JPH0518781B2 - - Google Patents

Info

Publication number
JPH0518781B2
JPH0518781B2 JP62307453A JP30745387A JPH0518781B2 JP H0518781 B2 JPH0518781 B2 JP H0518781B2 JP 62307453 A JP62307453 A JP 62307453A JP 30745387 A JP30745387 A JP 30745387A JP H0518781 B2 JPH0518781 B2 JP H0518781B2
Authority
JP
Japan
Prior art keywords
alumina
refractory
short fibers
lightweight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62307453A
Other languages
Japanese (ja)
Other versions
JPH01148765A (en
Inventor
Kenichi Shibata
Koichi Kimura
Juji Kanamori
Tomohiko Hara
Tatsuo Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP62307453A priority Critical patent/JPH01148765A/en
Publication of JPH01148765A publication Critical patent/JPH01148765A/en
Publication of JPH0518781B2 publication Critical patent/JPH0518781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高度の耐熱性を有する軽量耐火物に
関するものであり、さらにくわしくは、各種セラ
ミツクス製品たとえばセラミツクス系電子部品
(セラミツクコンデンサ、アルミナ基板、フエラ
イト素子、サーミスタ、バリスタ等)、セラミツ
クス系摺動材料、一般用陶磁器等を製造するに当
り焼成工程で被焼成物を支持させるために使用す
る匣鉢、敷台等の焼成補助具や、各種窯炉におけ
る遮熱板、発熱体支持具、壁面構成材等に適し
た、繰返し加熱冷却に耐える軽量耐火物に関する
ものである。 〔従来の技術〕 上述の焼成補助具や窯炉構成材は、高温加熱と
冷却の繰返しに耐える高度の耐熱性と用途に応じ
た機械的強度を備えていなければならないが、一
方では、炉使用時においてそれらが消費する熱エ
ネルギーを少なくするとともに、昇温と冷却に要
する時間を短くし、それによりエネルギーコスト
の低減と生産性の向上をはかるため、なるべく比
熱の小さい軽量のものであることが望まれる。特
に焼成補助具の場合は、搬送その他の取扱を容易
にするためにも、軽量であることが強く望まれ
る。 このような要望に答えるための軽量耐火物の一
つとして、特開昭59−88378号公報には、アルミ
ナ質、ムライト質等の耐火材原料粉末90〜50wt
%及びアルミナ質、ムライト質等の耐火材繊維10
〜50wt%からなる骨材100重量部に対して無定形
シリカを0.5〜10重量部添加したものを成形し、
次いで1450〜1600℃で焼成することにより得られ
る耐火物が記載されている。しかしながら、この
耐火物は、シリカ分が多いため、シリカと反応し
やすいセラミツクス半製品の焼成補助具として使
用すると化学反応を起こし、セラミツクス製品を
融着さたり変性させたりするばかりか、耐火物自
体も、強度や耐久性の劣化が避けられない。ま
た、高温の還元性雰囲気や不活性雰囲気で使用す
るとシリカが揮発し易く、それによる強度低下が
著しい。さらに、シリカは通常クリストバライト
の形で残るが、これが200℃付近で急激な体積変
化を起こすので、これを含む製品は耐スポーリン
グ性(急熱・急冷に対する耐久性)の点でも改良
の余地がある。 〔発明が解決しようとする問題点〕 本発明の目的は、上述のような欠点のない軽量
耐火物、すなわちいかなる使用条件においても化
学的に不活性であり、しかも高度の耐熱性と耐久
性を示す軽量耐火物、およびその製造法を提供す
ることにある。 〔問題点を解決するための手段〕 本発明が提供する軽量耐火物は、長さを2000μ
以下の高アルミナ質短繊維または該短繊維とアル
ミナ質耐火性粉末との混合物がアルミナ質結合剤
により相互に結合されてカサ比重0.5〜1.5の多孔
質成形体を形成してなり、遊離のシリカを実質的
に含まないものである。 本発明はまた、上記本発明の軽量耐火物の特に
有利な製造法、すなわち長さが20〜2000μの多結
晶質アルミナ質短繊維または該短繊維に等量以下
のアルミナ質耐火性粉末を加えた混合物2〜30重
量%のアルミナ質結合剤を加えて混合し、得られ
た混合物を成形し、次いで多結晶質アルミナ質短
繊維に由来する遊離のシリカの存在が認められな
くなるまで1400〜1600℃で焼成することを特徴と
する製造法を提供するものである。 最初に上記製造法について説明すると、前述の
従来法と比較した場合、この製造法の特色は、多
結晶質アルミナ質繊維を微細に切断し、粉体に近
いものにしてこれを主原料としたこと、および、
ケイ酸質の原料をまつたく用いず、多結晶質アル
ミナ質繊維に由来する少量のシリカ分以外にはシ
リカが入り込まないようにしたことである。 主原料である2000μ以下の多結晶質アルミナ質
短繊維は、多結晶質アルミナ質繊維を湿式または
乾式の適当な粉砕機等を用いて切断することによ
り調製する。粉体に近い性質を示すこの繊維は、
きわめて容易に他の粉体原料と均一に混じり合
う。2000μをこえる繊維長のものは、特に繊維径
が小さい場合、原料混合工程においてもつれ易
く、その中に耐火性粉末や結合剤が入り難い。そ
のため、強度や耐久性の点で劣るものとなり易
い。ただし、繊維長があまり小さいと、低比重で
しかも強度や耐久性に優れている製品を得ること
は難しくなるので、約20μを下限とすることが望
ましい。特に好ましい繊維長は約50〜500μ、平
均約200μである。繊維の太さは特に制限される
ものではないが、約1〜5μの範囲にあることが
望ましい。 アルミナ質耐火性粉末としては、焼成アルミナ
粉末、電融アルミナ粉末、水酸化アルミニウムな
どの、高純度アルミナ粉末を用いることが望まし
い。アルミナ質粉末の使用量は、多くてもアルミ
ナ繊維と等量とする。過剰量の使用は製品を緻密
にし、断熱性および耐久性の悪いものにする。 アルミナ質結合剤として適当なものには、コロ
イダルアルミナ、アルミスラツジ(アルマイト処
理で生成する水酸化アルミニウムゲル)、硫酸ア
ルミニウムにアルカリを作用させて得られる水酸
化アルミニウムゲルなどがある。この結合剤の使
用量(Al2O3換算量)は、アルミナ繊維および耐
火性粉末の混合物に対して2〜30重量%とするこ
とが望ましく、過剰量の使用は耐火性粉末の過剰
使用と同様の弊害がある。 これらの原料を上述の比率で混合し、さらに混
合の前後において適量の水を加えて、全体を湿潤
状態ないしスラリー状にする。次いで原料混合物
を脱水成形の常法により成形するが、成形は、最
終製品のカサ比重が約0.5〜1.5になるような条件
で行うことが望ましい。得られた成形体を乾燥し
たのち、約1400〜1600℃で、遊離のシリカが実質
的に認められなくなるまで焼成して結合剤を硬化
させる。この過程で、アルミナ質短繊維は、その
中に少量(通常1〜5重量%程度)含まれている
シリカが周囲のアルミナと反応してムライト化す
るが、残りのアルミナ部分はコランダムの状態で
安定化し、繊維状形態に実質的な変化を起こすこ
となく製品中に残る。焼成が不充分で遊離のシリ
カをクリストバライトの形で残したものは、前述
のようなシリカ含有品の欠点を示す。遊離のシリ
カの消失は、通常の粉末X線回折法により確認す
ることができる。 上述のようにして得られる本発明の軽量耐火物
では、短いとはいえ繊維形状を有する2000μ以下
のコランダム質繊維が(またはこれとアルミナ質
耐火性粉末とが)、それらの接点においてアルミ
ナにより結合されており、多量の微細空〓部を持
つ。標準的かつ好ましい気孔率は約50〜80%であ
り、それによりこの耐火物は0.5〜1.5のカサ比重
を有し、単位体積当りでは緻密質アルミナ系耐火
物の約1/3の熱容量を示す。 本発明の軽量耐火物は、そのまま、あるいは必
要に応じて切削加工や耐熱性表面コーテイング
(たとえばジルコニアコーテイング)を施して、
前述のような焼成補助具や窯炉構成材として利用
することができる。 〔発明の効果〕 本発明による軽量耐火物は、反応性や揮発性を
有する点で好ましくない遊離のシリカを実質的に
含まないことにより、また、きわめて微細に切断
されたアルミナ質短繊維を主成分とする特殊な構
成により、従来のシリカ含有アルミナ質軽量耐火
物よりも使用可能範囲が広く、しかもすぐれた高
温耐久性を示す。そしてカサ比重が約1.0以下で
