段10で、ほぼ吸収される。このとき、光吸収手段10
を設ける基板側面11は、少なくとも光が伝搬する方向
の対向面、すなわち、11a、11cの2面であって
も、不用伝搬光がかなり減らせられることが分かった。
さらに、光吸収手段10を設ける基板の側面11は回折
光学素子に最も近い側面1つでも効果的である。θ=3
0°、20°のときの回折効率の測定結果も、それぞれ
図2(a)、(c)に示した。
FIG. 2 is a diagram showing the diffraction efficiency in the central region of the off-axis lens 3b. For example, the propagation angle is θ =
In the case of 45 °, as shown in FIG.
When incident on the off-axis lens 3b, the 0th order, the 1st order, the 2nd order
The following three orders of diffracted light were generated, and the respective diffraction efficiencies were, for example, 33%, 48%, and 18%. Since the incident light 8 to the photodetector 5 is the first-order diffracted light, 48% of the propagating light 7 is incident on the photodetector 5. 0th order diffracted light 9
1A, as shown by the dotted line in FIG. 1A, reaches the side surface 11c of the substrate, but is almost absorbed by the light absorbing means 10 provided on the side surface 11 and hardly enters the photodetector 5. Although not shown in the drawing, the second-order diffracted light propagates in a zigzag shape in the −y direction so as to spread, and one part is emitted from the surface of the substrate 2 to the outside, and one part is the substrate side surface 11 a, 1
It reaches 1b and 11d, and is almost absorbed by the light absorbing means 10 provided on the side surface 11 thereof. At this time, the light absorbing means 10
It has been found that the unnecessary propagation light can be considerably reduced even if the side surface 11 of the substrate on which is provided is at least the opposing surface in the light propagating direction, that is, two surfaces 11a and 11c.
Furthermore, the side surface 11 of the substrate on which the light absorbing means 10 is provided is effective even if it is the side surface closest to the diffractive optical element. θ = 3
The measurement results of the diffraction efficiency at 0 ° and 20 ° are also shown in FIGS. 2 (a) and 2 (c), respectively.

【0016】本実施例では、光吸収手段10として、使
用波長に対して光吸収作用のある膜、例えばカーボンま
たはフタロシアニン化合物を、ポリイミドやPMMA等
の高分子に混ぜて塗布したが、使用波長に対して光吸収
効果がある色素等の有機膜を蒸着してもよい。
In the present embodiment, as the light absorbing means 10, a film having a light absorbing action with respect to the wavelength used, for example, carbon or a phthalocyanine compound was mixed and applied to a polymer such as polyimide or PMMA. On the other hand, an organic film such as a dye having a light absorbing effect may be deposited.

【0017】回折光学素子3a、3bは、基板2上に例
えば、PMMA、CMS等の電子ビームレジストをコー
ティングをし、作製する素子の膜厚に応じて照射量を制
御する電子ビーム描画法を行ない、現像処理をしてレジ
ストの膜厚を変化させることにより形成した。このよう
に形成した光学素子(原盤)から、例えばニッケル電鋳
法によりこの金形を作製し、例えばUV硬化樹脂を用い
て、基板2上に原盤と同一レンズ3a、3bを複製し
た。この方法によれば、一度に複数の回折光学素子を位
置精度よく基板2上に同一特性で容易に形成可能であ
る。反射形回折光学レンズ3a、3bは、複製の後、反
射層4a、4bとして例えばAgやAl、Au等の金属
層をその上に堆積した。
For the diffractive optical elements 3a and 3b, for example, an electron beam resist such as PMMA or CMS is coated on the substrate 2, and an electron beam drawing method is performed to control the irradiation amount according to the film thickness of the element to be manufactured. It was formed by developing and changing the film thickness of the resist. From the optical element (master) thus formed, this mold was produced by, for example, a nickel electroforming method, and the same lenses 3a and 3b as the master were duplicated on the substrate 2 using, for example, a UV curable resin. According to this method, it is possible to easily form a plurality of diffractive optical elements at the same time on the substrate 2 with the same characteristics and with the same characteristics. After the duplication of the reflection type diffractive optical lenses 3a and 3b, metal layers such as Ag, Al and Au were deposited thereon as the reflection layers 4a and 4b.

【0018】また、その反射層4上に、Cu、Cr等の
金属層、UV硬化樹脂やラッカー塗料等の合成樹脂、誘
電体多層膜、SiO、SiO2、MgF2、SiC、グラ
ファイト、ダイヤモンド等の保護層を、例えば1000
Åから数μm堆積すると、反射層の表面を傷つきにくく
し、同時に反射層の酸化を防止し、耐環境性を向上させ
ることが可能であった。特に反射層としてAgを用いた
場合では、酸化され易かったため、保護層の効果が大き
かった。
On the reflective layer 4, metal layers such as Cu and Cr, synthetic resins such as UV curable resins and lacquer paints, dielectric multilayer films, SiO, SiO 2 , MgF 2 , SiC, graphite, diamond, etc. Protective layer of, for example, 1000
By depositing from Å to several μm, it was possible to make the surface of the reflective layer less likely to be scratched, at the same time prevent oxidation of the reflective layer, and improve the environmental resistance. In particular, when Ag was used as the reflective layer, it was easily oxidized, and the effect of the protective layer was large.