も実用上充分な強度を示すものが容易に得られ、
切削加工も容易であるという特長がある。 〔実施例〕 以下、実施例および比較例を示して本発明を説
明する。 なお、各例において用いた原料は次のとおりで
ある。 多結晶質アルミナ質繊維 無処理品:繊維径3μ、平均繊維長約50mm Al2O395%、SiO25%のもの。 極短小化品:上記無処理品をパルパーで開繊およ
び切断して約50〜500μの繊維長にした
もの。 耐火性粉末:焼結アルミナ 結合剤:コロイダルアルミナ ただし比較例4、5においてはコロイダルシリ
カを用いた。 以上の原料のうち、まずアルミナ質繊維および
耐火性粉末を分散させ、次いで結合剤を加えて撹
拌したのち、吸引脱水成形する。得られた成形体
を、熱風で乾燥後、1300〜1500℃で3時間焼成す
る。 上記製法において原料配合比率および処理条件
を種々変更して行なつた実験の結果を、第1表に
示した。なお、表中に示した特性値の試験法は次
のとおりである。 曲げ強さ:厚さ6mm、幅25mm、長さ75mmの試験片
について、スパン50mm、荷重速度0.2
mm/min、常温で測定。 平均クラツク発生温度:100mm×100mm×4mmの板
状に切り出した試験片を用意する。その
5枚を、板間の四隅にスペーサーとして
1辺6mmの立方体状アルミナ焼結体を置
きながら積み重ね、その上下にさらに、
試験片と同様の板(ダミー)を同様にし
て1枚ずつ配置する。上述のように組み
合わせた試験片を300℃の電気炉に入れ、
40分間加熱する。その後、炉から取り出
し、放冷後、クラツク発生の有無を目視
により検査する。電気炉の温度を50℃高
くして、再度同様の試験を行う。全試験
片にクラツクが発生するまで、50℃ずつ
温度を高くしながらこれを繰り返し、次
式により平均クラツク発生温度Tav(℃)
を求める。 Tav=1/5oi=0 xi・Ti ここでxiは温度Ti℃(300+50i)においてク
ラツクが発生した試験片の数、nは全数クラツ
[Industrial Field of Application] The present invention relates to lightweight refractories with high heat resistance, and more specifically relates to various ceramic products such as ceramic electronic components (ceramic capacitors, alumina substrates, ferrite elements, thermistors, varistors). etc.), ceramic sliding materials, general ceramics, etc., firing aids such as saggers and stands used to support the object to be fired during the firing process, and heat shields for various kilns. The present invention relates to a lightweight refractory material that can withstand repeated heating and cooling and is suitable for heating element supports, wall construction materials, and the like. [Prior Art] The above-mentioned firing aids and kiln constituent materials must have a high degree of heat resistance that can withstand repeated high-temperature heating and cooling, and mechanical strength appropriate to the intended use. In order to reduce the thermal energy consumed by these devices and shorten the time required for heating and cooling, thereby reducing energy costs and improving productivity, it is desirable to use lightweight materials with as low a specific heat as possible. desired. In particular, in the case of baking aids, it is strongly desired that they be lightweight in order to facilitate transportation and other handling. As one of the lightweight refractories to meet such demands, Japanese Patent Application Laid-Open No. 59-88378 describes a powder of refractory materials such as alumina and mullite with a weight of 90 to 50 wt.
% and refractory fibers such as alumina and mullite 10
0.5 to 10 parts by weight of amorphous silica is added to 100 parts by weight of aggregate consisting of ~50 wt%, and then molded.
Then, a refractory obtained by firing at 1450 to 1600°C is described. However, since this refractory has a high silica content, when used as a firing aid for ceramic semi-finished products that easily react with silica, it causes a chemical reaction that not only causes the ceramic products to fuse or denature, but also causes the refractory itself to However, deterioration in strength and durability is unavoidable. Furthermore, when used in a high-temperature reducing atmosphere or inert atmosphere, silica tends to volatilize, resulting in a significant decrease in strength. Furthermore, silica usually remains in the form of cristobalite, which undergoes rapid volume changes at around 200°C, so there is room for improvement in products containing this in terms of spalling resistance (durability against rapid heating and cooling). be. [Problems to be Solved by the Invention] The object of the present invention is to create a lightweight refractory that does not have the above-mentioned drawbacks, that is, to be chemically inert under any conditions of use, and to have a high degree of heat resistance and durability. The object of the present invention is to provide a lightweight refractory material and a method for producing the same. [Means for solving the problem] The lightweight refractory provided by the present invention has a length of 2000 μm.