【0019】回折形の光学素子としては、本実施例では
オフアキシス形について説明したが、インライン形の回
折レンズでは、通常、構成するグレーティングの周期が
比較的大きく、断面形状制御が容易でブレーズ化が行え
るため、1次回折光をオフアキシス形のレンズに比べ
て、例えば2倍程度大きくとれるため、不用伝搬光は少
なくできる。従って、本発明の効果は、オフアキシス形
の回折レンズを含む平板形光集積回路に対しての方が大
きい。
As the diffractive optical element, the off-axis type has been described in this embodiment. However, in the in-line type diffractive lens, the period of the constituent grating is usually relatively large, the cross-sectional shape control is easy, and the blazing is easy. Since it can be performed, the 1st-order diffracted light can be made, for example, about twice as large as that of the off-axis type lens, so that the unnecessary propagation light can be reduced. Therefore, the effect of the present invention is greater for a flat-plate optical integrated circuit including an off-axis type diffractive lens.

【0020】以上本発明の光デバイスとして、光学素子
が基板2の表面にある場合について説明したが、裏面に
あってもよく、両面にあってもよい。また、本実施例で
は、光源1の情報を光検出器5に伝搬する光インターコ
ネクションについて説明したが、本発明は、透明基板
と、透明基板の表面または裏面の少なくとも一方に形成
した回折形の光学素子を含む複数個の光学素子からな
り、かつ透明基板内をジグザグ状に光を伝搬させる平板
形の光集積回路のような光デバイスに対して、回折形の
光学素子によって生じた1次回折光以外の不用伝搬光を
減らすことができるため、効果を有する。
As the optical device of the present invention, the case where the optical element is on the front surface of the substrate 2 has been described above, but it may be on the back surface or on both surfaces. Further, in the present embodiment, the optical interconnection for propagating the information of the light source 1 to the photodetector 5 has been described, but the present invention is of a diffractive type formed on the transparent substrate and at least one of the front surface and the back surface of the transparent substrate. First-order diffracted light generated by a diffractive optical element for an optical device such as a flat-plate optical integrated circuit which is composed of a plurality of optical elements including an optical element and propagates light in a zigzag manner in a transparent substrate. It is possible to reduce unnecessary propagation light other than the above, which is effective.

【0021】[0021]

【発明の効果】本発明は、透明基板と、表面または裏面
の少なくとも一方の面に形成した回折形の光学素子を含
む複数素子からなり、透明基板内をジグザグ状に光を伝
搬させる光デバイスにおいて、透明基板の側面の少なく
とも1面に光吸収手段を設けた光デバイスであるため、
不用伝搬光を減らし、光源の発振が安定で、かつSN比
のよい信号検出が可能な光デバイスが実現可能である。
INDUSTRIAL APPLICABILITY The present invention provides an optical device comprising a transparent substrate and a plurality of elements including a diffractive optical element formed on at least one of a front surface and a back surface, and which propagates light in a zigzag manner in the transparent substrate. Since it is an optical device in which the light absorbing means is provided on at least one side surface of the transparent substrate,
It is possible to realize an optical device that reduces unnecessary propagating light, stabilizes oscillation of a light source, and can detect a signal with a good SN ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例の光学デバイスの構成
を示す断面図 (b)は本発明の実施例の光学デバイスの構成を示す平
面図
FIG. 1A is a sectional view showing a configuration of an optical device according to an embodiment of the present invention. FIG. 1B is a plan view showing a configuration of an optical device according to an embodiment of the present invention.

【図2】本発明の実施例の光学デバイスの反射形回折光
学レンズの回折効率
FIG. 2 is a diffraction efficiency of a reflective diffractive optical lens of an optical device according to an embodiment of the present invention.

【図3】従来の光デバイスの断面図FIG. 3 is a sectional view of a conventional optical device.