The following high alumina short fibers or a mixture of the short fibers and an alumina refractory powder are bonded together with an alumina binder to form a porous molded body with a bulk specific gravity of 0.5 to 1.5, with no free silica. It is substantially free of. The present invention also provides a particularly advantageous method for producing the lightweight refractories of the present invention, namely polycrystalline alumina short fibers having a length of 20 to 2000μ or adding an equal or less amount of alumina refractory powder to the short fibers. 2 to 30% by weight of an alumina binder was added and mixed, the resulting mixture was molded, and then heated for 1400 to 1600 hours until the presence of free silica originating from polycrystalline alumina staple fibers was no longer observed. The present invention provides a manufacturing method characterized by firing at ℃. First, to explain the above manufacturing method, when compared with the conventional method mentioned above, the feature of this manufacturing method is that polycrystalline alumina fibers are cut into fine pieces, made into something close to powder, and this is used as the main raw material. That, and
By not using too many silicic acid raw materials, no silica other than the small amount of silica derived from the polycrystalline alumina fibers is prevented. The main raw material, polycrystalline alumina short fibers of 2000μ or less, is prepared by cutting polycrystalline alumina fibers using a suitable wet or dry grinder. This fiber exhibits properties similar to powder,
Mixes very easily and uniformly with other powder raw materials. Fibers with a fiber length exceeding 2000μ, especially when the fiber diameter is small, tend to tangle during the raw material mixing process, making it difficult for the refractory powder and binder to enter into the tangles. Therefore, it tends to be inferior in terms of strength and durability. However, if the fiber length is too short, it will be difficult to obtain a product with low specific gravity and excellent strength and durability, so it is desirable to set the lower limit to about 20μ. A particularly preferred fiber length is about 50 to 500 microns, with an average of about 200 microns. The thickness of the fibers is not particularly limited, but is preferably in the range of about 1 to 5 microns. As the alumina refractory powder, it is desirable to use high-purity alumina powder such as calcined alumina powder, fused alumina powder, and aluminum hydroxide. The amount of alumina powder used is at most the same amount as the alumina fiber. Use of excessive amounts will make the product dense and have poor insulation and durability. Suitable alumina binders include colloidal alumina, aluminum sludge (aluminum hydroxide gel produced by alumite treatment), and aluminum hydroxide gel obtained by reacting aluminum sulfate with an alkali. It is desirable that the amount of this binder used (in terms of Al 2 O 3 ) is 2 to 30% by weight based on the mixture of alumina fiber and refractory powder. There are similar disadvantages. These raw materials are mixed in the above-mentioned ratio, and an appropriate amount of water is added before and after mixing to make the whole into a wet state or a slurry state. Next, the raw material mixture is molded by a conventional dehydration molding method, and the molding is preferably carried out under conditions such that the bulk specific gravity of the final product is about 0.5 to 1.5. After drying the obtained molded body, it is fired at about 1400 to 1600°C until substantially no free silica is observed to harden the binder. In this process, the silica contained in the alumina short fibers (usually around 1 to 5% by weight) reacts with the surrounding alumina and turns into mullite, but the remaining alumina remains in the state of corundum. It is stabilized and remains in the product without substantial change in fibrous morphology. Insufficient calcinations that leave free silica in the form of cristobalite exhibit the drawbacks of silica-containing products as described above. Disappearance of free silica can be confirmed by conventional powder X-ray diffraction method. In the lightweight refractory of the present invention obtained as described above, corundum fibers (or corundum fibers and alumina refractory powder) having a fiber shape of 2000 μm or less, although short, are bonded by alumina at their contact points. It has a large amount of microscopic voids. The standard and preferred porosity is about 50-80%, so that the refractory has a bulk specific gravity of 0.5-1.5 and exhibits a heat capacity per unit volume of about 1/3 of that of dense alumina-based refractories. . The lightweight refractory of the present invention can be used as it is, or if necessary, can be subjected to cutting processing or a heat-resistant surface coating (for example, zirconia coating).
It can be used as a firing aid or a kiln component as described above. [Effects of the Invention] The lightweight refractory according to the present invention does not substantially contain free silica, which is undesirable due to its reactivity and volatility, and is mainly composed of extremely finely cut alumina short fibers. Due to the special composition of the ingredients, it has a wider usable range than conventional silica-containing alumina lightweight refractories, and also exhibits excellent high-temperature durability. And even if the bulk specific gravity is less than about 1.0, it is easy to obtain a material that shows sufficient strength for practical use.
It has the advantage of being easy to cut. [Example] The present invention will be described below with reference to Examples and Comparative Examples. The raw materials used in each example are as follows. Polycrystalline alumina fiber untreated product: Fiber diameter 3μ, average fiber length approximately 50mm, Al 2 O 3 95%, SiO 2 5%. Ultra-shortened product: The above-mentioned untreated product is opened and cut with a pulper to have a fiber length of about 50 to 500μ. Refractory powder: Sintered alumina Binder: Colloidal alumina However, in Comparative Examples 4 and 5, colloidal silica was used. Of the above raw materials, alumina fibers and refractory powder are first dispersed, then a binder is added and stirred, followed by suction dehydration molding. The obtained molded body is dried with hot air and then fired at 1300 to 1500°C for 3 hours. Table 1 shows the results of experiments conducted by variously changing the mixing ratio of raw materials and processing conditions in the above manufacturing method. The test method for the characteristic values shown in the table is as follows. Bending strength: For a test piece with a thickness of 6 mm, width of 25 mm, and length of 75 mm, span of 50 mm, loading rate of 0.2
mm/min, measured at room temperature. Average crack occurrence temperature: Prepare a test piece cut into a plate shape of 100 mm x 100 mm x 4 mm. The five sheets were stacked, placing cubic alumina sintered bodies of 6 mm on each side as spacers in the four corners between the sheets, and above and below them,
Plates (dummy) similar to the test pieces are placed one by one in the same manner. The test pieces assembled as described above were placed in an electric furnace at 300°C.
Heat for 40 minutes. Thereafter, it is taken out of the furnace, left to cool, and then visually inspected for the presence or absence of cracks. Raise the temperature of the electric furnace by 50℃ and repeat the same test. Repeat this while increasing the temperature by 50°C until cracks occur in all test pieces, and calculate the average crack occurrence temperature T av (°C) using the following formula:
seek. T av = 1/5 oi = 0 x i・T i where x i is the number of test pieces that cracked at temperature T i ℃ (300 + 50i), and n is the total number of test pieces that cracked.