【符号の説明】[Explanation of symbols]

1 光源 2 透明基板 3 反射形回折光学レンズ 4 反射層 5 光検出器 6 出射光 7 伝搬光 8 入射光 9 0次回折光 10 光吸収手段 11 透明基板の側面 1 Light Source 2 Transparent Substrate 3 Reflective Diffractive Optical Lens 4 Reflective Layer 5 Photo Detector 6 Emitted Light 7 Propagated Light 8 Incident Light 9 0th Diffracted Light 10 Light Absorbing Means 11 Side of Transparent Substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明基板と、上記透明基板の表面または裏
面の少なくとも一方に形成した回折形の光学素子を含む
複数個の光学素子からなり、上記透明基板内をジグザグ
状に光を伝搬させる光デバイスにおいて、上記透明基板
の側面の少なくとも1面に光吸収手段を設けたことを特
徴とする光デバイス。
1. A light comprising a transparent substrate and a plurality of optical elements including a diffractive optical element formed on at least one of a front surface and a back surface of the transparent substrate, and propagating light in a zigzag shape in the transparent substrate. In the device, a light absorbing means is provided on at least one side surface of the transparent substrate.
【請求項2】回折形の光学素子が、オフアキシスレンズ
であることを特徴とする請求項1に記載の光デバイス。
2. The optical device according to claim 1, wherein the diffractive optical element is an off-axis lens.
【請求項3】透明基板の側面は、光が伝搬する方向の対
向面であることを特徴とする請求項1に記載の光デバイ
ス。
3. The optical device according to claim 1, wherein the side surfaces of the transparent substrate are opposed surfaces in a light propagating direction.
【請求項4】光吸収手段が、使用波長に吸収域を有する
膜であることを特徴とする請求項1に記載の光デバイ
ス。
4. The optical device according to claim 1, wherein the light absorbing means is a film having an absorption region at a used wavelength.
【請求項5】吸収域を有する膜が、カーボンまたはフタ
ロシアニン化合物の何れかを含む有機膜であることを特
徴とする請求項4に記載の光デバイス。
5. The optical device according to claim 4, wherein the film having an absorption region is an organic film containing either carbon or a phthalocyanine compound.
【請求項6】有機膜が、高分子膜であることを特徴とす
る請求項5に記載の光デバイス。
6. The optical device according to claim 5, wherein the organic film is a polymer film.
JP5044837A 1993-03-05 1993-03-05 Optical device Pending JPH06258534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5044837A JPH06258534A (en) 1993-03-05 1993-03-05 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5044837A JPH06258534A (en) 1993-03-05 1993-03-05 Optical device

Publications (1)

Publication Number Publication Date
JPH06258534A true JPH06258534A (en) 1994-09-16

Family

ID=12702591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5044837A Pending JPH06258534A (en) 1993-03-05 1993-03-05 Optical device

Country Status (1)

Country Link
JP (1) JPH06258534A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136775A (en) * 1994-11-15 1996-05-31 Korea Electron Telecommun Backboard optical-signal coupling module utilizing condensing lattice connector array
JP2002098820A (en) * 2000-09-21 2002-04-05 Nippon Sheet Glass Co Ltd Reflection type diffraction grating
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
CN100456062C (en) * 2005-10-19 2009-01-28 日立电线株式会社 Optical waveguide device and multiple optical waveguide device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136775A (en) * 1994-11-15 1996-05-31 Korea Electron Telecommun Backboard optical-signal coupling module utilizing condensing lattice connector array
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
US6947213B2 (en) 1999-06-16 2005-09-20 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
JP2002098820A (en) * 2000-09-21 2002-04-05 Nippon Sheet Glass Co Ltd Reflection type diffraction grating
CN100456062C (en) * 2005-10-19 2009-01-28 日立电线株式会社 Optical waveguide device and multiple optical waveguide device

Similar Documents

Publication Publication Date Title
EP0322714B1 (en) Polarizing optical element and device using the same
KR100283502B1 (en) Optical head apparatus
US5243465A (en) Area-division beamsplitter with broad spectral bandwidth
US20020003661A1 (en) Diffractive optical element and optical system having the same
EP1109164A2 (en) Optical head apparatus for different types of disks
US20020044285A1 (en) Coupling elements for surface plasmon resonance sensors
CA2138436C (en) Optical pickup
JPS60142305A (en) Reflecting grid
JPH06259800A (en) Optical device
EP0386643A2 (en) Beam splitter
JP3298184B2 (en) Optical head and manufacturing method thereof
JPH07159609A (en) Diffraction grating and interference exposure device
JPH06258534A (en) Optical device
JP3189922B2 (en) Diffractive optical element
JP4178583B2 (en) Anti-reflection coating
JP2019028083A (en) Optical element
EP0219845B1 (en) Phase grating of a combination pattern-refraction modification type
JP3214964B2 (en) Diffractive optical element
Pitt et al. Waveguiding Fresnel lenses: modelling and fabrication
JPH0661566A (en) Optical device and its manufacture
JPH04219640A (en) Optical head and its manufacture
JPH0764024A (en) Integrate type optical device and its manufacture
JP2773401B2 (en) Optical lens
JPS63191328A (en) Optical head device
JP3052528B2 (en) Optical lens and manufacturing method thereof