【表】 クが発生するまでの加熱繰り返し数である。 また、実施例1および比較例4の製品の結晶構
造を示すX線回折チヤートを第1図および第2図
に示した。 さらに、実施例1および比較例4の各製品につ
いて、還元性雰囲気(水素75%+窒素25%)で
1500℃に5時間加熱する試験を行なつた。加熱後
の物性は次のとおりであつた。 実施例1 比較例4 かさ比重 1.05 1.12 曲げ強さ(Kgf/cm2)102 45
[Table] This is the number of heating cycles until cracks occur. Further, X-ray diffraction charts showing the crystal structures of the products of Example 1 and Comparative Example 4 are shown in FIGS. 1 and 2. Furthermore, each product of Example 1 and Comparative Example 4 was tested in a reducing atmosphere (75% hydrogen + 25% nitrogen).
A test was conducted in which the material was heated to 1500°C for 5 hours. The physical properties after heating were as follows. Example 1 Comparative Example 4 Bulk specific gravity 1.05 1.12 Bending strength (Kgf/cm 2 ) 102 45

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:実施例1による耐火物の結晶構造を示
すX線回折チヤート、第2図:比較例4による耐
火物の結晶構造を示すX線回折チヤート。
FIG. 1: An X-ray diffraction chart showing the crystal structure of the refractory according to Example 1. FIG. 2: An X-ray diffraction chart showing the crystal structure of the refractory according to Comparative Example 4.

Claims (1)

【特許請求の範囲】 1 長さが2000μ以下の高アルミナ質短繊維また
は該短繊維とアルミナ質耐火性粉末との混合物
が、アルミナ質結合剤により相互に結合され、カ
サ比重0.5〜1.5の多孔質成形体を形成してなり、
遊離のシリカを含まないことを特徴とする軽量耐
火物。 2 アルミナ質耐火性粉末の含有率が高アルミナ
質短繊維の含有率より高くはない特許請求の範囲
第1項記載の軽量耐火物。 3 長さが20〜2000μの多結晶質アルミナ質短繊
維または上記短繊維に等量以下のアルミナ質耐火
性粉末を加えた混合物に2〜30重量%のアルミナ
質結合剤を加えて混合し、得られた混合物を成形
し、次いで多結晶質アルミナ質短繊維に由来する
遊離のシリカの在存が認められなくなるまで、
1400〜1600℃で焼成することを特徴とする軽量耐
火物の製造法。
[Claims] 1 High alumina short fibers with a length of 2000μ or less or a mixture of the short fibers and an alumina refractory powder are mutually bonded by an alumina binder to form a porous structure with a bulk specific gravity of 0.5 to 1.5. forming a quality molded body,
A lightweight refractory characterized by not containing free silica. 2. The lightweight refractory according to claim 1, wherein the content of the alumina refractory powder is not higher than the content of the high alumina short fibers. 3 Add and mix 2 to 30% by weight of an alumina binder to a mixture of polycrystalline alumina short fibers with a length of 20 to 2000μ or the above short fibers and an equal amount or less of alumina refractory powder, The resulting mixture was molded and then molded until the presence of free silica originating from the polycrystalline alumina staple fibers was no longer observed.
A method for producing lightweight refractories characterized by firing at 1400-1600℃.
JP62307453A 1987-12-07 1987-12-07 Lightweight refractory and its manufacture Granted JPH01148765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307453A JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307453A JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Publications (2)

Publication Number Publication Date
JPH01148765A JPH01148765A (en) 1989-06-12
JPH0518781B2 true JPH0518781B2 (en) 1993-03-12

Family

ID=17969245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307453A Granted JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Country Status (1)

Country Link
JP (1) JPH01148765A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102171A (en) * 1988-10-11 1990-04-13 Nichias Corp Refractory for ceramic calcination
JP7238706B2 (en) * 2019-09-06 2023-03-14 三菱ケミカルインフラテック株式会社 Hardener liquid, soil stabilization chemical, method for producing the chemical, and ground stabilization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186452A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Refractory fiber moldings
JPS60215582A (en) * 1984-04-10 1985-10-28 吉沢 正男 Sintered refractory moldings and manufacture
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186452A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Refractory fiber moldings
JPS60215582A (en) * 1984-04-10 1985-10-28 吉沢 正男 Sintered refractory moldings and manufacture
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Also Published As

Publication number Publication date
JPH01148765A (en) 1989-06-12

Similar Documents

Publication Publication Date Title
JPH0465030B2 (en)
JP4376579B2 (en) Silicon nitride bonded SiC refractory and method for producing the same
JPH07277814A (en) Alumina-based ceramic sintered compact
KR102612770B1 (en) All-fiber burner brick and its manufacturing method
CN110028316B (en) Cordierite kiln furniture sagger and preparation method thereof
CN114031297B (en) Cordierite-based porous glass ceramic and preparation method thereof
CN109293379B (en) Chromium oxide brick and preparation method thereof
US4086097A (en) Method of preparing insulating refractory products and the product thereof
JPH0572341B2 (en)
JPH0518781B2 (en)
JPH0798707B2 (en) Porous refractory molding for firing functional parts
JPH0232228B2 (en)
JPH0518780B2 (en)
CN111792939A (en) High-aluminum brick and preparation method thereof
JPH0794347B2 (en) Insulation
KR102405558B1 (en) Crucible for firing secondary battery material and process for preparing the same
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPS61181008A (en) Manufacture of dielectric ceramics
JP2508511B2 (en) Alumina composite
JPH03247556A (en) High-temperature burning jig
JP2853175B2 (en) Method for producing heat-resistant inorganic fiber molded article and heat-resistant lightweight setter
JPH08198664A (en) Alumina-base sintered body and its production
JPH02233568A (en) Hybrid inorganic fibrous form
CN101921117B (en) Shaped refractory brick with peeling resistance and erosion resistance, preparation method thereof and refractory wall
JP2558777B2 (en) Foam ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 15